• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:AUA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:AUA:"

Copied!
7
0
0

Teks penuh

(1)

UNIVALENCE CRITERIA

Virgil Pescar

Abstract. In this paper we derive some criteria for univalence of analytic functions and of an integral operator in the open unit disk.

2000 Mathematics Subject Classification: 30C45.

Key Words and Phrases: Univalence, Integral Operator.

1. Introduction

LetA be the class of the functions of the form f(z) =z+

X

n=2

anzn (1.1)

which are analytic in the open unit disk U = {zC:|z|<1}. Let S denote the

subclass of Aconsisting of all univalent functions f inU.

2. Preliminary results

We need the following theorems.

Theorem 2.1.[1].If f(z) =z+a2z2+. . . is analytic in U and 1− |z|2

zf′′(z) f′(z)

1 (2.1)

(2)

Theorem 2.2.[4]. Let α be a complex number,Re α >0 and f ∈ A. If 1− |z|2Re α

Re α

zf′′(z) f′(z)

1 (2.2)

for all z∈ U, then the function

Fα(z) =

α

Z z

0

uα−1f′(u)du 1

α

(2.3) is in the class S.

Theorem 2.3.[5]Let α be a complex number, Re α >0 andf ∈ A. If 1− |z|2Re α

Re α

zf′′(z) f′(z)

1

for all z∈ U, then for any complex number β, Re β Re α, the function

Fβ(z) =

β

Z z

0

uβ−1f′(u)du β1

(2.4) is regular and univalent in U.

Theorem 2.4.(Schwarz)[2].Let f(z) the function regular in the disk

UR={z∈C:|z|< R}

with |f(z)|< M, M fixed. Iff(z) has in z= 0 one zero with multiplym, then

|f(z)| ≤ M Rm|z|

m, z

∈ UR (2.5)

the equality (in the inequality (2.5) for z6= 0) can hold only if f(z) =eiθ M

Rmz m,

where θ is constant.

Theorem 2.5.[3]If the function g(z) is regular in U and |g(z)|<1 in U, then for all ξ∈ U andz∈ U the following inequalities hold:

g(ξ)g(z) 1g(z)g(ξ)

ξz 1

(3)

and

|g′(z)| ≤ 1− |g(z)|

2

1− |z|2 (2.7)

the equalities hold only in the case g(z) = E1+(z+uzu), where |E|= 1 and |u|<1. Remark.[3]For z= 0, from inequality (2.6) we have

g(ξ)g(0) 1g(0)g(ξ)

<|ξ| (2.8)

and, hence

|g(ξ)| ≤ |ξ|+|g(0)|

1 +|g(0)||ξ| (2.9)

Consideringg(0) =aand ξ=z,

|g(z)| ≤ |z|+|a|

1 +|a||z| (2.10)

for all z∈ U.

3. Main results

Theorem 3.1.Let the function f ∈ A. If

zf′′(z) f′(z)

3√3

2 (3.1)

for all z∈ U, then the function f is in the class S.

Proof. We consider the function g(z) = zff′′′((zz)), z ∈ U. We have g(0) = 0 and from (3.1) by Theorem 2.4 (Schwarz) we obtain

zf′′(z) f′(z)

3√3

2 |z| (3.2)

for all z∈ U. From (3.2) we get (1− |z|2)

zf′′(z) f′(z)

3√3

2 (1− |z|

2)|z| (3.3)

(4)

Because

max

|z|<1[(1− |z|

2)|z|] = 2

3√3, from (3.3) we obtain

(1− |z|2)

zf′′(z) f′(z)

1 (3.4)

for all z∈ U and by Theorem 2.1 we obtain thatf is in the classS.

Theorem 3.2.Letα be a complex number,Re α >0 and the functionf ∈ A. If

zf′′(z) f′(z)

(2Re α+ 1)2Re αRe α+1

2 (3.5)

for all z∈ U, then the function

Fα(z) =

α

Z z

0

uα−1f′(u)du α1

(3.6) is regular and univalent in U.

Proof. Let’s consider the function p(z) = zff′′′((zz)),z ∈ U. We have p(0) = 0 and from (3.5) by Theorem 2.4 (Schwarz) we get

zf′′(z) f′(z)

(2Re α+ 1)2Re αRe α+1

2 |z| (3.7)

for all z∈ U. From (3.7) we obtain 1− |z|2Re α

Re α

zf′′(z) f′(z)

(2Re α+ 1)2Re αRe α+1

2 ·

1− |z|2Re α

Re α |z| (3.8) for all z∈ U.

Since

max

|z|<1

1− |z|2Re α Re α |z|

= 2

(2Re α+ 1)2Re αRe α+1 from (3.8) we have

1− |z|2Re α Re α

zf′′(z) f′(z)

(5)

for all z∈ U and by Theorem 2.2 we obtain that the function Fα(z) is regular and

univalent inU.

Remark 3.3.From Theorem 3.2 forα= 1 we obtain Theorem 3.1.

