• Tidak ada hasil yang ditemukan

vol20_pp406-418. 119KB Jun 04 2011 12:06:08 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol20_pp406-418. 119KB Jun 04 2011 12:06:08 AM"

Copied!
13
0
0

Teks penuh

(1)

THE EXPLICIT REPRESENTATIONS OF THE DRAZIN INVERSES

OF A CLASS OF BLOCK MATRICES∗

CHANGJIANG BU† AND KUIZE ZHANG

Abstract. Let M = A B C D

be a 2×2 block matrix, where ABC= 0 and eitherDC = 0 or

BD = 0. This paper gives the explicit representations ofMD

in terms of A, B, C, D, AD, (BC)D andDD.

Key words. Block matrix, Drazin inverse, Index.

AMS subject classifications.15A09, 65F20.

1. Introduction.

LetAbe a complex square matrix. The Drazin inverse (see [1]) ofAis the matrix

AD satisfying

Al+1AD=Al, ADAAD=AD, AAD=ADA for all integersl≥k, (1.1)

where k = Ind(A) is the index of A, the smallest nonnegative integer such that

rank(Ak) =rank(Ak+1). Note that the definition of the Drazin inverse is equivalent to the existence a nonnegative integerl′ such that

Al′+1AD=Al′, ADAAD=AD, AAD=ADA.

Applications of the Drazin inverse to singular differential equations and singular difference equations, to Markov chains and iterative methods, to structured matrices, and to perturbation bounds for the relative eigenvalue problem can be found in [1, 2, 3, 4, 5, 6, 7].

In 1977, Meyer (see [8]) gave the formula of the Drazin inverse of complex block matrix (A B

0C), with A and C being square. Then in 1979, Campbell and Meyer

proposed an open problem (see [1]) to find an explicit representation of the Drazin inverse of block matrix (A B

C D), withA andD being square, in terms ofA,B,C and

Received by the editors April 17, 2009. Accepted for publication July 22, 2010. Handling Editor: Michael Neumann.

Dept. of Applied Math., College of Science, Harbin Engineering University, Harbin 150001, P. R. China (buchangjiang@hrbeu.edu.cn, zkz0017@163.com). Supported by Natural Science Foundation of the Heilongjiang province, No.159110120002.

(2)

D. Because of the difficulty of this problem, there are some results under some special conditions (see [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]).

It is known that AD is existent and unique (see [1, 2]). Throughout this paper,

= IAAD, s(i) and i%2 denote the projection on the kernel of Ak along the

range ofAk, the integer part ofi/2 and the remainder ofidivided by 2, respectively,

whereIis the identity matrix, and we assume thatPk

i=j= 0 ifk < j andA0=Ifor

any square matrixA. Here we state a result given in [10, Theorem 2.1] which will be used to prove our main results:

LetAandBbe complex square matrices of the same size,Ind(A) =iA,Ind(B) =

iB. IfAB = 0, then

(A+B)D=

k

X

i=0

BπBi ADi+1 +

k

X

i=0

BDi+1

AiAπ, (1.2)

where max{Ind(A), Ind(B)} ≤ k ≤ Ind(A) +Ind(B). By the definition of the Drazin inverse, we haveAπAj =AjAπ = 0, if j Ind(A), so (1.2) is equivalent to

[11, Corollary2.12]:

(A+B)D = iB−1

X

i=0

Bi ADi+1 +

iA−1 X

i=0

BDi+1

AiAπ. (1.3)

LetM = (A B

C D) be a 2×2 block matrix, where ABC= 0 and eitherDC = 0 or

BD = 0. In this paper, we mainly give the explicit representations ofMD in terms

ofA, B, C, D, AD,(BC)D andDD. The results about the representation of (A B

C D)

D

under special conditions below are all corollaries of the main results of this paper: in [8, Theorem3.2],C= 0; in [13, Theorem5.3],BC=BD =DC = 0.

