• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
15
0
0

Teks penuh

(1)

Electronic Journal of Qualitative Theory of Differential Equations 2009, No. 11, 1-15;http://www.math.u-szeged.hu/ejqtde/

On the solvability of anti-periodic boundary

value problems with impulse

Chuanzhi Bai ∗

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223300, P R China

Abstract

In this paper, we are concerned with the existence of solutions for second order impulsive anti-periodic boundary value problem

    

   

u′′(t) +f(t, u(t), u(t)) = 0, t

6

=tk, t∈[0, T],

△u(tk) =Ik(u(tk)), k= 1,· · ·, m,

△u′(t

k) =Ik∗(u(tk)), k= 1,· · ·, m,

u(0) +u(T) = 0, u′(0) +u(T) = 0,

new criteria are established based on Schaefer’s fixed-point theorem.

Keywords: Anti-periodic boundary value problem; Impulsive; Schaefer’s fixed-point theorem

1. Introduction

In recent years, the solvability of the anti-periodic boundary value problems of first-order and second-order differential equations were studied by many authors, for example, we refer to [1-5] and the references therein. It should be noted that anti-periodic boundary value problems appear in physics in a variety of situations [6,7].

Impulsive differential equations, which arise in biology, physics, population dynamics, eco-nomics, etc., are a basic tool to study evolution processes that are subjected to abrupt in their states (see [8-12]). Recently, the existence results were extended to anti-periodic boundary value problems for first-order impulsive differential equations [13,14]. Very recently, Wang and Shen [15] investigated the anti-periodic boundary value problem for a class of second order differential equations by using Schauder’s fixed point theorem and the lower and upper solutions method.

Inspired by [13-15], in this paper, we investigate the anti-periodic boundary value problem for second order impulsive nonlinear differential equations of the form

(2)

    

   

u′′(t) +f(t, u(t), u(t)) = 0, t

∈J0 =J\ {t1,· · ·, tm},

△u(tk) =Ik(u(tk)), k= 1,· · ·, m,

△u′(t

k) =Ik∗(u(tk)), k= 1,· · ·, m,

u(0) +u(T) = 0, u′(0) +u(T) = 0,

(1.1)

where J = [0, T], 0< t1 < t2 <· · · < tm < T, f : [0, T]×R2 → R is continuous on (t, x, y) ∈

J0×R2,f(t+k, x, y) := lim

t→t+k

f(t, x, y), f(t−

k, x, y) := lim t→t−

k

f(t, x, y) exist, f(t−

k, x, y) =f(tk, x, y);

△u(tk) =u(t+k)−u(t−k),△u′(tk) =u′(t+k)−u′(t−k);Ik, Ik∗∈C(R, R).

To the best of the authors knowledge, no one has studied the existence of solutions for impulsive anti-periodic boundary value problem (1.1). The aim of this paper is to fill the gap in the relevant literatures.

The following Schaefer’s fixed-point theorem is fundamental in the proof of our main results.

Lemma 1.1.[16] (Schaefer) Let E be a normed linear space with H : E E a compact

operator. If the set

S:={xE|x=λHx, f or some λ(0,1)}

is bounded, thenH has at least one fixed-point.

The paper is formulated as follows. In section 2, some definitions and lemmas are given. In section 3, we obtain a new existence theorem by using Schaefer’s fixed point theorem, and uniqueness result by using Banach’s fixed point theorem. In Section 4, an illustrative example is given to demonstrate the effectiveness of the obtained results.

2. Preliminaries

In order to define the concept of solution for (1.1), we introduce the following spaces of functions:

P C(J) = {u :J R :u is continuous for any t J0, u(t+k), u(t−k) exist, and u(t−k) = u(tk), k= 1,· · ·, m},

P C1(J) = {u : J R : u is continuously differentiable for any t J

0, u′(t+k), u′(t−k) exist, andu′(t

k) =u′(tk), k= 1,· · ·, m}.