Theorem 3.4.Letα be a complex number,Re α >0 and the functionf ∈ A. If

zf′′(z) f′(z)

(2Re α+ 1)2Re αRe α+1

2 (3.10)

for all z∈ U, then for any complex number β, Re β Re α, the function

Fβ(z) =

β

Z z

0

uβ−1f′(u)du β1

(3.11) is regular and univalent in U.

Proof. We consider the function ψ: (0,)R, ψ(x) = 1−a2x

x , 0< a <1. The

function ψ(x) is the function decreasing for x (0,1). If x1 =Re α ≤ x2 =Re β

and a=|z|,z∈ U then

1− |z|2Re β Re β ≤

1− |z|2Re α

Re α (3.12)

for all z∈ U. From (3.12) we obtain 1− |z|2Re β

Re β

zf′′(z) f′(z)

1− |z|2Re α Re α

zf′′(z) f′(z)

(3.13) for all z∈ U.

From (3.10) and Theorem 2.4 (Schwarz) we get

zf′′(z) f′(z)

(2Re α+ 1)2Re αRe α+1

2 |z|, z∈ U (3.14)

and, hence, we have 1− |z|2Re α

Re α

zf′′(z) f′(z)

(2Re α+ 1)2Re αRe α+1

2 ·

1− |z|2Re α

Re α |z| (3.15) for all z∈ U.

Because

max

|z|<1

1− |z|2Re α

Re α |z|=

2

(2Re α+ 1)2Re αRe α+1

(6)

1− |z|2Re β Re β

zf′′(z) f′(z)

1 (3.17)

for all z∈ U.

From (3.17) and Theorem 2.2 we obtain that the function Fβ(z) is regular and

univalent inU.

Theorem 3.5.Let α, β complex numbers Re β Re α > 0, the function f

A, f(z) =z+a2z2+. . . If

f′′(z) f′(z)

<1 (3.18)

for all z∈ U and

max

|z|<1

1− |z|2Re α

Re α |z|

|z|+ 2|a2|

1 + 2|a2||z|

≤1 (3.19)

then the function Fβ(z) define by (2.4) is regular and univalent in U.

Proof. Let’s consider the regular functionp(z) = ff′′′((zz)), z∈ U. We have|p(0)|= 2|a2|and from (3.18) we obtain |p(z)|<1 for allz∈ U.

By Remark 2.6 we obtain

f′′(z) f′(z)

|z|+ 2|a2|

1 + 2|a2||z|

(3.20) for all z∈ U. From (3.20) we get

1− |z|2Re α

Re α

zf′′(z) f′(z)

1− |z|2Re α

Re α |z|

|z|+ 2|a2|

1 + 2|a2||z|

(3.21) for all z∈ U.

We consider the functionQ: [0,1]R

Q(x) = 1−x

2Re α

Re α x

x+ 2|a2|

1 + 2|a2|x

; x=|z|. BecauseQ 12>0 it results that

max

x∈(0,1)Q(x)>0.

Using this result and from (3.21) we conclude 1− |z|2Re α

Re α

zf′′(z) f′(z)

max

|z|<1

1− |z|2Re α Re α |z|

|z|+ 2|a2|

1 + 2|a2||z|

(7)

and hence, by (3.19) we obtain

1− |z|2Re α Re α

zf′′(z) f′(z)

1 (3.23)

for all z∈ U. From (3.23) and by Theorem 2.3 we obtain that the functionFβ(z) is

in the class S.

References

[1] Becker, J.,L¨ownersche Differentialgleichung und quasikonform fortsetzbare schlichte Functionen, J. Reine Angew. Math. 255 (1972), 23-43.

[2] Mayer, O.,The Functions Theory of One Variable Complex, Bucure¸sti, 1981. [3] Nehari, Z.,Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975).

[4] Pascu, N. N., On a univalence criterion II, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), 153-154.

[5] Pascu, N. N.,An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Bra¸sov, (1987), 43-48.

[6] Pescar, V., New Univalence Criteria, ”Transilvania” University of Bra¸sov, 2002.

[7] Pescar, V., Breaz, D. V., The Univalence of Integral Operators, Academic Publishing House, Sofia, 2008.

Virgil Pescar

Department of Mathematics

”Transilvania” University of Bra¸sov 500091 Bra¸sov, Romania

Referensi

Dokumen terkait

Dengan ini diberitahukan bahwa setelah diadakan penelitian oleh panitia pengadaan barang / jasa konsultansi Bidang Pengairan Dinas Pekerjaan Umum Kab..

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Setelah dilakukan Koreksi Aritmatik, evaluasi administrasi, teknis dan harga dan penilaian Kualifikasi terhadap seluruh penawaran tersebut diatas, dengan ini

Demikian pengumuman ini, atas perhatian dan partisipasi Saudara – saudara dalam pelelangan paket pekerjaan konstruksi di atas kami ucapkan

Apabila ada sanggahan atas pelelangan pekerjaan tersebut diatas sesuai ketentuan Peraturan Presiden Nomor 54 Tahun 2010 Pasal 81 ayat 2, surat sanggahan disampaikan kepada

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

Dari hasil analisis dan pembahasan yang telah dijelaskan pada bab sebelumnya, dapat ditarik kesimpulan bahwa Pengelolaan Sumber Daya Manusia yang dilakukan oleh pemilik

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi