• Tidak ada hasil yang ditemukan

Lampiran 1. Syntax Program LINGO 11.0 untuk Menyelesaikan Masalah Pemrograman Linear dengan Metode Branch and Bound beserta Hasil yang Diperoleh

N/A
N/A
Protected

Academic year: 2021

Membagikan "Lampiran 1. Syntax Program LINGO 11.0 untuk Menyelesaikan Masalah Pemrograman Linear dengan Metode Branch and Bound beserta Hasil yang Diperoleh"

Copied!
17
0
0

Teks penuh

(1)
(2)

Lampiran 1

Syntax Program LINGO 11.0 untuk Menyelesaikan Masalah Pemrograman Linear dengan

Metode Branch and Bound beserta Hasil yang Diperoleh

1) PL-relaksasi dari ILP (8)

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1>=0;x2>=0;

end

Hasil yang diperoleh:

Global optimal solution found.

Objective value:82.50000

Infeasibilities:0.000000

Total solver iterations:2

Variable Value

Reduced Cost

X1 3.750000 0.000000

X2 2.250000 0.000000

2) Subproblem 2

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

≥ 4

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1>=4;

x1>=0;x2>=0;

end

Hasil yang diperoleh:

Global optimal solution found.

Objective value: 82.00000

Infeasibilities: 0.000000

Total solver iterations: 3

Variable Value

Reduced Cost

X1

4.000000 0.000000

X2 1.800000 0.000000

3) Subproblem 3

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

≤ 3

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1<=3; x1>=0; x2>=0;

end

Hasil yang diperoleh:

Global optimal solution found.

Objective value: 78.00000

Infeasibilities: 0.000000

Total solver iterations: 1

Variable Value Reduced Cost

X1 3.000000 0.000000

X2 3.000000 0.000000

4) Subproblem 4

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

≥ 4

x

2

≥ 2

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1>=4; x2>=2;

x1>=0; x2>=0;

end

(3)

Hasil yang diperoleh:

5) Subproblem 5

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

≥ 4

x

2

≤ 1

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1>=4; x2<=1;x1>=0; x2>=0;

end

Hasil yang diperoleh:

Global optimal solution found.

Objective value: 81.11111

Infeasibilities: 0.000000

Total solver iterations: 1

Variable Value Reduced Cost

X1 4.444444 0.000000

X2 1.000000 0.000000

6) Subproblem 6

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

≥ 4

x

2

≤ 1

x

1

≥ 5

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1>=4; x2<=1; x1>=5;

x1>=0; x2>=0;

end

Hasil yang diperoleh:

Global optimal solution found.

Objective value: 80.00000

Infeasibilities: 0.000000

Total solver iterations:0

Variable Value

Reduced Cost

X1 5.000000 0.000000

X2 0.000000 0.000000

7) Subproblem 7

Maksimumkan z = 16x

1

+ 10x

2

terhadap, 2x

1

+ 2x

2

≤ 12

18x

1

+ 10x

2

≤ 90

x

1

≥ 4

x

2

≤ 1

x

1

≤ 4

x

1

, x

2

≥ 0

Syntax program pada LINGO 11.0:

!Fungsi Objektif;

max=16*x1+10*x2;

!Kendala;

2*x1+2*x2<=12;

18*x1+10*x2<=90;

x1>=4; x2<=1; x1<=4;

x1>=0; x2>=0;

end

Hasil yang diperoleh:

Global optimal solution found.

Objective value: 74.00000

Infeasibilities: 0.000000

Total solver iterations: 0

Variable Value Reduced Cost

X1 4.000000 0.000000

X2 1.000000 0.000000

(4)

Lampiran 2

Data Simulasi Penjadwalan MRT Lebak Bulus-Sisingamangaraja

Tabel 4 Data simulasi dari perjalanan MRT Lebak Bulus-Sisingamangaraja

Indeks

stasiun

Stasiun

Indeks

Petak

Blok (d

k

)

Jarak

antarstasiun

(km)

Kecepatan

minimum

(km/jam)

Kecepatan

maksimum

(km/jam)

Waktu tempuh

minimum

(menit)

Waktu tempuh

maksimum

(menit)

Waktu tunggu

di stasiun

(menit)

MRT

Eko.

MRT

Eks.

MRT

Eko.

MRT

Eks.

MRT

Eko.

MRT

Eks.

MRT

Eko.

MRT

Eks.

MRT

Eko.

MRT

Eks.

1

Lebak Bulus (LB)

-

-

-

-

-

-

-

-

-

-

5

3

2

Fatmawati (FA

d

1

7.95

43.36

79.50

53.00

119.25

11

6

9

4

1

0

3

Cipete Raya (CR)

d

2

8.25

38.08

61.88

45.00

82.50

13

8

11

6

1

0

4

Haji Nawi (HN)

d

3

7.30

43.80

87.60

54.75

146.00

10

5

8

3

1

1

5

Blok A (BA)

d

4

5.25

35.00

78.75

45.00

157.50

9

4

7

2

1

0

6

Blok M (BM)

d

5

6.70

36.55

67.00

44.67

100.50

11

6

9

4

1

0

7

Sisingamangaraja (SI)

d

6

7.25

33.46

54.38

39.55

72.50

13

8

11

6

5

3

Keterangan: Eko. = MRT Ekonomi, Eks. = MRT Ekspres.

(5)

Tabel 5 Waktu kedatangan setiap MRT di stasiun pertama

Indeks MRT

Jenis MRT

Waktu Kedatangan (menit ke-)

1

MRT Ekonomi

5

2

MRT Ekonomi

10

3

MRT Ekonomi

20

4

MRT Ekonomi

35

5

MRT Ekonomi

40

6

MRT Ekonomi

50

7

MRT Ekspres

15

8

MRT Ekspres

25

9

MRT Ekspres

30

10

MRT Ekspres

45

11

MRT Ekonomi

5

12

MRT Ekonomi

15

13

MRT Ekonomi

20

14

MRT Ekonomi

30

15

MRT Ekonomi

40

16

MRT Ekspres

10

17

MRT Ekspres

25

18

MRT Ekspres

35

(6)

