• Tidak ada hasil yang ditemukan

vol6_pp20-30. 198KB Jun 04 2011 12:06:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol6_pp20-30. 198KB Jun 04 2011 12:06:15 AM"

Copied!
11
0
0

Teks penuh

(1)

The Electronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society.

Volume 6, pp. 20-30, March 2000.

ISSN 1081-3810. http://math.technion.ac.il/iic/ela

ELA

ON THERELATION BETWEEN THENUMERICAL RANGE ANDTHE JOINTNUMERICAL RANGE

OF MATRIX POLYNOMIALS P. J. PSARRAKOS

y

AND M. J. TSATSOMEROS z

Abstrat. It isshown thatthe numerialrange,NR[P()℄, ofa matrix polynomialP() = Am

m

+:::+A 1

+A 0

onsistsoftherootsofallsalarpolynomialswhoseoeÆientsorrespond totheelementsoftheonvexhullofthejointnumerialrangeofthe(m+1)-tuple(A

0 ;A

1 ;:::;A

m ). Moreover, the elements of the joint numerialrange that giverise to salarpolynomials witha ommonrootbelongingtoNR[P()℄formaonnetedset. Thelatterfatisusedtoexaminethe multipliityofrootsbelongingtotheintersetionoftherootzonesofNR[P()℄. Alsoan approxima-tionshemeforNR [P()℄isproposed,intermsofnumerialrangesofdiagonalmatrixpolynomials.

Keywords.jointnumerialrange,matrixpolynomial,rootzone AMSsubjet lassiations. 15A60,47A12

1. Introdution. The numerial range of a matrix polynomial and the joint numerialrangeofaset ofmatries(usually takento betheoeÆientsofamatrix polynomial)arebothnotionsthatgeneralizethelassialnumerialrangeofamatrix. The former is a one-dimensional generalization and the latter a multi-dimensional generalization. Wewillontinuepreviouseortsfoundinourreferenestostudythe relationsbetweenthesesetsanddisovertheirproperties. Theonludingparagraph ofthissetioninludesabriefdesriptionofourresults,requiringthefollowingbasi terminologyandnotation.

LetM n

(C)denotethealgebraof nnmatriesovertheomplexeldandlet P()=A

m

m

+:::+A 1

+A 0 (1)

beamatrixpolynomial,where A j

2M n

(C)(j=0;1;:::;m),A m

6=0. Thepositive integers m and n are referred to as the degree and the order of P(), respetively. Thesalar

0

2C is alled aneigenvalue ofP() iftheequation P( 0

)x=0hasa nonzerosolutionx=x

0 2C

n

. ThusthespetrumofP()istheset [P()℄=f2C : detP()=0g:

As detP() isapolynomialofdegreeat mostnm, [P()℄ iseither equaltoC or itonsistsofatmostnmomplexnumbers. Thenumerial rangeofP()istheset

NR[P()℄=f2C : x

P()x=0 forsomenonzerox2C n

g;

Reeivedbytheeditorson6May1999. Aeptedforpubliationon27February2000.Handling editor: BryanL.Shader

y

DepartmentofMathematisandStatistis,UniversityofRegina,Regina,Saskathewan,Canada S4S0A2(panosmath.uregina.a).

z

(2)

ELA

JointNumerialRange 21 whihislosedandontains[P()℄. NotiethatthenotionofNR[P()℄generalizes thelassialnumerialrangeof amatrixA,thatis,theonvexset

NR[I A℄=fx

Ax : x2C n

;x

x=1g: Also notie that

0

2 NR[P()℄ if and only if 0 2 NR[I P( 0

)℄. It is known that NR[P()℄ is not neessarily onneted and that it is bounded if and only if 062NR[I A

m

℄; seeLiandRodman[6℄.