2. Main results.

Theorem 2.1. Let M =

A B C 0

be a complex block matrix, with A and0

being square,Ind(A) =iA,Ind(BC) =iBC. IfABC= 0, then

MDl =

U(l) V(l)B CU(l+ 1) CV(l+ 1)B

(3)

for all integers l≥1,where

U(l) =X(AD)l−1

s(l−1) X

k=1

(BC)Dk

(AD)l−2k

+ (BC)Ds(l−1)

Y AAl%2+ (BC)Ds(l+1)

Al%2Aπ,

V(l) =X(AD)l−

s(l−1) X

k=1

(BC)Dk

(AD)l+1−2k

+ (BC)Ds(l−1)

Y Al%2+ (−1)l+1 (BC)Ds(l+1)

(Aπ)l%2(AD)(l+1)%2,

X =

iBC−1 X

i=0

(BC)π(BC)i(AD)2i+1,

Y =

s(iA)

X

i=1

((BC)D)i+1AπA2i−1.

Proof. We prove G =

U(1) V(1)B CU(2) CV(2)B

= MD by the definition of the

Drazin inverse.

First, we proveM G=GM holds.

Let

M G=

AU(1) +BCU(2) AV(1)B+BCV(2)B CU(1) CV(1)B

and

GM =

U(1)A+V(1)BC U(1)B CU(2)A+CV(2)BC CU(2)B

.

FromABC= 0, we haveADBC= (AD)2ABC = 0, similarly we haveA(BC)D=

0 and AD(BC)D = 0. Further we have AX = AAD, AY = 0, XAAD = X,

Y BC = 0, AU(1) = A(X +Y A2 + (BC)DAAπ) = AAD, V(1)BC = (XAD +

Y A+ (BC)DAπ)BC=BC(BC)D,AV(1) =A(XAD+Y A+ (BC)DAπ) =AD and

(4)

AU(1) +BCU(2) =AAD+BCXAD+BCY A+BC(BC)DAπ

=

iBC1

X

i=1

(BC)π(BC)i(AD)2i+BCY A+AAD+BC(BC)DAπ

=XA+BCY A+BC(BC)D,

U(1)A+V(1)BC=XA+Y A3+ (BC)DA2Aπ+BC(BC)D

=XA+

s(iA)

X

i=1

((BC)D)iAπA2i+BC(BC)D

=XA+BCY A+BC(BC)D.

AV(1)B+BCV(2)B=ADB+BCX(AD)2B+BCY B−BC(BC)DADB

=(BC)πADB+

iBC−1 X

i=1

(BC)π(BC)i(AD)2i+1B+BCY B

=

iBC−1 X

i=0

(BC)π(BC)i(AD)2i+1B+BCY B

=XB+BCY B,

U(1)B=XB+Y A2B+ (BC)DAAπB

=XB+

s(iA)

X

i=2

((BC)D)iAπA2i−1B+ (BC)DAAπB

=XB+

s(iA)

X

i=1

((BC)D)iAπA2i−1B

=XB+BCY B.

FromXAAD=X,V(2)BC= 0 andV(1) =U(2), we get

CU(1) =CX+CY A2+C(BC)DAAπ=CU(2)A+CV(2)BC

and

CV(1)B=CU(2)B=CXADB+CY AB+C(BC)DAπB.

ThusM G=GM.

(5)

We have got AU(1) = AAD, XAAD = X and AV(1) = AD before. It is easy

to get Y AD = 0, BC(BC)DU(1) = BC(BC)D(X +Y A2+ (BC)DAAπ) =Y A2+ (BC)DAAπ, XBC = 0,Y BC = 0, XU(1) = X(X+Y A2+ (BC)DAAπ) =XAD,

BC(BC)DV(1) =Y A+ (BC)DAπ,XV(1) =X(XAD+Y A+ (BC)DAπ) =X(AD)2 andBC(BC)DV(2) =BC(BC)D(X(AD)2+Y(BC)DAD) =Y(BC)DAD. Using

these equalities we can get

(GM)G=

XA+BCY A+BC(BC)D XB+BCY B

CX+CY A2+C(BC)DAAπ CXADB+CY AB+C(BC)DAπB

U(1) V(1)B CU(2) CV(2)B

=

X+Y A2+ (BC)DAAπ XAD+BC(BC)DV(1)

B C XAD+BC(BC)DU(2)

C X(AD)2+BC(BC)DV(2)

B

=

U(1) V(1)B

CU(2) CV(2)B

=G.