Lampiran 3

Syntax Program LINGO 11.0 untuk Simulasi Penjadwalan MRT Lebak

Bulus-Sisingamangaraja beserta Hasil yang Diperoleh

model: sets: kereta/1..18/;stasiun/1..7/;petakb lok/1..6/; link1(kereta,stasiun):Xd,Xa,S,D; link2(kereta,kereta,petakblok):A,B ; endsets data: h=5; M=100; S= 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 3 0 0 1 0 0 3 3 0 0 1 0 0 3 3 0 0 1 0 0 3 3 0 0 1 0 0 3 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 3 0 0 1 0 0 3 3 0 0 1 0 0 3 3 0 0 1 0 0 3 ; enddata !Fungsi Objektif; min=@sum(kereta(i)|i#LE#10:Xd(i,7) -Xa(i,1))+@sum(kereta(i)|i#GT#10:Xd (i,7)-Xa(i,1));

!kendala 1: Urutan operasi pada setiap kereta api;

!outbound; @for(kereta(i)|i#LE#10:@for(stasiu n(l):Xa(i,l)+S(i,l)+D(i,l)=Xd(i,l) )); !inbound; @for(kereta(i)|i#GT#10:@for(stasiu n(l):Xa(i,l)+S(i,l) +D(i,l)=Xd(i,l)));

!Kendala 2: Aturan penyusulan; !kereta j mendahului kereta i;

!outbound; @for(kereta(i)|i#LE#10:@for(kereta (j)|j#NE#i#AND#j#LE#10:@for(petakb lok(k):@for(stasiun(l)|l#GE#2:M*A( i,j,k)+Xa(i,l)>Xa(j,l)+h)))); @for(kereta(i)|i#LE#10:@for(kereta (j)|j#NE#i#AND#j#LE#10:@for(petakb lok(k):@for(stasiun(l):M*A(i,j,k)+ Xd(i,l)>Xd(j,l)+h)))); !inbound; @for(kereta(i)|i#GT#10:@for(kereta (j)|j#NE#i#AND#j#GT#10:@for(petakb lok(k):@for(stasiun(l)|l#GE#2:M*B( i,j,k)+Xa(i,l)>Xa(j,l)+h)))); @for(kereta(i)|i#GT#10:@for(kereta (j)|j#NE#i#AND#j#GT#10:@for(petakb lok(k):@for(stasiun(l):M*B(i,j,k)+ Xd(i,l)>Xd(j,l)+h))));

!kereta i mendahului kereta j; !outbound; @for(kereta(i)|i#LE#10:@for(kereta (j)|j#NE#i#AND#j#LE#10:@for(petakb lok(k):@for(stasiun(l)|l#GE#2:M*(1 -A(i,j,k))+Xa(j,l)>Xa(i,l)+h)))); @for(kereta(i)|i#LE#10:@for(kereta (j)|j#NE#i#AND#j#LE#10:@for(petakb lok(k):@for(stasiun(l):M*(1-A(i,j,k))+Xd(j,l)>Xd(i,l)+h)))); !inbound; @for(kereta(i)|i#GT#10:@for(kereta (j)|j#NE#i#AND#j#GT#10:@for(petakb lok(k):@for(stasiun(l)|l#GE#2:M*(1 -B(i,j,k))+Xa(j,l)>Xa(i,l)+h)))); @for(kereta(i)|i#GT#10:@for(kereta (j)|j#NE#i#AND#j#GT#10:@for(petakb lok(k):@for(stasiun(l):M*(1-B(i,j,k))+Xd(j,l)>Xd(i,l)+h)))); !kendala 3: Rata-rata kecepatan setiap kereta api untuk menempuh masing-masing petak blok;

!outbound; @for(kereta(i)|i#LE#6:9<(Xa(i,2)-Xd(i,1))); @for(kereta(i)|i#LE#6:(Xa(i,2)-Xd(i,1))<11); @for(kereta(i)|i#LE#6:11<(Xa(i,3)-Xd(i,2))); @for(kereta(i)|i#LE#6:(Xa(i,3)-Xd(i,2))<13); @for(kereta(i)|i#LE#6:8<(Xa(i,4)-Xd(i,3)));

(7)

@for(kereta(i)|i#LE#6:(Xa(i,4)-Xd(i,3))<10); @for(kereta(i)|i#LE#6:7<(Xa(i,5)-Xd(i,4))); @for(kereta(i)|i#LE#6:(Xa(i,5)-Xd(i,4))<9); @for(kereta(i)|i#LE#6:9<(Xa(i,6)-Xd(i,5))); @for(kereta(i)|i#LE#6:(Xa(i,6)-Xd(i,5))<11); @for(kereta(i)|i#LE#6:11<(Xa(i,7)-Xd(i,6))); @for(kereta(i)|i#LE#6:(Xa(i,7)-Xd(i,6))<13); @for(kereta(i)|i#LE#10#AND#i#GT#6: 4<(Xa(i,2)-Xd(i,1))); @for(kereta(i)|i#LE#10#AND#i#GT#6: (Xa(i,2)-Xd(i,1))<6); @for(kereta(i)|i#LE#10#AND#i#GT#6: 6<(Xa(i,3)-Xd(i,2))); @for(kereta(i)|i#LE#10#AND#i#GT#6: (Xa(i,3)-Xd(i,2))<8); @for(kereta(i)|i#LE#10#AND#i#GT#6: 3<(Xa(i,4)-Xd(i,3))); @for(kereta(i)|i#LE#10#AND#i#GT#6: (Xa(i,4)-Xd(i,3))<5); @for(kereta(i)|i#LE#10#AND#i#GT#6: 2<(Xa(i,5)-Xd(i,4))); @for(kereta(i)|i#LE#10#AND#i#GT#6: (Xa(i,5)-Xd(i,4))<4); @for(kereta(i)|i#LE#10#AND#i#GT#6: 4<(Xa(i,6)-Xd(i,5))); @for(kereta(i)|i#LE#10#AND#i#GT#6: (Xa(i,6)-Xd(i,5))<6); @for(kereta(i)|i#LE#10#AND#i#GT#6: 6<(Xa(i,7)-Xd(i,6))); @for(kereta(i)|i#LE#10#AND#i#GT#6: (Xa(i,7)-Xd(i,6))<8); !inbound; @for(kereta(i)|i#GT#10#AND#i#LE#15 :11<(Xa(i,2)-Xd(i,1))); @for(kereta(i)|i#GT#10#AND#i#LE#15 :9<(Xa(i,3)-Xd(i,2))); @for(kereta(i)|i#GT#10#AND#i#LE#15 :7<(Xa(i,4)-Xd(i,3))); @for(kereta(i)|i#GT#10#AND#i#LE#15 :8<(Xa(i,5)-Xd(i,4))); @for(kereta(i)|i#GT#10#AND#i#LE#15 :11<(Xa(i,6)-Xd(i,5))); @for(kereta(i)|i#GT#10#AND#i#LE#15 :9<(Xa(i,7)-Xd(i,6))); @for(kereta(i)|i#GT#10#AND#i#LE#15 :(Xa(i,2)-Xd(i,1))<13); @for(kereta(i)|i#GT#10#AND#i#LE#15 :(Xa(i,3)-Xd(i,2))<11); @for(kereta(i)|i#GT#10#AND#i#LE#15 :(Xa(i,4)-Xd(i,3))<9); @for(kereta(i)|i#GT#10#AND#i#LE#15 :(Xa(i,5)-Xd(i,4))<10); @for(kereta(i)|i#GT#10#AND#i#LE#15 :(Xa(i,6)-Xd(i,5))<13); @for(kereta(i)|i#GT#10#AND#i#LE#15 :(Xa(i,7)-Xd(i,6))<11); @for(kereta(i)|i#LE#18#AND#i#GT#15 :6<(Xa(i,2)-Xd(i,1))); @for(kereta(i)|i#LE#18#AND#i#GT#15 :4<(Xa(i,3)-Xd(i,2))); @for(kereta(i)|i#LE#18#AND#i#GT#15 :2<(Xa(i,4)-Xd(i,3))); @for(kereta(i)|i#LE#18#AND#i#GT#15 :3<(Xa(i,5)-Xd(i,4))); @for(kereta(i)|i#LE#18#AND#i#GT#15 :6<(Xa(i,6)-Xd(i,5))); @for(kereta(i)|i#LE#18#AND#i#GT#15 :4<(Xa(i,7)-Xd(i,6))); @for(kereta(i)|i#LE#18#AND#i#GT#15 :(Xa(i,2)-Xd(i,1))<8); @for(kereta(i)|i#LE#18#AND#i#GT#15 :(Xa(i,3)-Xd(i,2))<6); @for(kereta(i)|i#LE#18#AND#i#GT#15 :(Xa(i,4)-Xd(i,3))<4); @for(kereta(i)|i#LE#18#AND#i#GT#15 :(Xa(i,5)-Xd(i,4))<5); @for(kereta(i)|i#LE#18#AND#i#GT#15 :(Xa(i,6)-Xd(i,5))<8); @for(kereta(i)|i#LE#18#AND#i#GT#15 :(Xa(i,7)-Xd(i,6))<6);

!Waktu kedatangan masing-masing kereta di stasiun pertama; !outbound; Xa(1,1)=5;Xa(2,1)=10;Xa(3,1)=20;Xa (4,1)=35;Xa(5,1)=40;Xa(6,1)=50; Xa(7,1)=15;Xa(8,1)=25;Xa(9,1)=30;X a(10,1)=45; !inbound; Xa(11,1)=5;Xa(12,1)=15;Xa(13,1)=20 ;Xa(14,1)=30;Xa(15,1)=40; Xa(16,1)=10;Xa(17,1)=25;Xa(18,1)=3 5; ! Kendala 4: Pemberhentian Ekspress; ! Outbound; Xa(7,2)=Xd(7,2); Xa(7,3)=Xd(7,3); Xa(7,5)=Xd(7,5); Xa(7,6)=Xd(7,6);

(8)

Xa(8,2)=Xd(8,2); Xa(8,3)=Xd(8,3); Xa(8,5)=Xd(8,5); Xa(8,6)=Xd(8,6); Xa(9,2)=Xd(9,2); Xa(9,3)=Xd(9,3); Xa(9,5)=Xd(9,5); Xa(9,6)=Xd(9,6); Xa(10,2)=Xd(10,2); Xa(10,3)=Xd(10,3); Xa(10,5)=Xd(10,5); Xa(10,6)=Xd(10,6); !inbound; Xa(16,2)=Xd(16,2); Xa(16,3)=Xd(16,3); Xa(16,5)=Xd(16,5); Xa(16,6)=Xd(16,6); Xa(17,2)=Xd(17,2); Xa(17,3)=Xd(17,3); Xa(17,5)=Xd(17,5); Xa(17,6)=Xd(17,6); Xa(18,2)=Xd(18,2); Xa(18,3)=Xd(18,3); Xa(18,5)=Xd(18,5); Xa(18,6)=Xd(18,6);

!Kendala 5: nilai biner untuk A dan B; @for(kereta(i)|i#LE#10:@for(kereta (j)|j#LE#10:@for(petakblok(k):@bin (A(i,j,k))))); @for(kereta(i)|i#GT#10:@for(kereta (j)|j#GT#10:@for(petakblok(k):@bin (B(i,j,k))))); !Outbound; A(1,2,1)=1; A(1,3,1)=1; A(1,4,1)=1; A(1,5,1)=1; A(1,6,1)=1; A(1,7,1)=1; A(1,8,1)=1; A(1,9,1)=1; A(1,10,1)=1; A(2,3,1)=1; A(2,4,1)=1; A(2,5,1)=1; A(2,6,1)=1; A(2,7,1)=1; A(2,8,1)=1; A(2,9,1)=1; A(2,10,1)=1; A(7,3,1)=1; A(7,4,1)=1; A(7,5,1)=1; A(7,6,1)=1; A(7,8,1)=1; A(7,9,1)=1; A(7,10,1)=1; A(3,4,1)=1; A(3,5,1)=1; A(3,6,1)=1; A(3,8,1)=1; A(3,9,1)=1; A(3,10,1)=1; A(8,4,1)=1; A(8,5,1)=1; A(8,6,1)=1; A(8,9,1)=1; A(8,10,1)=1; A(9,4,1)=1; A(9,5,1)=1; A(9,6,1)=1; A(9,10,1)=1; A(4,5,1)=1; A(4,6,1)=1; A(4,10,1)=1; A(5,6,1)=1; A(5,10,1)=1; A(10,6,1)=1; !inbound; B(11,12,1)=1; B(11,13,1)=1; B(11,14,1)=1; B(11,15,1)=1; B(11,16,1)=1; B(11,17,1)=1; B(11,18,1)=1; B(16,12,1)=1; B(16,13,1)=1; B(16,14,1)=1; B(16,15,1)=1; B(16,17,1)=1; B(16,18,1)=1; B(12,13,1)=1; B(12,14,1)=1; B(12,15,1)=1; B(12,17,1)=1; B(12,18,1)=1; B(13,14,1)=1; B(13,15,1)=1; B(13,17,1)=1; B(13,18,1)=1; B(17,14,1)=1; B(17,15,1)=1; B(17,18,1)=1; B(14,15,1)=1; B(14,18,1)=1; B(18,15,1)=1; end

(9)
(10)

Global optimal solution found.