Thejointnumerial rangeofP()isthesetofomplex(m+1)-tuples JNR [P()℄=f(x

A

0 x;x

A

1

x;:::;x

A m

x) : x2C n

; x

x=1g:

Thejoint numerialrange, beingaontinuous image ofthe unit sphere,is ompat and onnetedbutnotneessarily onvex;see Binding andLi[1℄. Itsonvexhullis denoted byCofJNR[P()℄g. Observethat

NR[P()℄=f2C : m

m

+:::+ 1

+ 0

=0; ( 0

; 1

;:::; m

)2JNR[P()℄g: Consider now the following two subsets of C: the set of roots of all m-degree salar polynomials whose oeÆients orrespond to elementsof the joint numerial rangeofm+1givenmatries,andthesetofrootsofallm-degreesalarpolynomials whose oeÆients orrespond to elements of the onvexhull of the joint numerial rangeof the samem+1matries. As wewill see, boththese sets oinide and are equal to the numerial range of the assoiated matrixpolynomial, despite the fat thatthejointnumerialrangeisnotneessarilyonvex(Proposition2.1). Moreover, the elements of the joint numerial range assoiated with salar polynomials that havea ommon root belonging to the numerialrange, form aset that is not only nonemptybutalsoonneted(Proposition2.2). Whetherornotthemultipliitiesof rootsof salarpolynomialswith oeÆientsfrom thetwosetsabovealso arryover isanopen(andseeminglysubstantial)problemwithimpliationsinthefatorization ofmatrixpolynomials. Somepartialresultsinthisregardanbefoundinsetion3. Finally, in setion4 wedesribeaproess to approximate the numerialrange ofa matrixpolynomialusingthe(joint)numerialrangesofdiagonalmatries.

2. The onvex hull of the joint numerialrange. Notiethat ifQ()isa matrixpolynomialofdegreem, then

JNR[P()℄JNR[Q()℄ =) NR[P()℄NR[Q()℄:

Moregenerally,givenasetGofomplex(m+1)-tuples suhthat JNR[P()℄G, NR[P()℄ f2C :b

m

m

+:::+b 1

+b 0

=0; (b 0

;b 1

;:::;b m

)2Gg: (2)

Thefollowingstrengtheningof(2)holdswhenG=CofJNR[P()℄g.

Proposition2.1. For everymatrixpolynomialP()of degree mwehave NR[P()℄=f2C :

m

(3)

ELA

22 P.J.PsarrakosandM.J.Tsatsomeros Proof. Let

)2CofJNR[P()℄g. ByCaratheodory'sTheoremapplied to C

Sinethereexist unitvetorsx j

2C n

suhthat q wehavethat

andthus(3)beomes

Sinealltheomplexnumbersx Theoppositeinlusionfollowsfromthedisussionpreedingthisproposition.

We ontinue with an interesting geometri feature of the relation between NR[P()℄ and JNR[P()℄. Suppose that exista

0 Wemaythendenethesetofomplex(m+1)-tuples

T ByProposition2.1,ifT

1 (

0

(4)

ELA

JointNumerialRange 23 Proposition 2.2. Let P() = A

Proof. ThesetT 1

. Itisshownin LyubihandMarkus[8℄thattheset L

isonnetedforn3. Consequently,ifweonsidertheontinuousfuntion :fx2C indeedaonnetedset.

In the speial ase when P() is self-adjoint, that is, the oeÆient matries are Hermitian, JNR[P()℄ onsists of real (m+1)-tuples. Therefore for every! 2 NR[P()℄\R weandenetherealhyperplane SimilarlytoProposition2.2,itanbeshownthatifP()isannnmatrixpolynomial withn3,thenT

1 (!)

R

\JNR[P()℄isonnetedforevery!2NR[P()℄\R. 3. Root zones of the numerial range. Let P() be a matrix polynomial as in (1), whose numerial range is bounded, that is, 0 62 NR[I A

m ℄. We an always number the roots of x

P()x = 0 to obtain a sequene of funtionals

(x) on theunit sphereS, havingranges 1 tively. Wewillreferto

1

as`rootbranhes'and usesthem in identifying onditionsthat are equivalentto theroots ofx

P()x=0 beingsimpleateverypointofS.

If there exists a nonzero x 2 C n

suh that x

P()x = 0 has multiple roots, thensomerootzoneshavenonemptyintersetionandthusNR[P()℄ hasfewerthan m onneted omponents. In what follows, we will onsider the onverse, namely, whether thenonemptyintersetion ofsomeoftheroot zonesneessarilyimpliesthe existeneofmultiple roots; seeMaroulasandPsarrakos[9,Theorem3.1℄forthe self-adjointase. For that purpose, wewill use the notionof the jointnumerial range andtheresultsoftheprevioussetion. Wewillalsoneedtorestritourattentionto aompatsubsetofS,wherethefuntionals

1 (x);

2

(x);:::; m

(x)arewelldened andontinuous. Weexpandonthisrequirementnext.