Last, we prove there exists a nonnegative integersl′ such thatMl′+1

G=Ml′ .

It is easy to get

A B C 0

l′ =

   

s(l′) P

i=0

(BC)iAl′

−2i s(l

′ −1) P

i=0

(BC)iAl′ −1−2iB

s(l′+1) −1 P

i=0

C(BC)iAl′12i s(l ′)

−1 P

i=0

C(BC)iAl′22i

B

   

, (2.2)

for all positive integersl′.

Here we only prove that there exists an l′ such that (Ml′+1

G)11 = (Ml′ )11, since the proofs of (Ml′+1

G)12 = (Ml′

)12, (Ml′+1

G)21= (Ml′

)21 and (Ml′+1

G)22= (Ml′

)22 are similar.

FromAU(1) =AADand ABC= 0, we have

(Ml′+1G)11=

s(l′+1) X

i=0

(BC)iAl′+1−2iU(1) + s(l′) X

i=0

(BC)iAl′−2iBCU(2)

=

s(l′+1)1 X

i=0

(BC)iAl′+1−2iAD+ (BC)s(l′+1)

Al′+1−2s(l′+1)

U(1)

+1 + (−1)

l′

2 (BC)

s(l′)

Al′ −2s(l′)

(6)

Ifl′is odd, we can prove (Ml′+1

G)11= (Ml′

)11holds whenl′2s(i

A)+2iBC+1;

ifl′ is even, we can prove (Ml′+1

G)11 = (Ml′

)11 holds when l′ 2s(i

A) + 2iBC. So

(Ml′+1

G)11= (Ml′

)11holds for alll′2s(iA) + 2iBC. Without loss of generality, we prove the casel′= 2s(i

A) + 2iBC+ 1:

(Ml′+1

G)11= (l′

−1)/2 X

i=0

(BC)iAl′+1

−2iAD+ (BC)(l′+1)/2

U(1)

= (l′

−1)/2 X

i=0

(BC)iAl′+1−2iAD+ iBC−1

X

i=0

(BC)π(BC)i+(l′+1)/2(AD)2i+1

+

s(iA)

X

i=1

(BC)(l′+1)/2((BC)D)i+1AπA2i+1+ (BC)(l′+1)/2(BC)DAAπ

= (l′

−1)/2 X

i=0

(BC)iAl′+1

−2iAD+ 0 + s(iA)

X

i=0

(BC)(l′

−1)/2−iAπA2i+1

= (l′

−1)/2 X

i=0

(BC)iAl′+1−2iAD+

(l′ −1)/2 X

i=(l′1)/2−s(iA)

(BC)iAπAl′−2i

= (l′

−3)/2−s(iA)

X

i=0

(BC)iAl′+1 −2iAD

+ (l′

−1)/2 X

i=(l′1)/2−s(iA)

(BC)iAπAl′−2i+Al′+1

−2iAD

= (l′

−3)/2−s(iA)

X

i=0

(BC)iAl′ −2i+

(l′ −1)/2 X

i=(l′1)/2−s(iA)

(BC)iAl′ −2i

= (l′1)/2

X

i=0

(BC)iAl′−2i.

ThusG=MD.

(7)

l=j+ 1, that is to say, we prove

U(1) V(1)B CU(2) CV(2)B

U(j) V(j)B CU(j+ 1) CV(j+ 1)B

=

U(1)U(j) +V(1)BCU(j+ 1) (U(1)V(j) +V(1)BCV(j+ 1))B C(U(2)U(j) +V(2)BCU(j+ 1)) C(U(2)V(j) +V(2)BCV(j+ 1))B

=

U(j+ 1) V(j+ 1)B CU(j+ 2) CV(j+ 2)B

.

From X2 = XAD, X(BC)D = 0, Y A2X = 0, AX = AAD, AπAD = 0,

(BC)DX = 0 andV(1)BC=BC(BC)D, we get

U(1)U(j) +V(1)BCU(j+ 1) =X(AD)j+BC(BC)DU(j+ 1) =U(j+ 1),

U(1)V(j) +V(1)BCV(j+ 1) =X(AD)j+1+BC(BC)DV(j+ 1) =V(j+ 1).

