• Tidak ada hasil yang ditemukan

A CERTAIN SUBCLASS OF MULTIVALENT ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR OPERATOR ON HILBERT SPACE | Wanas | Journal of the Indonesian Mathematical Society 228 575 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "A CERTAIN SUBCLASS OF MULTIVALENT ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR OPERATOR ON HILBERT SPACE | Wanas | Journal of the Indonesian Mathematical Society 228 575 1 PB"

Copied!
6
0
0

Teks penuh

(1)

Vol. 21, No. 2 (2015), pp. 77–82.

A CERTAIN SUBCLASS OF MULTIVALENT ANALYTIC

FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR

OPERATOR ON HILBERT SPACE

Abbas Kareem Wanas

Department of Mathematics

College of Computer Science and Mathematics University of Al-Qadisiya Diwaniya - Iraq

abbas.alshareefi@yahoo.co.uk

Abstract.By making use of the operators on Hilbert space, we introduce and study

a subclassAkp(α, β, δ, T) of multivalent analytic functions with negative coefficients.

Also we obtain some geometric properties.

Key words: Hilbert space, analytic function, convex set, extreme points.

Abstrak. Dengan menggunakan operator-operator di ruang Hilbert, kami memperkenalkan dan mempelajari suatu subclass dari fungsi analitik multivalen Akp(α, β, δ, T) dengan koefisien negarif. Kami juga mendapatkan beberapa sifat

geometri mereka.

Kata kunci: Ruang Hilbert, fungsi analitik, himpunan konveks, titik-titik ekstrim.

1. Introduction

LetAp be the class of functionsf of the form:

f(z) =zp+ ∞ X

n=1

an+pz

n+p(pN={1,2, ...}), (1)

which are analytic and p-valent in the open unit diskU ={z ∈C:|z|<1}. Let

kp denote the subclass ofAp consisting of functions of the form:

f(z) =zp ∞ X

n=1

an+pz n+p (a

n+p≥0, p∈N={1,2, ...}), (2)

2000 Mathematics Subject Classification: 30C45, 30C50. Received: 06-06-2015, revised: 06-04-2015, accepted: 14-04-2015

(2)

Definition 1.1. A function f ∈ kp is said to be in the class Akp(α, β, δ) if it

satisfies

f′

(z)−pzp−1 α(f′(

z)−β) +p−β

<0,

where0≤α <1,0≤β < p,0< δ≤1 danz∈U.

LetH be a Hilbert space on the complex field. Let T be a linear operator onH. For a complex analytic functionf on the unit diskU, we denotedf(T), the operator onH defined by the usual Riesz-Dunford integral [2]

f(T) = 1 2πi

Z

c

f(z)(zI−T)−1dz,

where I is the identity operator on H, c is a positively oriented simple closed rectifiable contour lying inU and containing the spectrumσ(T) ofT in its interior domain [3]. Also f(T) can be defined by the series

f(T) = ∞ X

n=0

f(n)(0)

n! T n,

which converges in the norm topology [4].

Definition 1.2. Let H be a Hilbert space and T be an operator on H such that

T 6=∅ and kTk <1. Let α, β be real numbers such that 0 ≤ α <1, 0 ≤β < p,

0 < δ ≤1. An analytic functionf on the unit disk is said to belong to the class Akp(α, β, δ, T)if it satisfy the inequality

kf′

(T)−pTp−1k

< δkα(f′

(T)−β) +p−βk,

where∅ denote the zero operator onH.

The operator on Hilbert space were consider recently be Xiaopei [8], Joshi [6], Chrakim et al. [1], Ghanim and Darus [5], and Selvaraj et al. [7].

2. Main Results

Theorem 2.1. Letf ∈kpbe defined by (2). Thenf ∈ Akp(α, β, δ, T)for allT 6=∅

if and only if

∞ X

n=1

(n+p)(1 +δα)an+p≤δ(p−β)(1 +α). (3)

where0≤α <1,0≤β < p,0< δ≤1. The result is sharp for the function f given by

f(z) =zpδ(p−β)(1 +α) (n+p)(1 +δα)z

(3)

Proof. Suppose that the inequality (3) holds. Then, we have

Upon clearing denominator in (5) and letting r→1, we obtain

which completes the proof.

(4)

and

pkTkp−1δ(p−β)(1 +α)

1 +δα kTk

p≤ kf

(T)k ≤pkTkp−1+δ(p−β)(1 +α)

1 +δα kTk

p

The result is sharp for the function f given by

f(z) =zpδ(p−β)(1 +α) (p+ 1)(1 +δα)z

p+1.

Proof. According to the Theorem 2.1, we get

∞ X

n=1

an+p≤

δ(p−β)(1 +α) (p+ 1)(1 +δα).

Hence

kf(T)k ≥ kTkp ∞ X

n=1

an+pkTk n+p

≥ kTkp− kTkp+1 ∞ X

n=1

an+p

≥ kTkpδ(p−β)(1 +α) (p+ 1)(1 +δα)kTk

p+1.