P C(J) andP C1(J) are Banach space with the norms :

kukP C = supt∈J|u(t)|,

(3)

kukP C1 = max{kukP C,ku′kP C}.

A solution to the impulsive BVP (1.1) is a function uP C1(J)C2(J

0) that satisfies (1.1) for each tJ.

Consider the following impulsive BVP withp0, q >0

    

   

−u′′(t) +pu(t) +qu(t) =σ(t), t ∈J0,

△u(tk) =Ik(u(tk)), k= 1,· · ·, m,

△u′(t

k) =Ik∗(u(tk)), k= 1,· · ·, m,

u(0) +u(T) = 0, u′(0) +u(T) = 0,

(2.1)

whereσ P C(J).

For convenience, we setIk=Ik(u(tk)), Ik∗ =Ik∗(u(tk)),

r1 := p+

p

p2+ 4q

2 >0, r2:=

pp

p2+ 4q

2 <0. (2.2)

Lemma 2.1. uP C1(J)C2(J0) is a solution of(2.1) if and only if u∈P C1(J)is a solution

of the impulsive integral equation

u(t) =

Z T

0

G(t, s)σ(s)ds+

m

X

k=1

[G(t, tk)(−Ik∗) +W(t, tk)Ik], (2.3)

where

G(t, s) = 1

r1−r2

 

er2(ts) 1+er2T −e

r1(ts)

1+er1T, 0≤s < t≤T,

er

1(T+t−s)

1+er1T − e r

2(T+t−s)

1+er2T , 0≤t≤s≤T,

(2.4)

and

W(t, s) = 1

r1−r2

 

r1er2(t−s) 1+er2T −r2e

r

1(t−s)

1+er1T , 0≤s < t≤T,

r2er1(T+t−s) 1+er1T −r1e

r2(T+ts)

1+er2T , 0≤t≤s≤T.

(2.5)

Proof. IfuP C1(J)T

C2(J

0) is a solution of (2.1), setting

v(t) =u′(t)

−r2u(t), (2.6)

then by the first equation of (2.1) we have

v′(t)

−r1v(t) =−σ(t), t6=tk. (2.7)

Multiplying (2.7) bye−r1t and integrating on [0, t] and (t

1, t], respectively, we get

e−r1tv(t)v(0) =

Z t

0

σ(s)e−r1sds, 0tt 1,

e−r1tv(t)e−r1t1v(t+ 1) =−

Z t

t1

σ(s)e−r1sds, t

(4)

So

v(t) =er1t[v(0)

Z t

0

e−r1sσ(s)ds+e−r1t1(I

1 −r2I1), t1< t≤t2.

In the same way, we can obtain that

v(t) =er1t

v(0)− Z t

0

e−r1sσ(s)ds+ X 0<tk<t

e−r1tk

(Ikr2Ik)

, t∈J, (2.8)

where v(0) = u′(0)r

2u(0). Multiplying (2.6) by e−r2t and integrating on [0, tk] and (tk, t]

(tk< t≤tk+1), respectively, similar to the proof of (2.8), we have

u(t) =er2t

u(0) + Z t

0

v(s)e−r2sds+ X 0<tk<t

e−r2tkI

k

, t∈J. (2.9)

By some calculation, we get

Z t

0

v(s)e−r2sds = 1 r1−r2

v(0)(e(r1−r2)t1)

Z t

0

(e(r1−r2)te(r1−r2)s)σ(s)e−r1sds

+ X

0<tk<t

e(r1−r2)te(r1−r2)tk

e−r1tk

(Ikr2Ik)

.