FromADX = (AD)2,AD(BC)D = 0,Y AX = 0,A(BC)D= 0,AπX =XAD,

V(2)BC= 0, (BC)DX = 0 ands(j1) + 1 =s(j+ 1), we get

U(2)U(j) +V(2)BCU(j+ 1) =U(2)U(j)

=X(AD)j+1(BC)D(AD)j s(j−1)

X

k=1

((BC)D)k+1(AD)j−2k

+ ((BC)D)s(j−1)+1Y AAj%2+ ((BC)D)s(j+1)+1Aj%2Aπ

=X(AD)j+1−

s(j+1) X

k=1

((BC)D)k(AD)j+2−2k

+ ((BC)D)s(j+1)Y AA(j+2)%2+ ((BC)D)s(j+3)A(j+2)%2Aπ

=U(j+ 2),

U(2)V(j) +V(2)BCV(j+ 1) =U(2)V(j)

=X(AD)j+2(BC)D(AD)j+1

s(j−1) X

k=1

((BC)D)k+1(AD)j+1−2k

+ ((BC)D)s(j−1)+1Y Aj%2+ (1)j+1((BC)D)s(j+1)+1(Aπ)j%2(AD)(j+1)%2

=X(AD)j+2−

s(j+1) X

k=1

((BC)D)k(AD)j+3−2k

(8)

Thus (2.1) is true forl=j+ 1.

Now we give our main results.

Theorem 2.2. LetM =

A B C D

be a complex block matrix, withAandD

be-ing square,Ind(A) =iA,Ind(BC) =iBC,Ind

A B C 0

=iABC andInd(0⊕D) =

iD(as0 is not absent). IfABC = 0andDC = 0, then

MD=

U(1) T1

CU(2) T2

, (2.3)

where

T1=−(AD+BCV(2))BDD+

iD−1 X

i=0

V(i+ 1)BDiDπ

+

iABC−1

X

i=1

(AπBCU(2))R(i) AD+BCV(2)

BS(i)

,

T2=(I−CV(1)B)DD+

iD−1 X

i=0

CV(i+ 2)BDiDπ

+

iABC−1

X

i=1

((−CU(1))R(i) + (I−CV(1)B)S(i)),

R(i) =

s(i−1) X

k=0

(BC)kAi−1−2kB(DD)i+1,

S(i) =

s(i)−1 X

k=0

C(BC)kAi−2−2kB(DD)i+1,

U(i), V(i), X, Y are all the same as those in Theorem 2.1, and letPk

i=j = 0ifk < j.

Proof. Let

M =E+F,

where

E=

0 0 0 D

, F =

A B C 0

.

(9)

MD=

iABC−1

X i=0 A B C 0 π A B C 0 i 0 0 0 DD

i+1

+

iD−1 X

i=0

A B C 0

D!i+1 0 0 0 D

i

I 0 0 Dπ

.

(2.4)

From ABC = 0, recall thatAU(1) =AAD and AV(1) =AD, thus by Theorem

2.1, we have

A B C 0

D!i+1 =

U(i+ 1) V(i+ 1)B CU(i+ 2) CV(i+ 2)B

(2.5) and A B C 0 π =I−

A B C 0

U(1) V(1)B CU(2) CV(2)B

=I−

AAD+BCU(2) (AD+BCV(2))B

CU(1) CV(1)B

=

Aπ−BCU(2) −(AD+BCV(2))B −CU(1) I−CV(1)B

.

(2.6)

After we substitute (2.2), (2.5) and (2.6) into (2.4), we get the representation of

MD as shown in (2.3).

Theorem 2.3. LetM =

A B C D

be a complex block matrix, withAandD

be-ing square,Ind(A) =iA,Ind(BC) =iBC,Ind

A B C 0

=iABC andInd(0⊕D) =

iD(as0 is not absent). IfABC = 0andBD= 0, then

MD= 

   

(U(1))t

iD1 P

i=0

DπDiCU(i+ 2) +

iABC

P

i=1

R(i)−DDCU(1) t

(V(1)B)t

iD1 P

i=0

DiCV(i+ 2)B+iABCP

i=1

S(i) +DD(ICV(1)B)

(10)

where

R(i) =

s(i+1)−1 X

k=0

(DD)i+1C(BC)kAi−1−2kAπ

−1 + (−1)

i+1

2 (D

D)i+1C(BC)s(i+1)U(2)1 + (−1)i 2 (D

D)i+1C(BC)s(i)U(1),

S(i) =

s(i+1)−1 X

k=0

(DD)i+1C(BC)kAi−1−2kADB

−1+(−1)

i+1

2 (D

D)i+1C(BC)s(i+1)V(2)B1+(−1)i

2 (D

D)i+1C(BC)s(i)V(1)B,

U(i), V(i), X, Y are all the same as those in Theorem 2.1, At is the transpose of matrixA, and let Pk

i=j = 0if k < j.

