• Tidak ada hasil yang ditemukan

A CERTAIN SUBCLASS OF MULTIVALENT ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR OPERATOR ON HILBERT SPACE | Wanas | Journal of the Indonesian Mathematical Society 228 575 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "A CERTAIN SUBCLASS OF MULTIVALENT ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR OPERATOR ON HILBERT SPACE | Wanas | Journal of the Indonesian Mathematical Society 228 575 1 PB"

Copied!
6
0
0

Teks penuh

(1)

Vol. 21, No. 2 (2015), pp. 77–82.

A CERTAIN SUBCLASS OF MULTIVALENT ANALYTIC

FUNCTIONS WITH NEGATIVE COEFFICIENTS FOR

OPERATOR ON HILBERT SPACE

Abbas Kareem Wanas

Department of Mathematics

College of Computer Science and Mathematics University of Al-Qadisiya Diwaniya - Iraq

[email protected]

Abstract.By making use of the operators on Hilbert space, we introduce and study

a subclassAkp(α, β, δ, T) of multivalent analytic functions with negative coefficients.

Also we obtain some geometric properties.

Key words: Hilbert space, analytic function, convex set, extreme points.

Abstrak. Dengan menggunakan operator-operator di ruang Hilbert, kami memperkenalkan dan mempelajari suatu subclass dari fungsi analitik multivalen Akp(α, β, δ, T) dengan koefisien negarif. Kami juga mendapatkan beberapa sifat

geometri mereka.

Kata kunci: Ruang Hilbert, fungsi analitik, himpunan konveks, titik-titik ekstrim.

1. Introduction

LetAp be the class of functionsf of the form:

f(z) =zp+ ∞ X

n=1

an+pz

n+p(pN={1,2, ...}), (1)

which are analytic and p-valent in the open unit diskU ={z ∈C:|z|<1}. Let

kp denote the subclass ofAp consisting of functions of the form:

f(z) =zp ∞ X

n=1

an+pz n+p (a

n+p≥0, p∈N={1,2, ...}), (2)

2000 Mathematics Subject Classification: 30C45, 30C50. Received: 06-06-2015, revised: 06-04-2015, accepted: 14-04-2015

(2)

Definition 1.1. A function f ∈ kp is said to be in the class Akp(α, β, δ) if it

satisfies

f′

(z)−pzp−1 α(f′(

z)−β) +p−β

<0,

where0≤α <1,0≤β < p,0< δ≤1 danz∈U.

LetH be a Hilbert space on the complex field. Let T be a linear operator onH. For a complex analytic functionf on the unit diskU, we denotedf(T), the operator onH defined by the usual Riesz-Dunford integral [2]

f(T) = 1 2πi

Z

c

f(z)(zI−T)−1dz,

where I is the identity operator on H, c is a positively oriented simple closed rectifiable contour lying inU and containing the spectrumσ(T) ofT in its interior domain [3]. Also f(T) can be defined by the series

f(T) = ∞ X

n=0

f(n)(0)

n! T n,

which converges in the norm topology [4].

Definition 1.2. Let H be a Hilbert space and T be an operator on H such that

T 6=∅ and kTk <1. Let α, β be real numbers such that 0 ≤ α <1, 0 ≤β < p,

0 < δ ≤1. An analytic functionf on the unit disk is said to belong to the class Akp(α, β, δ, T)if it satisfy the inequality

kf′

(T)−pTp−1k

< δkα(f′

(T)−β) +p−βk,

where∅ denote the zero operator onH.

The operator on Hilbert space were consider recently be Xiaopei [8], Joshi [6], Chrakim et al. [1], Ghanim and Darus [5], and Selvaraj et al. [7].

2. Main Results

Theorem 2.1. Letf ∈kpbe defined by (2). Thenf ∈ Akp(α, β, δ, T)for allT 6=∅

if and only if

∞ X

n=1

(n+p)(1 +δα)an+p≤δ(p−β)(1 +α). (3)

where0≤α <1,0≤β < p,0< δ≤1. The result is sharp for the function f given by

f(z) =zpδ(p−β)(1 +α) (n+p)(1 +δα)z

(3)

Proof. Suppose that the inequality (3) holds. Then, we have

Upon clearing denominator in (5) and letting r→1, we obtain

which completes the proof.

(4)

and

pkTkp−1δ(p−β)(1 +α)

1 +δα kTk

p≤ kf

(T)k ≤pkTkp−1+δ(p−β)(1 +α)

1 +δα kTk

p

The result is sharp for the function f given by

f(z) =zpδ(p−β)(1 +α) (p+ 1)(1 +δα)z

p+1.