(2.10)

Substituting (2.10) into (2.9), we obtain

u(t) = 1

r1−r2

h

(r1u(0)−u′(0))er2t+ (u′(0)−r2u(0))er1t

+

Z t

0 (e

r2(t−s)er1(t−s))σ(s)ds+ X 0<tk<t

er1(t−tk)

(Ikr2Ik)

− X

0<tk<t

er2(t−tk)(I

k−r1Ik)

, t∈[0, T],

(2.11)

u′(t) = 1

r1−r2

h

r2(r1u(0)−u′(0))er2t+r1(u′(0)−r2u(0))er1t

+

Z t

0

(r2er2(t−s)−r1er1(t−s))σ(s)ds+

X

0<tk<t

r1er1(t−tk)(Ik∗−r2Ik)

− X

0<tk<t

r2er2(t−tk)

(Ikr1Ik)

, t∈[0, T].

(5)

In view of u(0) +u(T) = 0, u′(0) +u(T) = 0, we have

Substituting (2.13) and (2.14) into (2.11), by routine calculation, we can get (2.3).

Conversely, if u is a solution of (2.3), then direct differentiation of (2.3) gives u′′(t) =

σ(t) pu′(t)

In view of Lemma 2.1, we easily know that u is a fixed point of operatorA if and only if u is a solution to the impulsive boundary value problem (1.1).

Lemma 2.2IfuP C1(J) and u(0) +u(T) = 0, then

Substituting (2.17) into (2.16), we get

(6)

= 1

The proof is complete. ✷

It is easy to check that

|G(t, s)| ≤ 1

By (2.19), we easily obtain that

(7)

(H1) 3

Z T

0 c(t)dt+ 6pT <2;

(H2) There exist constant 0< η <1 and functionsa, b, c, h∈C(J,[0,+∞)) such that

|f(t, u, v)| ≤a(t)|u|+b(t)|u|η+c(t)|v|+h(t);

(H3) There exist nonnegative constantsαk, βk, γk, δk (k= 1,2,· · ·, m) such that

|Ik(u)| ≤αk|u|+βk, |Ik∗(u)| ≤γk|u|+δk, k= 1,· · ·m.

For convenience, let

a1 = 3RT

0 a(t)dt+ 2qT +

Pm

i=1γi

23RT

0 c(t)dt−6pT

, a2 =

3RT

0 b(t)dt 23RT

0 c(t)dt−6pT ,

(3.1)

a3 = 3RT

0 h(t)dt+

Pm

i=1δi

23RT

0 c(t)dt−6pT .

Theorem 3.1. Suppose that (H1)(H3)hold. Further assume that

b1T 2(2c∗) +

s

b1T 2(2c∗)

m

X

i=1 αi+

m 4

m

X

i=1

α2i <1, (3.2)

where

b1=

Z T

0

a(t)dt+1 2

Z T

0

c(t)dt+

m

X

i=1

[(p+a1)αi+γi],

a1 as in(3.1) and c∗ = max

t∈Jc(t)<2. Then BVP(1.1) has at least one solution.

Proof. It is easy to check by Arzela-Ascoli theorem that the operatorAis completely continuous. Assume thatu is a solution of the equation

u=λAu, λ(0,1).

Then,

u′′(t) =λ(Au)′′(t) =λ[

−f(t, u(t), u′(t))

−pu′(t)

−qu(t) +p(Au)′(t) +q(Au)(t)]

=λf(t, u(t), u′(t))p(λ1)u′(t)q(λ1)u(t), (3.3)

−u(t)u′′(t) =λu(t)f(t, u(t), u′(t)) +p(λ1)u(t)u′(t) +q(λ1)u2(t)

≤λu(t)f(t, u(t), u′(t)) +p(λ

−1)u(t)u′(t). (3.4)

(8)

u′(T)

Integrating (3.3) from 0 tot, we obtain that

u′(t)

Thus, in view of assumption (H1), we have

ku′

(9)

wherea1, a2, a3 are as in (3.1). Integrating (3.4) from 0 toT, we get that

− Z T

0

u(t)u′′(t)dt ≤λ

Z T

0

u(t)f(t, u(t), u′(t))dt+p(λ −1)

Z T

0

u(t)u′(t)dt. (3.9)