Proof. Let

M =E+F,

where

E=

A B C 0

, F =

0 0 0 D

.

Since BD = 0, we have EF = 0. Then we can also use (1.3) to get the repre-sentation ofMD. The procedure of obtaining the representation ofMDis similar to

that in Theorem 2.2, so we omit it.

Corollary 2.4. Let M =

A B C D

be a complex block matrix , with A

and D being square, Ind(A) = iA, Ind(BC) = iBC, Ind

A B C 0

= iABC and

Ind(0⊕D) =iD(as0 is not absent). IfABC = 0,DC= 0 andBD= 0, then

MD=

U(1) V(1)B CU(2) CV(2)B+DD

, (2.8)

whereU(i), V(i), X, Y are all the same as those in Theorem 2.1, and let Pk

i=j= 0 if

k < j.

Last, we give an example to illustrate Theorem 2.2.

Example 2.5. Let

M = 

  

1 1 1 1

−1 −1 1 −1

0 0 1 0

−1 −1 1 0 

  

=

A B C D

(11)

We can partition M as follows:

Case1 : A= 1, B= 1 1 1

, C=   −1 0 −1 

, D= 

−1 1 −1 0 1 0

−1 1 0 

;

Case2 : A=

1 1

−1 −1

, B=

1 1 1 −1

, C=

0 0

−1 −1

, D=

1 0 1 0

;

Case3 : A= 

1 1 1

−1 −1 1

0 0 1

, B=   1 −1 0 

, C= −1 −1 1

, D= 0.

It is easy to get that only the last two cases satisfyABC= 0andDC = 0. Next, we will use Theorem 2.2 to obtain the representation ofMDunder the last two cases.

Case2: It is easy to get BC =

−1 −1 1 1

,(BC)D =

0 0 0 0

,DD =D =

1 0 1 0

,AD=

0 0 0 0

,iA= 2,iBC = 2,iABC = 4andiD= 1.

Then X = Y =

0 0 0 0

. U(i) = V(i) =

0 0 0 0

for all integer i ≥ 1.

R(1) =BDD,R(2) =ABDD, R(3) =BCBDD and R(i) = 0 for all integer i4.

S(1) =

0 0 0 0

,S(2) =CBDD andS(i) =

0 0 0 0

for all integeri≥3.

Then

MD=

  

0 0 2 0 0 0 0 0 0 0 1 0 0 0 −1 0

  

.

Case3: It is easy to get BC = 

−1 −1 1 1 1 −1

0 0 0

, (BC)D = 

0 0 0 0 0 0 0 0 0

,

DD= 0,AD=

0 0 3 0 0 −1 0 0 1

,iA= 2,iBC = 2,iABC = 3 andiD= 1.

Then X =

0 0 2 0 0 0 0 0 1

, Y = 

0 0 0 0 0 0 0 0 0

. R(i) = S(i) =   0 0 0 

, U(i) =

(12)

Then

MD= 

  

0 0 2 0 0 0 0 0 0 0 1 0 0 0 −1 0

  

.

Acknowledgment. The authors would like to thank the anonymous referee and the editor for their helpful comments.

REFERENCES

[1] S. L. Campbell and C. D. Meyer. Generalized Inverse of Linear Transformations. Pitman, London, 1979.

[2] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applications. Wiley, New York, 1974.

[3] S. L. Campbell. The Drazin inverse and systems of second order linear differential equations.

Linear Multilinear Algebra, 14:195–198, 1983.

[4] J.-J. Climent, M. Neumann, and A. Sidi. A semi-iterative method for real spectrum singular linear systems with an arbitrary index. J. Comput. Appl. Math., 87:21–38, 1997.