Objective value: 1502.000

Objective bound: 1502.000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 1303

Variable Value Reduced Cost H 5.000000 0.000000 M 100.0000 0.000000 XD( 1, 1) 10.00000 0.000000 XD( 1, 2) 20.00000 0.000000 XD( 1, 3) 32.00000 0.000000 XD( 1, 4) 41.00000 0.000000 XD( 1, 5) 49.00000 0.000000 XD( 1, 6) 59.00000 0.000000 XD( 1, 7) 75.00000 0.000000 XD( 2, 1) 15.00000 0.000000 XD( 2, 2) 25.00000 0.000000 XD( 2, 3) 37.00000 0.000000 XD( 2, 4) 46.00000 0.000000 XD( 2, 5) 54.00000 0.000000 XD( 2, 6) 64.00000 0.000000 XD( 2, 7) 80.00000 0.000000 XD( 3, 1) 36.00000 0.000000 XD( 3, 2) 46.00000 0.000000 XD( 3, 3) 58.00000 0.000000 XD( 3, 4) 67.00000 0.000000 XD( 3, 5) 75.00000 0.000000 XD( 3, 6) 85.00000 0.000000 XD( 3, 7) 101.0000 0.000000 XD( 4, 1) 62.00000 0.000000 XD( 4, 2) 72.00000 0.000000 XD( 4, 3) 84.00000 0.000000 XD( 4, 4) 93.00000 0.000000 XD( 4, 5) 101.0000 0.000000 XD( 4, 6) 111.0000 0.000000 XD( 4, 7) 127.0000 0.000000 XD( 5, 1) 67.00000 0.000000 XD( 5, 2) 77.00000 0.000000 XD( 5, 3) 89.00000 0.000000 XD( 5, 4) 98.00000 0.000000 XD( 5, 5) 106.0000 0.000000 XD( 5, 6) 116.0000 0.000000 XD( 5, 7) 132.0000 0.000000 XD( 6, 1) 88.00000 0.000000 XD( 6, 2) 98.00000 0.000000 XD( 6, 3) 110.0000 0.000000 XD( 6, 4) 119.0000 0.000000 XD( 6, 5) 127.0000 0.000000 XD( 6, 6) 137.0000 0.000000 XD( 6, 7) 153.0000 0.000000 XD( 7, 1) 31.00000 0.000000 XD( 7, 2) 37.00000 0.000000 XD( 7, 3) 45.00000 0.000000 XD( 7, 4) 62.00000 0.000000 XD( 7, 5) 66.00000 0.000000 XD( 7, 6) 72.00000 0.000000 XD( 7, 7) 85.00000 0.000000 XD( 8, 1) 52.00000 0.000000 XD( 8, 2) 58.00000 0.000000 XD( 8, 3) 66.00000 0.000000 XD( 8, 4) 83.00000 0.000000 XD( 8, 5) 87.00000 0.000000 XD( 8, 6) 93.00000 0.000000 XD( 8, 7) 106.0000 0.000000 XD( 9, 1) 57.00000 0.000000 XD( 9, 2) 63.00000 0.000000 XD( 9, 3) 71.00000 0.000000 XD( 9, 4) 88.00000 0.000000 XD( 9, 5) 92.00000 0.000000 XD( 9, 6) 98.00000 0.000000 XD( 9, 7) 111.0000 0.000000 XD( 10, 1) 83.00000 0.000000 XD( 10, 2) 89.00000 0.000000 XD( 10, 3) 97.00000 0.000000 XD( 10, 4) 114.0000 0.000000 XD( 10, 5) 118.0000 0.000000 XD( 10, 6) 124.0000 0.000000 XD( 10, 7) 137.0000 0.000000 XD( 11, 1) 10.00000 0.000000 XD( 11, 2) 22.00000 0.000000 XD( 11, 3) 32.00000 0.000000 XD( 11, 4) 40.00000 0.000000 XD( 11, 5) 49.00000 0.000000 XD( 11, 6) 61.00000 0.000000 XD( 11, 7) 75.00000 0.000000 XD( 12, 1) 31.00000 0.000000 XD( 12, 2) 43.00000 0.000000 XD( 12, 3) 53.00000 0.000000 XD( 12, 4) 61.00000 0.000000 XD( 12, 5) 70.00000 0.000000 XD( 12, 6) 82.00000 0.000000 XD( 12, 7) 96.00000 0.000000 XD( 13, 1) 36.00000 0.000000 XD( 13, 2) 48.00000 0.000000 XD( 13, 3) 58.00000 0.000000 XD( 13, 4) 66.00000 0.000000 XD( 13, 5) 75.00000 0.000000 XD( 13, 6) 87.00000 0.000000 XD( 13, 7) 101.0000 0.000000 XD( 14, 1) 57.00000 0.000000 XD( 14, 2) 69.00000 0.000000 XD( 14, 3) 79.00000 0.000000 XD( 14, 4) 87.00000 0.000000 XD( 14, 5) 96.00000 0.000000 XD( 14, 6) 108.0000 0.000000 XD( 14, 7) 122.0000 0.000000 XD( 15, 1) 78.00000 0.000000 XD( 15, 2) 90.00000 0.000000 XD( 15, 3) 100.0000 0.000000 XD( 15, 4) 108.0000 0.000000 XD( 15, 5) 117.0000 0.000000 XD( 15, 6) 129.0000 0.000000 XD( 15, 7) 143.0000 0.000000 XD( 16, 1) 26.00000 0.000000 XD( 16, 2) 34.00000 0.000000 XD( 16, 3) 40.00000 0.000000 XD( 16, 4) 56.00000 0.000000 XD( 16, 5) 61.00000 0.000000 XD( 16, 6) 69.00000 0.000000 XD( 16, 7) 80.00000 0.000000 XD( 17, 1) 52.00000 0.000000 XD( 17, 2) 60.00000 0.000000 XD( 17, 3) 66.00000 0.000000 XD( 17, 4) 82.00000 0.000000 XD( 17, 5) 87.00000 0.000000 XD( 17, 6) 95.00000 0.000000 XD( 17, 7) 106.0000 0.000000 XD( 18, 1) 73.00000 0.000000 XD( 18, 2) 81.00000 0.000000 XD( 18, 3) 87.00000 0.000000 XD( 18, 4) 103.0000 0.000000 XD( 18, 5) 108.0000 0.000000 XD( 18, 6) 116.0000 0.000000 XD( 18, 7) 127.0000 0.000000 XA( 1, 1) 5.000000 0.000000 XA( 1, 2) 19.00000 0.000000 XA( 1, 3) 31.00000 0.000000 XA( 1, 4) 40.00000 0.000000 XA( 1, 5) 48.00000 0.000000 XA( 1, 6) 58.00000 0.000000 XA( 1, 7) 70.00000 0.000000 XA( 2, 1) 10.00000 0.000000 XA( 2, 2) 24.00000 0.000000