Certainly, the roots of x

P()x = 0 depend ontinuously on the oeÆients x

A

j

x,andthusonx. ThisfatanbededuedfromOstrowski[10,pp.334{335℄by onsideringtheompanionmatrixofthepolynomial

m

+b m 1

(5)

ELA

24 P.J.PsarrakosandM.J.Tsatsomeros where

b j

= x

A

j x x

A

m x

(j=0;1;:::;m 1): Inspiteoftheontinuousdependeneoftherootsofx

P()x=0onx,itmaynotbe possibletodenetheaforementionedfuntionals

1 (x);

2

(x);:::; m

(x)ontinuously on thewhole unit sphere S. This situation is illustrated by the following example. Considerthematrixpolynomial

P()=I 2

0 2 0 2

andletx=(ose i

;sin) T

parameterizeS. Wethenhavethat x

P()x= 2

sin(2)e i

: Thus, if we requireontinuityof the roots

1 (x);

2

(x)as funtions of x, then it is easytoverifythattheyannotbedenedglobally onS.

When the roots of x

P()x = 0 are simple for every x 2 S, a unique global denition of eah

j

(x) as a ontinuous funtional on S is possible and is indeed obtainedin Lyubih[7℄. Otherwise,to proeedwithourgoal,weneedtomodifythe notionofaroot branh

j

(x),using in essenetheargumentsin [7,pp.55{56℄. We will dene ontinuousfuntionals

j =

j

(x)on aertainompat subsetM

of S, using notionsfromdierentialgeometryfor whih ourgeneralreferene isHelgason [4℄. WeonstrutM

under theassumption thatthepolynomial L(;x)x

P()x2C[;x 1

;x 2

;:::;x n

has no multiple irreduible fators. Let D(x) be the disriminant of L(;x) with respettotheindeterminate,thatis,D(x)istheresultantofthepolynomialL(;x) and itsderivative

L(;x). If D(x)0in thepolynomialringC[;x 1

;x 2

:::;x n

℄, then L(;x) has a repeated fator not in C[x℄; f. Walker [11, p. 25℄). Therefore, underourassumption,D(x)isanon-zeroelementofC[x℄.

Considernowtheset U =[C

n

nf0g℄nfx2C n

: L(;x)=

L(;x)=0 forsome2Cg =fx2C

n

nf0g:D(x)6=0g:

The set U is open and is the omplement of an algebrai hypersurfae in C n

. A omplexalgebraihypersurfaehasreal odimension2in thewhole spae. Thus by [4,p. 346,Corollary12.5℄,U isarwiseonneted. It islearthat U isdensein C

n . Thereforetheset

U 1

=fx2C n

:x

x=1;D(x)6=0g

is an arwiseonneted dense open subset of theunit sphereS. The set U 1

(6)

ELA

JointNumerialRange 25 andeneonM

0

analytifuntionals 1

; 2

;:::; m

beingrootsofx

P()x=0,via amethodsimilartothatmentionedin[7℄. Denoteby

0

theoveringmapofM 0

onto U

1

. Foreveryp2M 0

, thesefuntionalssatisfy i

(p)6= j

(p)for1i<jm. For everypairp;q of pointsof M

0

satisfying 0

(p)= 0

(q), thereis apermutation of f1;2;:::;mgforwhih

i

(q)= (i)

(p) (i=1;2;:::;m): DenenowanequivalenerelationonM

0

asfollows. pq ifandonlyif

0 (p)=

0

(q) and i

(p)= i

(q) (i=1;2;:::;m): Dene now M as the osetspae M

0

= . Then M is also a overingspae of U 1

. Let denote the overing map of M onto U

1

. The funtionals j

are well dened onM. Foreverypairp;q of M for whih (p)=(q) andp6=q, thereis an index 1 i m with

i

(p) 6= i

(q). For everyx 2 U 1

, the number L of points p 2 M for whih (p) = x is the same and not greater than m!. Thus, M is an analyti manifoldwiththenaturalRiemannianstruture. Denotebydthemetrifuntionon M orS. Asearlier,usingtheresultsin[10,pp.334{335℄,weaninfat deduethat thefuntionals

j

areuniformlyontinuousonM. Takinganarbitrary>0,asS is ompat,therearepointsy

1 ;y

2 ;:::;y

`

inS suhthat S=

` [ j=1

fy2S : d(y;y j

)<=2g:

