• Tidak ada hasil yang ditemukan

getdoc5d6c. 453KB Jun 04 2011 12:04:25 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoc5d6c. 453KB Jun 04 2011 12:04:25 AM"

Copied!
27
0
0

Teks penuh

(1)

❊ ❧ ❡ ❝ t r ♦♥ ✐ ❝

❏♦

✉r ♥ ❛ ❧ ♦ ❢

P r ♦

❜ ❛ ❜ ✐ ❧ ✐ t ② ❱♦❧✳ ✶✶ ✭✷✵✵✻✮✱ P❛♣❡r ♥♦✳ ✾✱ ♣❛❣❡s ✷✹✾✕✷✼✺✳

❏♦✉r♥❛❧ ❯❘▲

❤tt♣✿✴✴✇✇✇✳♠❛t❤✳✇❛s❤✐♥❣t♦♥✳❡❞✉✴∼❡❥♣❡❝♣✴

❖♥ r❛♥❞♦♠ ✇❛❧❦ s✐♠✉❧❛t✐♦♥ ♦❢ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧

❞✐✛✉s✐♦♥ ♣r♦❝❡ss❡s ✇✐t❤ ❞✐s❝♦♥t✐♥✉♦✉s ❝♦❡✣❝✐❡♥ts

P✐❡rr❡ ➱t♦ré

Pr♦❥❡t ❖▼❊●❆✱ ■❊❈◆✱ ❇P ✷✸✾✱ ❋✲✺✹✺✵✻ ❱❛♥❞÷✉✈r❡✲❧ès✲◆❛♥❝② ❈❊❉❊❳

P✐❡rr❡✳❊t♦r❡❅✐❡❝♥✳✉✲♥❛♥❝②✳❢r

❤tt♣✿✴✴✇✇✇✳✐❡❝♥✳✉✲♥❛♥❝②✳❢r✴⑦❡t♦r❡✴

❆❜str❛❝t

■♥ t❤✐s ♣❛♣❡r✱ ✇❡ ♣r♦✈✐❞❡ ❛ s❝❤❡♠❡ ❢♦r s✐♠✉❧❛t✐♥❣ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ♣r♦❝❡ss❡s ❣❡♥❡r❛t❡❞ ❜② ❞✐✈❡r❣❡♥❝❡ ♦r ♥♦♥✲❞✐✈❡r❣❡♥❝❡ ❢♦r♠ ♦♣❡r❛t♦rs ✇✐t❤ ❞✐s❝♦♥t✐♥✉♦✉s ❝♦❡✣❝✐❡♥ts✳ ❲❡ ✉s❡ ❛ s♣❛❝❡ ❜✐❥❡❝t✐♦♥ t♦ tr❛♥s❢♦r♠ s✉❝❤ ❛ ♣r♦❝❡ss ✐♥ ❛♥♦t❤❡r ♦♥❡ t❤❛t ❜❡❤❛✈❡s ❧♦❝❛❧❧② ❧✐❦❡ ❛ ❙❦❡✇ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥✳ ■♥❞❡❡❞ t❤❡ ❜❡❤❛✈✐♦r ♦❢ t❤❡ ❙❦❡✇ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥ ❝❛♥ ❡❛s✐❧② ❜❡ ❛♣♣r♦❛❝❤❡❞ ❜② ❛♥ ❛s②♠♠❡tr✐❝ r❛♥❞♦♠ ✇❛❧❦✳

❑❡② ✇♦r❞s✿ ▼♦♥t❡ ❈❛r❧♦ ♠❡t❤♦❞s✱ r❛♥❞♦♠ ✇❛❧❦✱ ❙❦❡✇ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥✱ ♦♥❡✲❞✐♠❡♥s✐♦♥❛❧ ♣r♦❝❡ss✱ ❞✐✈❡r❣❡♥❝❡ ❢♦r♠ ♦♣❡r❛t♦r✱ ❧♦❝❛❧ t✐♠❡✳

❆▼❙ ✷✵✵✵ ❙✉❜❥❡❝t ❈❧❛ss✐✜❝❛t✐♦♥✿ Pr✐♠❛r② ✻✻✵❏✻✵✱ ✻✺❈✳

❙✉❜♠✐tt❡❞ t♦ ❊❏P ♦♥ ▼❛② ✶✶✱ ✷✵✵✺✳ ❋✐♥❛❧ ✈❡rs✐♦♥ ❛❝❝❡♣t❡❞ ♦♥ ❋❡❜r✉❛r② ✷✶✱ ✷✵✵✻✳

∗❙✉♣♣♦rt ❛❝❦♥♦✇❧❡❞❣❡♠❡♥t✿ ❚❤✐s ✇♦r❦ ❤❛s ❜❡❡♥ s✉♣♣♦rt❡❞ ❜② t❤❡ ●❞❘ ▼❖▼❆❙✳

(2)
(3)

✇❤❡r❡ t❤❡βn

k✬s ❛r❡ ❡①♣❧✐❝✐t❡❧② ❦♥♦✇♥✳ ❚❤✉sYn ❜❡❤❛✈❡s ❛r♦✉♥❞ ❡❛❝❤ k/n❧✐❦❡ ❛ ❙❇▼ ♦❢ ♣❛r❛♠❡t❡r βkn