In view of u(0) +u(T) = 0, u′(0) +u(T) = 0, we have

Z T

0

u(t)u′(t)dt= 1

2

Z T

0

d(u2(t))

= 1

2

" Z t1

0

d((u′(t))2) +Z t2

t1

d(u2(t)) +· · ·+

Z T

tm

d(u2(t))

#

= 1

2

h

(u2(t1−0)−u2(0)) + (u2(t2−0)−u2(t1+ 0)) +· · ·+ (u2(T)−u2(tm+ 0))

i

= 1

2

h

(u2(t1−0)−u2(t1+ 0)) + (u2(t2−0)−u2(t2+ 0)) +· · ·+ (u2(tm−0)−u2(tm+ 0))

i

= 1

2[−(u(t1−0) +u(t1+ 0))I1−(u(t2−0) +u(t2+ 0))I2− · · · −(u(tm−0) +u(tm+ 0))Im], (3.10) and

Z T

0

u(t)u′′(t)dt=Z T

0

u(t)d(u′(t))

=

Z t1 0

u(t)d(u′(t)) +Z t2

t1

u(t)d(u′(t)) + · · ·+

Z T

tm

u(t)d(u′(t))

=u(t)u′(t) |t1

0 −

Z t1

0

(u′(t))2dt+u(t)u(t) |t2

t1 −

Z t2

t1

(u′(t))2dt+· · ·+u(t)u(t) |Ttm−

Z T

tm

(u′(t))2dt

=u(t1−0)u′(t1−0)−u(0)u′(0) +u(t2−0)u′(t2−0)−u(t1+ 0)u′(t1+ 0)

+· · ·+u(T)u′(T)u(tn+ 0)u′(tn+ 0)−

Z T

0 (u

(t))2dt

=u(t1−0)u′(t1−0)−u(t1+ 0)u′(t1+ 0) +· · ·

+u(tn−0)u′(tm−0)−u(tm+ 0)u′(tm+ 0)−

Z T

0

(u′(t))2dt

=u(t1−0)u′(t1−0)−u(t1−0)u′(t1+ 0) +u(t1−0)u′(t1+ 0)−u(t1+ 0)u′(t1+ 0)

+· · ·+u(tm−0)u′(tm−0)−u(tm−0)u′(tm+ 0)

+u(tm−0)u′(tm+ 0)−u(tm+ 0)u′(tm+ 0)−

Z T

0 (u

(10)

=u(t10)I1u′(t1+ 0)I1− · · · −u(tm−0)In∗−u′(tm+ 0)Im−

By Lemma 2.2 and (3.12), we have

(11)

≤ T4 Z T

0

(u′(t))2dt+

T 2

Z T

0

(u′(t))2dt

!1/2 m X

i=1

|Ii|+

1 4m

m

X

i=1

|Ii|2

2(2T −c∗)

h

b1kuk2P C +b2kuk1+P Cη+b3kukP C+b4kukηP C +b5

i

+

s

T 2(2c∗)

h

b1kuk2P C+b2kuk1+P Cη +b3kukP C+b4kukηP C+b5

i1/2Xm

i=1

(αikukP C +βi)

+m

4

m

X

i=1

(α2ikuk2P C+ 2αiβikukP C +βi2).

It follows from the above inequality and condition (3.2) that there exists M1 > 0 such that

kukP C ≤M1. Thus, we get by (3.8) that

ku′kP C ≤a1M1+a2M1η+a3 :=M2. (3.14)

Thus, kukP C1 ≤ max{M1, M2}. It follows from Lemma 1.1 that BVP (1.1) has at least one

solution. The proof is complete. ✷

Corollary 3.2. Assume that (H1),(H2) hold. Suppose that there exist nonnegative constants βk, δk (k= 1,2,· · ·, m) such that

(H4) |Ik(u)| ≤βk, |Ik∗(u)| ≤δk, k= 1,· · ·m,

holds. Further assume that

Z T

0

a(t)dt+1 2

Z T

0

c(t)dt <2(2c∗), (3.15)

wherec∗ = max

t∈Jc(t)<2. Then BVP (1.1) has at least one solution.

Proof. Set αk = γk = 0, k = 1,2,· · ·, m. Then (H3) reduces to (H4), and (3.1) reduces to (3.15). So, by Theorem 3.1, we know that Corollary 3.2 holds.

Theorem 3.3. Suppose that there exist constants K1, K2, and Lk, lk (k = 1,2,· · ·, m) such

that

|f(t, u, v)f(t, x, y)| ≤K1|u−x|+K2|v−y|, ∀u, v, x, y∈R,

and

|Ik(u)−Ik(v)| ≤Lk|u−v|, |Ik∗(u)−Ik∗(v)| ≤lk|u−v|, ∀u, v∈R.

(12)

(K1+K2+p+q)Tmax{G1, G2}+

Proof. From (2.15), we have

(13)

+

∂tW(t, tk)

lk

kuvkP C1

≤[(K1+K2+p+q)T G2+

m

X

k=1

(G2Lk+G3lk)]ku−vkP C1.

Hence,

kAuAvkP C ≤[(K1+K2+p+q)T G1+

m

X

k=1

(G1Lk+G2lk)]ku−vkP C1,

k(Au)′

−(Av)′

kP C ≤[(K1+K2+p+q)T G2+

m

X

k=1

(G2Lk+G3lk)]ku−vkP C1.

Thus, we obtain

kAuAvkP C1 ≤[(K1+K2+p+q)Tmax{G1, G2}

+

m

X

k=1

(max{G1, G2}Lk+ max{G2, G3}lk)]ku−vkP C1.

In view of (3.16) and Banach fixed point theorem, A has a unique fixed point. The proof is

complete. ✷

4. Example

In this section, we give an example to illustrate the effectiveness of our results.

Example 4.1. Consider the problem

     

    

u′′(t) +u(t) sin2tetu1/2(t) + 1 2u

(t) cos2t+t2+ sin 2t= 0, t

0,π2

\ {13,23},

△u13= sinu13, u23= cosu23,

△u′1 3

= 1 +12cos2u1 3

, u′2 3

= 13sinu23, u(0) +u π2

= 0, u′(0) +u′ π

2

= 0,

(4.1)

Letf(t, u, v) =u(t) sin2tetu1/2(t) +v

2cos2t+t2+ sin 2t,I1(u) = sinu,I2(u) = cosu,I1∗(u) = 1 +12cos2u,I∗

2(u) = 13sinu,T = π2,J =

0,π2

.

It is easy to show that

|I1(u)| ≤1, |I2(u)| ≤1, |I1∗(u)| ≤ 32, |I2∗(u)| ≤ 13,

and

|f(t, u, v)| ≤a(t)|u|+b(t)|u|1/2+c(t)|v|+h(t),

(14)

a(t) = sin2t, b(t) =et, c(t) = 21cos2t, h(t) =t2+ sin 2t. (4.2)

Thus, (H2) and (H4) hold. Let p= 0 andq = 14, we have by (3.1) and (4.2) that

a1 = 12π

163π, a2 =

24(eπ/21)

163π , a3 =

π3+ 68 163π,

and

3

Z T

0 c(t)dt+ 6pT = 3 2

Z π/2

0 cos

2tdt= 3π 8 <2,

which implies that (H1) holds. Moreover, we see that

b1 =

Z π/2

0 a(t)dt+

1 2

Z π/2

0 c(t)dt= 5

16π <3 = 2(2−c

),

where c∗ = max

t∈Jc(t) = 12. Thus, (3.15) holds. So, all the conditions of Corollary 3.2 are

satisfied. By Corollary 3.2, anti-period boundary value problem (4.1) has at least one solution.