SineU 1

isdenseinS,thereexistx 1

;:::;x `

2U 1

withd(x j

;y j

)<=2(j=1;2;:::;`). Thus

U 1

= ` [ j=1

fx2U 1

: d(x;x j

)<g:

For eah j, there exist points p j;1

;p j;2

;:::;p j;L

of M for whih (p j;k

) = x j

(k = 1;2;:::;L)andp

j;s 6=p

j;t

for1s<tL. Then,

M= ` [ j=1

L [ k =1

fx2M : d(x;p j;k

)<g:

Sine >0is arbitrary,the spaeM istotally bounded. Theompletion M

of M isompat. Byuniformontinuity,thefuntionals

j

aredened andontinuouson M

.

The map an be extended to a ontinuous map of M

onto the unit sphere S. Based on the above disussion and notation, we will in the sequel refer to the root zonesof NR[P()℄ (whereP() isamatrixpolynomialasin (1)with bounded numerialrange)asthesets

(7)

ELA

26 P.J.PsarrakosandM.J.Tsatsomeros Eahrootzone

j

isaompatsubsetoftheGaussianplaneC. For

0

2NR[P()℄onsidernowaompatsetF M

thatontainsavetorx 0 denethesets

V whereT

1

Theorem 3.1. Consider the nn matrix polynomial P() = A m

be distint root zones of NR[P()℄. If

thereexistx 1 ing the proof of Proposition 2.2, we an show that T

F

(!) is a onneted subset of JNR[P()℄. Moreover,

T

where these three sets are ompatsubsets of JNR[P()℄. Consequently, V i;F

), then there always exist p;q2M

(q)=!. However,fortheexisteneofthevetorx 0

as intheabovetheorem, pandq mustbeonnetedbyaontinuousurvein

fx2S:x

P(!)x=0g\M

; afat impliedbytheremainingassumptionsofTheorem3.1.

Theorem3.2. ConsiderthennmatrixpolynomialP()=A m

(8)

ELA

JointNumerialRange 27 Proof. AsintheproofofTheorem3.1,thesets

V i;F

(!) and [ k 6=i

V k ;F

(!)

arenonemptyandompatsubsetsofF M

. Moreover,theset

T F

(!)=V i;F

(!)[ 2 4

[ k 6=i

V k ;F

(!) 3 5

isaompatandonnetedsubsetofJNR[P()℄. Hene,

V i;F

(!)\ 2 4

[ k 6=i

V k ;F

(!) 3 5

6=;;

thatis,there existsx 0

2F suhthat i

(x 0

)= k

(x 0

)=! forat leastonek6=i. 4. Polyhedra andthe jointnumerialrange. Considertwomatrix polyno-mials P() = A

m

m

+:::+A 1

+A 0

and Q() = B m

m

+:::+B 1

+B 0

, not neessarilyof the sameorder. IfJNR[P()℄ JNR[Q()℄ orifCofJNR[P()℄g CofJNR[Q()℄g, thenbyourdisussionin setion2,NR[P()℄NR[Q()℄. Letus further assume NR[P()℄ and NR[Q()℄ are bounded. Then forany(

0 ;

1 :::;

m ) in JNR[P()℄, theequation

m

m

+:::+ 1

+ 0

=0has at leastoneroot in ev-eryonneted omponentof NR[P()℄. A similar statement istrue for JNR[Q()℄ and theonneted omponents of NR[Q()℄. Thus NR[Q()℄ has at mostasmany onnetedomponentsasNR[P()℄.

Inviewof theabove,onsider nowtwodiagonalmatrixpolynomialsD 1

() and D

2

()suhthat

JNR[D 1

()℄JNR[P()℄JNR[D 2

()℄: (5)

Let#NR[P()℄denotethenumberofonnetedomponentsofNR[P()℄. Fromthe preedingdisussionitfollowsthat

#NR [D 1

()℄#NR [P()℄#NR[D 2

()℄: (6)

Observethat theordersofD 1

()andD 2

()areirrelevantaslongas(5)issatised. Moreover, (6) gives an approximation of the number of onneted omponents of NR[P()℄ that an be quite useful, espeially when the order n of P() is a lot greaterthanitsdegreem.