Also,

kf(T)k ≤ kTkp+ ∞ X

n=1

an+pkTk n+p

≤ kTkp+δ(p−β)(1 +α) (p+ 1)(1 +δα)kTk

p+1

In view of Theorem 2.1, we have

∞ X

n=1

(n+p)an+p≤

δ(p−β)(1 +α) 1 +δα .

Thus

kf′

(T)k ≥pkTkp−1

∞ X

n=1

(n+p)an+pkTk n+p−1

≥pkTkp−1− kTkp ∞ X

n=1

(n+p)an+p

≥pkTkp−1δ(p−β)(1 +α)

1 +δα kTk

(5)

and

kf′

(T)k ≤pkTkp−1+kTkp ∞ X

n=1

(n+p)an+p

≤pkTkp−1+δ(p−β)(1 +α)

1 +δα kTk

p

Therefore the proof is complete.

Theorem 2.4. Let f0(z) =zp and

fn(z) =zpδ(p−β)(1 +α) (n+p)(1 +δα)z

n+p, n1.

Thenf ∈ Akp(α, β, δ, T)if and only if it can be expressed in the form

f(z) = ∞ X

n=0

λnfn(z), (6)

whereλn≥0 and P∞

n=0λn = 1.

Proof. Assume thatf can be expressed by (6). Then, we have

f(z) = ∞ X

n=0

λnfn(z) =z p

∞ X

n=0

δ(p−β)(1 +α) (n+p)(1 +δα)λnz

n+p. (7)

Thus

∞ X

n=0

(n+p)(1 +δα)

δ(p−β)(1 +α)

δ(p−β)(1 +α) (n+p)(1 +δα)λn=

∞ X

n=0

λn= 1−λ0≤1, (8)

and so f ∈ Akp(α, β, δ, T).

Conversely, suppose that f given by (2) in in the class Akp(α, β, δ, T). Then by Corollary 2.2, we have

an+p≤

δ(p−β)(1 +α) (n+p)(1 +δα). Setting

λn =

(n+p)(1 +δα)

δ(p−β)(1 +α)an, n≥1,

andλ0= 1−P∞

n=1λn. Then

f(z) = ∞ X

n=0

λnfn(z),

This completes the proof of the theorem.

(6)

Proof. Letf1 andf2 be the arbitrary elements ofAkp(α, β, δ, T). Then for every

t(0≤t≤1), we show that (1−t)f1+tf2∈ Akp(α, β, δ, T). Thus, we have

(1−t)f1+tf2=zp ∞ X

n=1

((1−t)an+p+tbn+p)z n+p

.

Hence,

∞ X

n=1

(n+p)(1 +δα) ((1−t)an+p+tbn+p)

= (1−t) ∞ X

n=1

(n+p)(1 +δα)an+p+t ∞ X

n=1

(n+p)(1 +δα)bn+p

≤(1−t)δ(p−β)(1 +α) +tδ(p−β)(1 +α).

This completes the proof.

References

[1] Chrakim, Y., Lee, J.S., and Lee, S.H., ”A certain subclass of analytic functions with negative coefficients for operators on Hilbert space”,Math. Japonica,47(1) (1998), 155-124. [2] Dunford, N., and Schwarz, J.T., Linear Operator, Part I, General Theory, New York

-London, Inter Science, 1958.

[3] Fan, K., ”Analytic functions of a proper contraction”,Math. Z.,160(1978), 275-290. [4] Fan, K., ”Julia’s lemma for operators”,Math. Ann.,239(1979), 241-245.

[5] Ghanim, F., and Darus, M., ”On new subclass of analytic p-valent function with negative coefficients for operators on Hilbert space”,Int. Math. Forum,3:2(2008), 69-77.

[6] Joshi, S.B., ”On a class of analytic functions with negative coefficients for operators on Hilbert Space”,J. Appr. Theory and Appl., (1998), 107-112.

[7] Selvaraj, C., Pamela, A.J., and Thirucheran, M., ”On a subclass of multivalent analytic func-tions with negative coefficients for contraction operators on Hilbert space”,Int. J. Contemp. Math. Sci.,4:9(2009), 447-456.

Referensi

Dokumen terkait

[r]

dalam menerangkan suatu masalah yang baik agar tidak ada salah.. satu menjaga hubungan yang baik dalam manfaat

dan fasilitasi pos dan telekomunikasi. b) Dalam menyelenggarakan tugas pokok Bidang Pos dan.. Pengkajian bahan kebijakan operasional pos

Pengujian perangkat lunak merupakan suatu investigasi yang dilakukan untuk mendapatkan informasi mengenai kualitas dari produk atau layanan yang sedang diuji. Pengujian

Argumen utama penulis adalah ketidakefektifan AATHP dipengaruhi oleh prinsip non-interference dalam ASEAN yang sangat kuat tecermin dalam isi perjanjian yang menjadikan ASEAN

[r]

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Sederhana dengan pascakualifikasi untuk paket