Acknowledgements

The author is very grateful to the referees for careful reading of the original manuscript and for valuable suggestions on improving this paper. Project supported by the National Nat-ural Science Foundation of China (10771212) and the NatNat-ural Science Foundation of Jiangsu Education Office (06KJB110010).

References

[1] A. R. Aftabizadeh, S. Aizicovici, N.H. Pavel, On a class of second-order anti-periodic boundary value problems, J. Math. Anal. Appl. 171 (1992) 301-320.

[2] D. Franco, J.J. Nieto, D. O’Regan, Anti-periodic boundary value problem for non-linear first order ordinary differential equations, Math. Inequal. Appl. 6 (2003) 477-485.

[3] T. Jankowski, Ordinary differential equations with anti-periodic and nonlinear boundary value conditions of anti-periodic type, Computer Math. Applic. 47 (2004) 1429-1436. [4] Y. Yin, Remarks on first order differential equations with anti-periodic and nonlinear

boundary value conditions, Nonlinear Times Digest. 2 (1995) 83-94.

[5] Y. Yin, Monotone iterative technique and quasilinearization for some anti-periodic problem, Nonlinear World. 3 (1996) 253-266.

[6] C. Ahn, C. Rim, Boundary flows in general coset theories, J. Phys. A. 32 (1999) 2509-2525. [7] A. Abdurrahman, F. Anto, J. Bordes, Half-string oscillator approach to string field theory

(ghost sector 2), Nuclear Phys. B. 397 (1993) 260-282.

(15)

[9] A.M. Samoilenko, N.A. Perestyuk. Impulsive Differential Equations, World Scientific, Singapore, 1995.

[10] S.T. Zavalishchin, A.N. Sesekin, Dynamic Impulse Systems. Theory and applications, Kluwer Academic Publishers Group, Dordrecht, 1997.

[11] X. Liu (Ed.), Advances in Impulsive Differential Equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 9 (2002) 313-462.

[12] T. Jankowski, Existence of solutions for second order impulsive differential equations with deviating arguments, Nonlinear Anal. 67 (2007) 1764-1774.

[13] D. Franco, J.J. Nieto, First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary value conditions, Nonlinear Anal. 42 (2000) 163-173. [14] Z. Luo, J. Shen, J. Nieto, Anti-periodic boundary value problem for first-order impulsive

ordinary differential equation, Computer Math. Applic. 49 (2005) 253-261.

[15] W. Wang, J. Shen, Existence of solution for anti-periodic boundary value problems, Nonlinear Anal. 79 (2009) 598-605.

[16] N. G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics, no. 73, Cambridge University Press, Cambridge, UK, 1978.

Referensi

Dokumen terkait

Kelompok Kerja Pemilihan Penyedia Barang/Jasa Fekeijaan Pengadaan Peraiatan Penunjang PKP-PK yang dibentuk berdasarkan Surat Keputnsan Kepala Unit Layanan Pengadaan

Pada perancangan sistem ini akan dibuat suatu program yang dapat dijalankan pada PC maupun laptop, yang digunakan untuk simulasi pencarian rute terpendek, rute yang

Pembahasan dalam permasalahan pada objek berupa perancangan film dokudrama pendek tentang inner story atau apa yang berada di benak seorang pendaki pemula non

components affect marketing positively and significantly. Hence, an online video advertising that creates positive consumer attitude should significantly create

[r]

Berdasarkan hasil persentasi perhitungan pengujian beta pengguna aplikasi pembelajaran tahsin qur’an, maka dapat disimpulkan bahwa aplikasi pembelajaran tahsin qur’an

Untuk mempengaruhi dan mengubah perilaku remaja yang memiliki kecenderungan menjadi anggota geng motor agar terhindar dari aksi negatif geng tersebut dibutuhkan

Pokja Unit Layanan Pengadaan Kantor Kesyahbandaran dan Otoritas Pelabuhan Kelas II Benoa Paket Pekerjaan Pembangunan Pagar dan Halaman Parkir (2250 M²) pada