(11)

XA( 2, 3) 36.00000 0.000000 XA( 2, 4) 45.00000 0.000000 XA( 2, 5) 53.00000 0.000000 XA( 2, 6) 63.00000 0.000000 XA( 2, 7) 75.00000 0.000000 XA( 3, 1) 20.00000 0.000000 XA( 3, 2) 45.00000 0.000000 XA( 3, 3) 57.00000 0.000000 XA( 3, 4) 66.00000 0.000000 XA( 3, 5) 74.00000 0.000000 XA( 3, 6) 84.00000 0.000000 XA( 3, 7) 96.00000 0.000000 XA( 4, 1) 35.00000 0.000000 XA( 4, 2) 71.00000 0.000000 XA( 4, 3) 83.00000 0.000000 XA( 4, 4) 92.00000 0.000000 XA( 4, 5) 100.0000 0.000000 XA( 4, 6) 110.0000 0.000000 XA( 4, 7) 122.0000 0.000000 XA( 5, 1) 40.00000 0.000000 XA( 5, 2) 76.00000 0.000000 XA( 5, 3) 88.00000 0.000000 XA( 5, 4) 97.00000 0.000000 XA( 5, 5) 105.0000 0.000000 XA( 5, 6) 115.0000 0.000000 XA( 5, 7) 127.0000 0.000000 XA( 6, 1) 50.00000 0.000000 XA( 6, 2) 97.00000 0.000000 XA( 6, 3) 109.0000 0.000000 XA( 6, 4) 118.0000 0.000000 XA( 6, 5) 126.0000 0.000000 XA( 6, 6) 136.0000 0.000000 XA( 6, 7) 148.0000 0.000000 XA( 7, 1) 15.00000 0.000000 XA( 7, 2) 37.00000 0.000000 XA( 7, 3) 45.00000 0.000000 XA( 7, 4) 50.00000 0.000000 XA( 7, 5) 66.00000 0.000000 XA( 7, 6) 72.00000 0.000000 XA( 7, 7) 80.00000 0.000000 XA( 8, 1) 25.00000 0.000000 XA( 8, 2) 58.00000 0.000000 XA( 8, 3) 66.00000 0.000000 XA( 8, 4) 71.00000 0.000000 XA( 8, 5) 87.00000 0.000000 XA( 8, 6) 93.00000 0.000000 XA( 8, 7) 101.0000 0.000000 XA( 9, 1) 30.00000 0.000000 XA( 9, 2) 63.00000 0.000000 XA( 9, 3) 71.00000 0.000000 XA( 9, 4) 76.00000 0.000000 XA( 9, 5) 92.00000 0.000000 XA( 9, 6) 98.00000 0.000000 XA( 9, 7) 106.0000 0.000000 XA( 10, 1) 45.00000 0.000000 XA( 10, 2) 89.00000 0.000000 XA( 10, 3) 97.00000 0.000000 XA( 10, 4) 102.0000 0.000000 XA( 10, 5) 118.0000 0.000000 XA( 10, 6) 124.0000 0.000000 XA( 10, 7) 132.0000 0.000000 XA( 11, 1) 5.000000 0.000000 XA( 11, 2) 21.00000 0.000000 XA( 11, 3) 31.00000 0.000000 XA( 11, 4) 39.00000 0.000000 XA( 11, 5) 48.00000 0.000000 XA( 11, 6) 60.00000 0.000000 XA( 11, 7) 70.00000 0.000000 XA( 12, 1) 15.00000 0.000000 XA( 12, 2) 42.00000 0.000000 XA( 12, 3) 52.00000 0.000000 XA( 12, 4) 60.00000 0.000000 XA( 12, 5) 69.00000 0.000000 XA( 12, 6) 81.00000 0.000000 XA( 12, 7) 91.00000 0.000000 XA( 13, 1) 20.00000 0.000000 XA( 13, 2) 47.00000 0.000000 XA( 13, 3) 57.00000 0.000000 XA( 13, 4) 65.00000 0.000000 XA( 13, 5) 74.00000 0.000000 XA( 13, 6) 86.00000 0.000000 XA( 13, 7) 96.00000 0.000000 XA( 14, 1) 30.00000 0.000000 XA( 14, 2) 68.00000 0.000000 XA( 14, 3) 78.00000 0.000000 XA( 14, 4) 86.00000 0.000000 XA( 14, 5) 95.00000 0.000000 XA( 14, 6) 107.0000 0.000000 XA( 14, 7) 117.0000 0.000000 XA( 15, 1) 40.00000 0.000000 XA( 15, 2) 89.00000 0.000000 XA( 15, 3) 99.00000 0.000000 XA( 15, 4) 107.0000 0.000000 XA( 15, 5) 116.0000 0.000000 XA( 15, 6) 128.0000 0.000000 XA( 15, 7) 138.0000 0.000000 XA( 16, 1) 10.00000 0.000000 XA( 16, 2) 34.00000 0.000000 XA( 16, 3) 40.00000 0.000000 XA( 16, 4) 44.00000 0.000000 XA( 16, 5) 61.00000 0.000000 XA( 16, 6) 69.00000 0.000000 XA( 16, 7) 75.00000 0.000000 XA( 17, 1) 25.00000 0.000000 XA( 17, 2) 60.00000 0.000000 XA( 17, 3) 66.00000 0.000000 XA( 17, 4) 70.00000 0.000000 XA( 17, 5) 87.00000 0.000000 XA( 17, 6) 95.00000 0.000000 XA( 17, 7) 101.0000 0.000000 XA( 18, 1) 35.00000 0.000000 XA( 18, 2) 81.00000 0.000000 XA( 18, 3) 87.00000 0.000000 XA( 18, 4) 91.00000 0.000000 XA( 18, 5) 108.0000 0.000000 XA( 18, 6) 116.0000 0.000000 XA( 18, 7) 122.0000 0.000000 S( 1, 1) 5.000000 0.000000 S( 1, 2) 1.000000 0.000000 S( 1, 3) 1.000000 0.000000 S( 1, 4) 1.000000 0.000000 S( 1, 5) 1.000000 0.000000 S( 1, 6) 1.000000 0.000000 S( 1, 7) 5.000000 0.000000 S( 2, 1) 5.000000 0.000000 S( 2, 2) 1.000000 0.000000 S( 2, 3) 1.000000 0.000000 S( 2, 4) 1.000000 0.000000 S( 2, 5) 1.000000 0.000000 S( 2, 6) 1.000000 0.000000 S( 2, 7) 5.000000 0.000000 S( 3, 1) 5.000000 0.000000 S( 3, 2) 1.000000 0.000000 S( 3, 3) 1.000000 0.000000 S( 3, 4) 1.000000 0.000000 S( 3, 5) 1.000000 0.000000 S( 3, 6) 1.000000 0.000000 S( 3, 7) 5.000000 0.000000 S( 4, 1) 5.000000 0.000000 S( 4, 2) 1.000000 0.000000 S( 4, 3) 1.000000 0.000000 S( 4, 4) 1.000000 0.000000 S( 4, 5) 1.000000 0.000000 S( 4, 6) 1.000000 0.000000 S( 4, 7) 5.000000 0.000000 S( 5, 1) 5.000000 0.000000

(12)

S( 5, 2) 1.000000 0.000000 S( 5, 3) 1.000000 0.000000 S( 5, 4) 1.000000 0.000000 S( 5, 5) 1.000000 0.000000 S( 5, 6) 1.000000 0.000000 S( 5, 7) 5.000000 0.000000 S( 6, 1) 5.000000 0.000000 S( 6, 2) 1.000000 0.000000 S( 6, 3) 1.000000 0.000000 S( 6, 4) 1.000000 0.000000 S( 6, 5) 1.000000 0.000000 S( 6, 6) 1.000000 0.000000 S( 6, 7) 5.000000 0.000000 S( 7, 1) 3.000000 0.000000 S( 7, 2) 0.000000 0.000000 S( 7, 3) 0.000000 0.000000 S( 7, 4) 1.000000 0.000000 S( 7, 5) 0.000000 0.000000 S( 7, 6) 0.000000 0.000000 S( 7, 7) 3.000000 0.000000 S( 8, 1) 3.000000 0.000000 S( 8, 2) 0.000000 0.000000 S( 8, 3) 0.000000 0.000000 S( 8, 4) 1.000000 0.000000 S( 8, 5) 0.000000 0.000000 S( 8, 6) 0.000000 0.000000 S( 8, 7) 3.000000 0.000000 S( 9, 1) 3.000000 0.000000 S( 9, 2) 0.000000 0.000000 S( 9, 3) 0.000000 0.000000 S( 9, 4) 1.000000 0.000000 S( 9, 5) 0.000000 0.000000 S( 9, 6) 0.000000 0.000000 S( 9, 7) 3.000000 0.000000 S( 10, 1) 3.000000 0.000000 S( 10, 2) 0.000000 0.000000 S( 10, 3) 0.000000 0.000000 S( 10, 4) 1.000000 0.000000 S( 10, 5) 0.000000 0.000000 S( 10, 6) 0.000000 0.000000 S( 10, 7) 3.000000 0.000000 S( 11, 1) 5.000000 0.000000 S( 11, 2) 1.000000 0.000000 S( 11, 3) 1.000000 0.000000 S( 11, 4) 1.000000 0.000000 S( 11, 5) 1.000000 0.000000 S( 11, 6) 1.000000 0.000000 S( 11, 7) 5.000000 0.000000 S( 12, 1) 5.000000 0.000000 S( 12, 2) 1.000000 0.000000 S( 12, 3) 1.000000 0.000000 S( 12, 4) 1.000000 0.000000 S( 12, 5) 1.000000 0.000000 S( 12, 6) 1.000000 0.000000 S( 12, 7) 5.000000 0.000000 S( 13, 1) 5.000000 0.000000 S( 13, 2) 1.000000 0.000000 S( 13, 3) 1.000000 0.000000 S( 13, 4) 1.000000 0.000000 S( 13, 5) 1.000000 0.000000 S( 13, 6) 1.000000 0.000000 S( 13, 7) 5.000000 0.000000 S( 14, 1) 5.000000 0.000000 S( 14, 2) 1.000000 0.000000 S( 14, 3) 1.000000 0.000000 S( 14, 4) 1.000000 0.000000 S( 14, 5) 1.000000 0.000000 S( 14, 6) 1.000000 0.000000 S( 14, 7) 5.000000 0.000000 S( 15, 1) 5.000000 0.000000 S( 15, 2) 1.000000 0.000000 S( 15, 3) 1.000000 0.000000 S( 15, 4) 1.000000 0.000000 S( 15, 5) 1.000000 0.000000 S( 15, 6) 1.000000 0.000000 S( 15, 7) 5.000000 0.000000 S( 16, 1) 3.000000 0.000000 S( 16, 2) 0.000000 0.000000 S( 16, 3) 0.000000 0.000000 S( 16, 4) 1.000000 0.000000 S( 16, 5) 0.000000 0.000000 S( 16, 6) 0.000000 0.000000 S( 16, 7) 3.000000 0.000000 S( 17, 1) 3.000000 0.000000 S( 17, 2) 0.000000 0.000000 S( 17, 3) 0.000000 0.000000 S( 17, 4) 1.000000 0.000000 S( 17, 5) 0.000000 0.000000 S( 17, 6) 0.000000 0.000000 S( 17, 7) 3.000000 0.000000 S( 18, 1) 3.000000 0.000000 S( 18, 2) 0.000000 0.000000 S( 18, 3) 0.000000 0.000000 S( 18, 4) 1.000000 0.000000 S( 18, 5) 0.000000 0.000000 S( 18, 6) 0.000000 0.000000 S( 18, 7) 3.000000 0.000000 D( 1, 1) 0.000000 10.00000 D( 1, 2) 0.000000 1.000000 D( 1, 3) 0.000000 1.000000 D( 1, 4) 0.000000 1.000000 D( 1, 5) 0.000000 1.000000 D( 1, 6) 0.000000 1.000000 D( 1, 7) 0.000000 1.000000 D( 2, 1) 0.000000 0.000000 D( 2, 2) 0.000000 9.000000 D( 2, 3) 0.000000 9.000000 D( 2, 4) 0.000000 5.000000 D( 2, 5) 0.000000 5.000000 D( 2, 6) 0.000000 5.000000 D( 2, 7) 0.000000 2.000000 D( 3, 1) 11.00000 0.000000 D( 3, 2) 0.000000 4.000000 D( 3, 3) 0.000000 4.000000 D( 3, 4) 0.000000 0.000000 D( 3, 5) 0.000000 3.000000 D( 3, 6) 0.000000 3.000000 D( 3, 7) 0.000000 3.000000 D( 4, 1) 22.00000 0.000000 D( 4, 2) 0.000000 4.000000 D( 4, 3) 0.000000 4.000000 D( 4, 4) 0.000000 4.000000 D( 4, 5) 0.000000 4.000000 D( 4, 6) 0.000000 4.000000 D( 4, 7) 0.000000 1.000000 D( 5, 1) 22.00000 0.000000 D( 5, 2) 0.000000 0.000000 D( 5, 3) 0.000000 0.000000 D( 5, 4) 0.000000 0.000000 D( 5, 5) 0.000000 0.000000 D( 5, 6) 0.000000 0.000000 D( 5, 7) 0.000000 2.000000 D( 6, 1) 33.00000 0.000000 D( 6, 2) 0.000000 0.000000 D( 6, 3) 0.000000 0.000000 D( 6, 4) 0.000000 0.000000 D( 6, 5) 0.000000 1.000000 D( 6, 6) 0.000000 1.000000 D( 6, 7) 0.000000 1.000000 D( 7, 1) 13.00000 0.000000 D( 7, 2) 0.000000 0.000000 D( 7, 3) 0.000000 0.000000 D( 7, 4) 11.00000 0.000000 D( 7, 5) 0.000000 0.000000 D( 7, 6) 0.000000 0.000000 D( 7, 7) 2.000000 0.000000