Wedoknowthatthejointnumerialrangeofadiagonalmatrixpolynomialisa onvexpolyhedron;see[1℄and[9℄. Conversely,ifKC

m+1

isaonvexpolyhedron withnverties

(9)

ELA

28 P.J.PsarrakosandM.J.Tsatsomeros thenK=JNR[D()℄, where

D()=diag( 1;m

;:::; n;m

) m

+:::+diag( 1;1

;:::; n;1

)+diag( 1;0

;:::; n;0

): Lemma 4.1. LetT C

m

be a nonempty ompat set andW asubspae of C m suh that W \K 6=; for every onvex polyhedron K C

m

that ontains T. Then CofTg\W 6=;.

Proof. LetK bethefamilyofall onvexpolyhedrathat ontainT. Notiethat K isintersetionlosed. SineT isompat,wehavethat

CofTg= \ K2K

K :

Dene F = fW \K : K 2 K g. By assumption, all members of F are ompat, nonemptyandonvex. Moreover,ifW \K

j

2F (j=1;2;:::;p),wehave p

\ j=1

(W \K j

)=W\( p \ j=1

K j

)2F

sine T

p j=1

K j

2 K . Hene by Helly's Theorem (see Danzer, Grunbaum, and Klee [3℄),

T K2K

(W\K)6=;. It followsthat CofTg\W =( T

K2K

K)\W 6=;: Thefollowingresultisageneralizationof[9,Theorem1.1℄.

Theorem4.2. LetP()=A m

m

+:::+A 1

+A 0

beannnmatrixpolynomial. Then

[ NR[D

1

()℄=NR[P()℄= \

NR[D 2

()℄; (7)

where the union [intersetion℄ is taken over all diagonal matrix polynomials D 1

() [D

2

()℄ofdegreemfor whih JNR[D 1

()℄JNR[P()℄JNR [D 2

()℄. Proof. ForeverydiagonalmatrixpolynomialD

1

() with JNR[D

1

()℄JNR[P()℄itislearthatNR[D 1

()℄NR[P()℄. Thus [

JNR[D1()℄JNR[P()℄ NR[D

1

()℄NR[P()℄:

Inaddition,forevery=( 0

; 1

;:::; m

)2JNR[P()℄weantakeD 1

()= m

I m

+ :::+

1 I+

0

I sothatJNR[D 1

()℄=fg. Hene [

JNR[D 1

()℄JNR[P()℄ NR[D

1

()℄NR[P()℄

and the rst equation in (7) holds. Forthe seond equation, notie that for every diagonalpolynomialmatrixD

2

()ofdegreemforwhihJNR[D 2

()℄JNR[P()℄, wehaveNR[D

2

()℄NR[P()℄. Thus NR[P()℄

\

JNR[D2()℄JNR[P()℄ NR[D

(10)

ELA

JointNumerialRange 29 Letnow

0

2

\ JNR[D

2

()℄JNR[P()℄ NR[D

2 ()℄:

Fromthedisussioninsetion2(see(4))itfollowsthatT 1

( 0

)\JNR[D 2

()℄6=;for everydiagonalmatrixpolynomialD

2

()satisfyingJNR[D 2

()℄JNR[P()℄. Hene fromLemma 4.1,

T 1

( 0

)\CofJNR[P()℄g6=;; andfromProposition2.1,T

1 (

0

)\JNR [P()℄6=;. Sothereexistsunitx 0

2C n

suh that

(x 0 A

m x

0 )

m 0

+:::+(x 0 A

1 x

0 )

0 +x

0 A

0 x

0 =0; whihinturnimplies

NR[P()℄

\

JNR[D2()℄JNR[P()℄ NR[D

2 ()℄;

ompletingtheproof.

Observation 4.3. In(7)weanreplaeJNR[P()℄byitsonvexhull.