[5] Y. Wei, X. Li, and F. Bu. A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces. SIAM J. Matrix Anal. Appl., 27:72–81, 2005.

[6] C. Bu. Linear maps preserving Drazin inverses of matrices over fields. Linear Algebra Appl., 396:159–173, 2005.

[7] N. Castro-Gonz´alez and J. Y. V´elez-Cerrada. On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces. J. Math. Anal. Appl., 341:1213– 1223, 2008.

[8] C. D. Meyer, Jr. and N. J. Rose. The index and the Drazin inverse of block triangular matrices.

SIAM J. Appl. Math., 33(1):1–7, 1977.

[9] Y. Wei. Expressions for the Drazin inverse of a 2×2 block matrix.Linear Multilinear Algebra, 45:131–146, 1998.

[10] R. E. Hartwig, G. Wang, and Y. Wei. Some additive results on Drazin inverse.Linear Algebra Appl., 322:207–217, 2001.

[11] N. Castro-Gonz´alez. Additive perturbation results for the Drazin inverse.Linear Algebra Appl., 397:279–297, 2005.

[12] N. Castro-Gonz´alez and E. Dopazo. Representations of the Drazin inverse for a class of block matrices. Linear Algebra Appl., 400:253–269, 2005.

[13] D. S. Djordjevi´c and P. S. Stanimirovi´c. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math. J., 51:617–634, 2001.

[14] R. Hartwig, X. Li, and Y. Wei. Representations for the Drazin inverses of a 2×2 block matrix.

SIAM J. Matrix Anal. Appl., 27:757–771, 2006.

[15] X. Sheng and G. Chen. Some generalized inverses of partition matrix and quotient identity of generalized Schur complement. Appl. Math. Comput., 196:174–184, 2008.

[16] D. S. Cvetkovi´c-Ili´c. A note on the representation for the Drazin inverse of 2×2 block matrices.

Linear Algebra Appl., 429:242–248, 2008.

[17] C. Bu, J. Zhao and J. Zheng. Group inverse for a class 2×2 block matrices over skew fields.

(13)

[18] C. Bu, J. Zhao, and K. Zhang. Some resluts on group inverses of block matrices over skew fields. Electron. J. Linear Algebra, 18: 117–125, 2009.

[19] C. Bu, M. Li, K. Zhang, and L. Zheng. Group Inverse for the Block Matrices with an Invertible Subblock. Appl. Math. Comput., 215:132–139, 2009.

[20] J. Chen, Z. Xu, and Y. Wei. Representations for the Drazin inverse of the sumP+Q+R+S

Referensi

Dokumen terkait

dapat memberikan kontribusi teoritis dengan menunjukkan bahwa hegemoni pemaknaan (norma) liberal majoritarian dalam demokrasi dan perwakilan telah menjadi penghambat utama

Terkait hasil pengumuman pemenang tersebut di atas, kepada seluruh peserta lelang yang telah memasukkan penawaran kepada Pokja Paket Pekerjaan Supervisi Pengerukan Alur Pelayaran

The stake of finding a creative way in endorsing mechanisms is high since AICHR has the potential to evolve as stated in the Article 2.5: “Adoption of an evolutionary approach

This paper analyses this issue from four approaches, firstly, a review of current and applicable government legislation and policy, secondly, analyzing the work and findings

Ketidakhadiran saudara pada saat pembuktian kualifikasi dengan membawa dokumen kualifikasi sesuai dengan jadwal yang ditentukan, maka perusahaan saudara

Sehubungan butir 1 (satu) diatas, maka Saudara diundang untuk mengadakan Klarifikasi dan Negosiasi Teknis dan Biaya Pekerjaan Perbaikan Kapal KN.Kalawai P.117 Kantor Pangkalan

Terkait butir 2 (dua) tersebut maka Pokja Unit Layanan Pengadaan Politeknik Ilmu Pelayaran Makassar menyatakan membatalkan pemenang pekerjaan tersebut dan akan

Pokja Pemilihan penyedia barang/jasa pekerjaan pada satuan kerja Peningkatan keselamatan lalu lintas angkutan laut pusat akan melaksanakan Pelelangan Umum dengan