(13)

D( 8, 1) 24.00000 0.000000 D( 8, 2) 0.000000 0.000000 D( 8, 3) 0.000000 0.000000 D( 8, 4) 11.00000 0.000000 D( 8, 5) 0.000000 0.000000 D( 8, 6) 0.000000 0.000000 D( 8, 7) 2.000000 0.000000 D( 9, 1) 24.00000 0.000000 D( 9, 2) 0.000000 0.000000 D( 9, 3) 0.000000 0.000000 D( 9, 4) 11.00000 0.000000 D( 9, 5) 0.000000 0.000000 D( 9, 6) 0.000000 0.000000 D( 9, 7) 2.000000 0.000000 D( 10, 1) 35.00000 0.000000 D( 10, 2) 0.000000 0.000000 D( 10, 3) 0.000000 0.000000 D( 10, 4) 11.00000 0.000000 D( 10, 5) 0.000000 0.000000 D( 10, 6) 0.000000 0.000000 D( 10, 7) 2.000000 0.000000 D( 11, 1) 0.000000 8.000000 D( 11, 2) 0.000000 8.000000 D( 11, 3) 0.000000 8.000000 D( 11, 4) 0.000000 2.000000 D( 11, 5) 0.000000 2.000000 D( 11, 6) 0.000000 2.000000 D( 11, 7) 0.000000 2.000000 D( 12, 1) 11.00000 0.000000 D( 12, 2) 0.000000 6.000000 D( 12, 3) 0.000000 6.000000 D( 12, 4) 0.000000 1.000000 D( 12, 5) 0.000000 1.000000 D( 12, 6) 0.000000 1.000000 D( 12, 7) 0.000000 1.000000 D( 13, 1) 11.00000 0.000000 D( 13, 2) 0.000000 0.000000 D( 13, 3) 0.000000 0.000000 D( 13, 4) 0.000000 5.000000 D( 13, 5) 0.000000 5.000000 D( 13, 6) 0.000000 5.000000 D( 13, 7) 0.000000 2.000000 D( 14, 1) 22.00000 0.000000 D( 14, 2) 0.000000 0.000000 D( 14, 3) 0.000000 0.000000 D( 14, 4) 0.000000 0.000000 D( 14, 5) 0.000000 3.000000 D( 14, 6) 0.000000 3.000000 D( 14, 7) 0.000000 2.000000 D( 15, 1) 33.00000 0.000000 D( 15, 2) 0.000000 0.000000 D( 15, 3) 0.000000 0.000000 D( 15, 4) 0.000000 0.000000 D( 15, 5) 0.000000 1.000000 D( 15, 6) 0.000000 1.000000 D( 15, 7) 0.000000 1.000000 D( 16, 1) 13.00000 0.000000 D( 16, 2) 0.000000 0.000000 D( 16, 3) 0.000000 0.000000 D( 16, 4) 11.00000 0.000000 D( 16, 5) 0.000000 0.000000 D( 16, 6) 0.000000 0.000000 D( 16, 7) 2.000000 0.000000 D( 17, 1) 24.00000 0.000000 D( 17, 2) 0.000000 0.000000 D( 17, 3) 0.000000 0.000000 D( 17, 4) 11.00000 0.000000 D( 17, 5) 0.000000 0.000000 D( 17, 6) 0.000000 0.000000 D( 17, 7) 2.000000 0.000000 D( 18, 1) 35.00000 0.000000 D( 18, 2) 0.000000 0.000000 D( 18, 3) 0.000000 0.000000 D( 18, 4) 11.00000 0.000000 D( 18, 5) 0.000000 0.000000 D( 18, 6) 0.000000 0.000000 D( 18, 7) 2.000000 0.000000 A( 1, 1, 1) 0.000000 0.000000 . . . A( 18, 18, 6) 0.000000 0.000000 B( 1, 1, 1) 0.000000 0.000000 . . . B( 18, 18, 6) 0.000000 0.000000

(14)

Lampiran 4

Hasil Simulasi Penjadwalan MRT dengan Nilai Delay MRT Ekspres Dibatasi

Gambar 12 Diagram ruang waktu dari simulasi penjadwalan MRT dari Lebak Bulus ke

Sisingamangaraja dengan waktu delay MRT Ekspres menjadi 6 menit.