Observation 4.4. Theorem 4.2givesamethod of approximationofNR[P()℄ by numerialranges of diagonal matrixpolynomials. With the help of Proposition 2.1, weandevelopa seond method as follows. Considertwosequenes of onvex polyhedrafK

(i) t

g(i=1;2andt=m+2;m+3;:::)sothat K (i) t

hast verties, K

(1) t

CofJNR[P()℄gK (2) t

(t=m+2;m+3;:::); andlastlysothatbothK

(i) t

onvergetoCofJNR[P()℄gast!1. IfweletD (i) t

() for i=1;2bett diagonalmatrix polynomials assoiatedwith K

(i) t

, respetively, thenforalltm+2,

NR[D (1) t

℄NR[P()℄NR[D (2) t

℄ andbothNR[D

(i) t

℄ onvergeto NR[P()℄ ast!1. Inotherwords,NR[P()℄an be approximated by numerial ranges of diagonal matrix polynomials of the same degreeandappropriatelylargeorder.

TheresultsinBinding, Farenik,and Li[2℄suggestanothermethodof assoiat-ing numerialranges of matrixpolynomialsto numerial ranges ofdiagonal matrix polynomialsviadilations.

Aknowledgments. Weaknowledgewiththanksananonymousrefereefor gen-erouslyprovidinguswiththeonstrutionoftheset M

(11)

ELA

30 P.J.PsarrakosandM.J.Tsatsomeros REFERENCES

[1℄ P.BindingandC.-K.Li.JointrangesofHermitianmatriesandsimultaneousdiagonalization. LinearAlgebra andItsAppliations,151:157{167,1991.

[2℄ P.Binding,D.R.Farenik,andC.-K.Li. Adilationand norminseveralvariableoperator theory.Canadian JournalofMathematis,47:449{461,1995.

[3℄ L.Danzer, B.Grunbaum, and V. Klee. Helly'stheorem and its relatives. Proeedings of SymposiainPureMathematis,7:101{180,1963.

[4℄ S.Helgason.DierentialGeometry,LieGroups,andSymmetriSpaes.AademiPress,New York,1978.

[5℄ G.A.Isaev.NumerialRangeofOperatorPenilsandKeldyshMultipleCompleteness. Fun-tionalAnalysisandItsAppliations,9:27{30,1975.

[6℄ C.-K.LiandL.Rodman. Numerialrangeofmatrixpolynomials.SIAMJournalonMatrix AnalysisandAppliations,15:1256{1265,1994.

[7℄ Y.Lyubih.SeparationofRootsofMatrixandOperatorPolynomials.IntegralEquationsand OperatorTheory,29:52{62,1998.

[8℄ Y.LyubihandA.Markus.ConnetivityoflevelsetsofquadratiformsandHausdor-Toeplitz typetheorems. Positivity,1:239{254,1997.

[9℄ J.Maroulasand P.Psarrakos. Aonnetion between numerialrangesof selfadjointmatrix polynomials.LinearandMultilinearAlgebra,44:327{340,1998.

[10℄ A.M.Ostrowski. Solutions of equations inEulideanand Banahspaes. AademiPress, NewYork,1973.

Referensi

Dokumen terkait

[r]

2 (d) of the International Covenant on Economic, Social and Cultural Rights airms that every individual has the right to health facilities, goods and services. 46

Hasil pengamatan tentang pemberian metode simulasi siswa tersebut dapat di lihat pada langkah-langkah pembelajaran yang dilakukan oleh siswa di atas juga memiliki 16

jadi, pada siklus I menuju siklus II mengalami peningkatan, baik nilai yang diperoleh maupun aktivitas guru dan siswa, sehingga penelitian tindakan kelas ini dengan menggunakan

Hasil penelitian menunjukkan bahwa penggunaan metode penemuan terbimbing dapat meningkatkan hasil belajar siswa kelas IV SD Negeri 3 Marowo pada materi menghitung

Dalam hubungannya dengan variabel penelitian, implementasi kurikulum diartikan sebagai proses pelaksanaan kurikulum diklat bagi guru IPA yang dilaksanakan oleh

Sedangkan variabel ukuran perusahaan, reputasi auditor, kepemilikan institusional, dan leverage keuangan tidak berpengaruh pada praktik perataan laba karena memiliki nilai

“ Instrumen penelitian adalah pedoman tertulis tentang wawancara atau pengamatan, daftar pernyataan yang telah dipersiapkan untuk mendapatkan informasi dari