Proof. According to the Theorem 2.1, we get

∞ X

n=1

an+p≤

δ(p−β)(1 +α) (p+ 1)(1 +δα).

Hence

kf(T)k ≥ kTkp ∞ X

n=1

an+pkTk n+p

≥ kTkp− kTkp+1 ∞ X

n=1

an+p

≥ kTkpδ(p−β)(1 +α) (p+ 1)(1 +δα)kTk

p+1.

Also,

kf(T)k ≤ kTkp+ ∞ X

n=1

an+pkTk n+p

≤ kTkp+δ(p−β)(1 +α) (p+ 1)(1 +δα)kTk

p+1

In view of Theorem 2.1, we have

∞ X

n=1

(n+p)an+p≤

δ(p−β)(1 +α) 1 +δα .

Thus

kf′

(T)k ≥pkTkp−1

∞ X

n=1

(n+p)an+pkTk n+p−1

≥pkTkp−1− kTkp ∞ X

n=1

(n+p)an+p

≥pkTkp−1δ(p−β)(1 +α)

1 +δα kTk

(5)

and

kf′

(T)k ≤pkTkp−1+kTkp ∞ X

n=1

(n+p)an+p

≤pkTkp−1+δ(p−β)(1 +α)

1 +δα kTk

p

Therefore the proof is complete.

Theorem 2.4. Let f0(z) =zp and

fn(z) =zpδ(p−β)(1 +α) (n+p)(1 +δα)z

n+p, n1.

Thenf ∈ Akp(α, β, δ, T)if and only if it can be expressed in the form

f(z) = ∞ X

n=0

λnfn(z), (6)

whereλn≥0 and P∞

n=0λn = 1.

Proof. Assume thatf can be expressed by (6). Then, we have

f(z) = ∞ X

n=0

λnfn(z) =z p

∞ X

n=0

δ(p−β)(1 +α) (n+p)(1 +δα)λnz

n+p. (7)

Thus

∞ X

n=0

(n+p)(1 +δα)

δ(p−β)(1 +α)

δ(p−β)(1 +α) (n+p)(1 +δα)λn=

∞ X

n=0

λn= 1−λ0≤1, (8)

and so f ∈ Akp(α, β, δ, T).

Conversely, suppose that f given by (2) in in the class Akp(α, β, δ, T). Then by Corollary 2.2, we have

an+p≤

δ(p−β)(1 +α) (n+p)(1 +δα). Setting

λn =

(n+p)(1 +δα)

δ(p−β)(1 +α)an, n≥1,

andλ0= 1−P∞

n=1λn. Then

f(z) = ∞ X

n=0

λnfn(z),

This completes the proof of the theorem.

(6)

Proof. Letf1 andf2 be the arbitrary elements ofAkp(α, β, δ, T). Then for every

t(0≤t≤1), we show that (1−t)f1+tf2∈ Akp(α, β, δ, T). Thus, we have

(1−t)f1+tf2=zp ∞ X

n=1

((1−t)an+p+tbn+p)z n+p

.

Hence,

∞ X

n=1

(n+p)(1 +δα) ((1−t)an+p+tbn+p)

= (1−t) ∞ X

n=1

(n+p)(1 +δα)an+p+t ∞ X

n=1

(n+p)(1 +δα)bn+p

≤(1−t)δ(p−β)(1 +α) +tδ(p−β)(1 +α).

This completes the proof.

References

[1] Chrakim, Y., Lee, J.S., and Lee, S.H., ”A certain subclass of analytic functions with negative coefficients for operators on Hilbert space”,Math. Japonica,47(1) (1998), 155-124. [2] Dunford, N., and Schwarz, J.T., Linear Operator, Part I, General Theory, New York

-London, Inter Science, 1958.

[3] Fan, K., ”Analytic functions of a proper contraction”,Math. Z.,160(1978), 275-290. [4] Fan, K., ”Julia’s lemma for operators”,Math. Ann.,239(1979), 241-245.

[5] Ghanim, F., and Darus, M., ”On new subclass of analytic p-valent function with negative coefficients for operators on Hilbert space”,Int. Math. Forum,3:2(2008), 69-77.

[6] Joshi, S.B., ”On a class of analytic functions with negative coefficients for operators on Hilbert Space”,J. Appr. Theory and Appl., (1998), 107-112.

[7] Selvaraj, C., Pamela, A.J., and Thirucheran, M., ”On a subclass of multivalent analytic func-tions with negative coefficients for contraction operators on Hilbert space”,Int. J. Contemp. Math. Sci.,4:9(2009), 447-456.

Referensi

Dokumen terkait