1. MRT Ekonomi* 2. MRT Ekonomi* 3. MRT Ekonomi* 4. MRT Ekonomi* 5. MRT Ekonomi* 6. MRT Ekonomi* 7. MRT Ekspres* 8. MRT Ekspres* 9. MRT Ekspres* 10. MRT Ekspres* 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

LB(a) LB(d) FA(a) FA(d) CR(a) CR(d) HN(a) HN(d) BA(a) BA(d) BM(a) BM(d) SI(a) SI(d)

Lebak Bulus Fatmawati Cipete Raya Haji Nawi Blok A Blok M Sisingamangaraja

W ak tu (m eni t)

(15)

Gambar 13 Diagram ruang waktu dari simulasi penjadwalan MRT dari Sisingamangaraja ke Lebak

Bulus dengan waktu delay MRT Ekspres menjadi 6 menit.

11. MRT Ekonomi* 12. MRT Ekonomi* 13. MRT Ekonomi* 14. MRT Ekonomi* 15. MRT Ekonomi* 16. MRT Ekspres* 17. MRT Ekspres* 18. MRT Ekspres* 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

SI(a) SI(d) BM(a) BM(d) BA(a) BA(d) HN(a) HN(d) CR(a) CR(d) FA(a) FA(d) LB(a) LB(d)

Sisingamangaraja Blok M Blok A Haji Nawi Cipete Raya Fatmawati Lebak Bulus

W ak tu (m eni t)

(16)

Tabel 6 Simulasi jadwal kedatangan dan keberangkatan MRT dari Lebak Bulus ke Sisingamangaraja dengan waktu delay MRT Ekspress 6 menit (menit ke-)

Indeks

MRT

Jenis MRT

Lebak Bulus

Fatmawati

Cipete Raya

Haji Nawi

Blok A

Blok M

Sisingamangaraja

LB(a) LB(d) FA(a) FA(d) CR(a) CR(d) HN(a) HN(d) BA(a) BA(d) BM(a) BM(d)

SI(a)

SI(d)

1

MRT Ekonomi

5

10

19

20

31

32

40

41

48

49

58

59

70

75

2

MRT Ekonomi

10

15

24

25

36

37

45

46

53

54

63

64

75

80

7

MRT Ekspres

15

36

-

-

-

-

55

62

-

-

-

-

80

85

3

MRT Ekonomi

20

41

50

51

62

63

71

72

79

80

89

90

101

106

8

MRT Ekspres

25

62

-

-

-

-

81

88

-

-

-

-

106

111

9

MRT Ekspres

30

67

-

-

-

-

86

93

-

-

-

-

111

116

4

MRT Ekonomi

35

72

81

82

93

94

102

103

110

111

120

121

132

137

5

MRT Ekonomi

40

77

86

87

98

99

107

108

115

116

125

126

137

142

10

MRT Ekspres

45

98

-

-

-

-

117

124

-

-

-

-

142

147

6

MRT Ekonomi

50

103

112

113

124

125

133

134

141

142

151

152

163

168

Keterangan : “-“ = Tidak berhenti, (a) = Arrival (Kedatangan), (d) = Departure (Keberangkatan).

(17)

Tabel 7 Simulasi jadwal kedatangan dan keberangkatan MRT dari Sisingamangaraja ke Lebak Bulus dengan waktu delay MRT Ekspress 6 menit (menit ke-)

Indeks

MRT

Jenis MRT

Sisingamangaraja

Blok M

Blok A

Haji Nawi

Cipete Raya

Fatmawati

Lebak Bulus

SI(a)

SI(d)

BM(a) BM(d) BA(a) BA(d) HN(a) HN(d) CR(a) CR(d) FA(a)

FA(d)

LB(a)

LB(d)

11

MRT Ekonomi

5

10

21

22

31

32

39

40

48

49

60

61

70

75

16

MRT Ekspres

10

31

-

-

-

-

49

56

-

-

-

-

75

80

12

MRT Ekonomi

15

36

47

48

57

58

65

66

74

75

86

87

96

101

13

MRT Ekonomi

20

41

52

53

62

63

70

71

79

80

91

92

101

106

17

MRT Ekspres

25

62

-

-

-

-

80

87

-

-

-

-

106

111

14

MRT Ekonomi

30

67

78

79

88

89

96

97

105

106

117

118

127

132

18

MRT Ekspres

35

88

-

-

-

-

106

113

-

-

-

-

132

137

15

MRT Ekonomi

40

93

104

105

114

115

122

123

131

132

143

144

153

158

Keterangan : “-“ = Tidak berhenti, (a) = Arrival (Kedatangan), (d) = Departure (Keberangkatan).

Gambar

Tabel 5 Waktu kedatangan setiap MRT di stasiun pertama
Gambar 12 Diagram ruang waktu dari simulasi penjadwalan MRT dari Lebak Bulus ke Sisingamangaraja dengan waktu delay MRT Ekspres menjadi 6 menit.
Gambar 13 Diagram ruang waktu dari simulasi penjadwalan MRT dari Sisingamangaraja ke Lebak Bulus dengan waktu delay MRT Ekspres menjadi 6 menit.
Tabel 6 Simulasi jadwal kedatangan dan keberangkatan MRT dari Lebak Bulus ke Sisingamangaraja dengan waktu delay MRT Ekspress 6 menit (menit ke-)
+2

Referensi

Dokumen terkait