✭s❡❡ ❙✉❜s❡❝t✐♦♥✺✳✷❢♦r ❛ ❜r✐❡❢ ♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❙❇▼✮✳ ❚❤❛t ✐s✱ ❤❡✉r✐st✐❝❛❧❧②✱Yn✇❤❡♥ ✐♥k/n♠♦✈❡s ✉♣

✇✐t❤ ♣r♦❜❛❜✐❧✐t②(βn

k + 1)/2❛♥❞ ❞♦✇♥ ✇✐t❤ ♣r♦❜❛❜✐❧✐t②(βkn−1)/2✱ ❛♥❞ ❜❡❤❛✈❡s ❧✐❦❡ ❛ st❛♥❞❛r❞ ❇r♦✇♥✐❛♥

♠♦t✐♦♥ ❡❧s❡✇❤❡r❡✳ ❚❤✉s ❛ r❛♥❞♦♠ ✇❛❧❦ ♦♥ t❤❡ ❣r✐❞{k/n:k∈Z}❝❛♥ r❡✢❡❝t t❤❡ ❜❡❤❛✈✐♦✉r ♦❢Yn❛s ✇❛s

s❤♦✇♥ ✐♥ ❬▲❡❣✽✺❪✳ ❲❡ ✉s❡ t❤✐s t♦ ✜♥❛❧❧② ❝♦♥str✉❝t ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥Ybn ♦❢Yn

❲❡ ♦❜t❛✐♥ ❛ ✈❡r② ❡❛s② t♦ ✐♠♣❧❡♠❡♥t ❛❧❣♦r✐t❤♠ t❤❛t ♦♥❧② r❡q✉✐r❡s s✐♠✉❧❛t✐♦♥s ♦❢ ❇❡r♥♦✉❧❧✐ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s✳ ❲❡ ❡st✐♠❛t❡ t❤❡ s♣❡❡❞ ♦❢ ✇❡❛❦ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ♦✉r ❛❧❣♦r✐t❤♠ ❜② ♠✐①✐♥❣ ❛♥ ❡st✐♠❛t❡ ♦❢ ❛ ✇❡❛❦ ❡rr♦r ❛♥❞ ❛♥ ❡st✐♠❛t❡ ♦❢ ❛ str♦♥❣ ❡rr♦r✳ ■♥❞❡❡❞ ❝♦♠♣✉t✐♥❣ t❤❡ str♦♥❣ ❡rr♦r ♦❢ t❤❡ ❛❧❣♦r✐t❤♠ ♣r❡s❡♥ts ❞✐✣❝✉❧t✐❡s ✇❡ ✇❡r❡ ♥♦t ❛❜❧❡ t♦ ♦✈❡r❝♦♠❡✳ ❖♥ t❤❡ ♦t❤❡r ❤❛♥❞ ❝♦♠♣✉t✐♥❣ ❞✐r❡❝t❧② t❤❡ ✇❡❛❦ ❡rr♦r ✇✐t❤♦✉t ✉s✐♥❣ ❛ str♦♥❣ ❡rr♦r ❡st✐♠❛t❡ ✇♦✉❧❞ ❧❡❛❞ t♦ ♠♦r❡ ❝♦♠♣❧✐❝❛t❡❞ ❝♦♠♣✉t❛t✐♦♥s ✇✐t❤♦✉t ❛♥② ✐♠♣r♦✈❡♠❡♥t ♦❢ t❤❡ s♣❡❡❞ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✿ ❜❛s✐❝❛❧❧② ♦✉r ❛♣♣r♦❛❝❤ r❡❧✐❡s ♦♥ t❤❡ ❉♦♥s❦❡r t❤❡♦r❡♠ ❛♥❞ ✇❡ ❝❛♥♥♦t ❣❡t ❜❡tt❡r t❤❛♥ ❛♥ ❡rr♦r ✐♥O(n−1/2)✳ ▼♦r❡♦✈❡r t♦ ♠❛❦❡ s✉❝❤ ❝♦♠♣✉t❛t✐♦♥s ✇❡ s❤♦✉❧❞ r❡q✉✐r❡ ❛❞❞✐t✐♦♥♥❛❧

s♠♦♦t❤♥❡ss ♦♥ t❤❡ ❞❛t❛ ✭s❡❡ ❬▼❛r✵✹❪✮✳

❲❡ ✜♥❛❧❧② ♠❛❦❡ ♥✉♠❡r✐❝❛❧ ❡①♣❡r✐♠❡♥ts✿ t❤❡ ♣r♦♣♦s❡❞ s❝❤❡♠❡ ❛♣♣❡❛rs t♦ ❜❡ s❛t✐s❢②✐♥❣ ❝♦♠♣❛r❡❞ t♦ t❤❡ ♦♥❡s ♣r♦♣♦s❡❞ ✐♥ ❬▼❛r✵✹❪ ♦r ❬▲▼✵✻❪✳

❍②♣♦t❤❡s✐s✳ ❲❡ ♠❛❦❡ s♦♠❡ ❛ss✉♠♣t✐♦♥s ❢r♦♠ ♥♦✇ t✐❧❧ t❤❡ ❡♥❞ ♦❢ t❤❡ ♣❛♣❡r✱ ❢♦r t❤❡ s❛❦❡ ♦❢ s✐♠♣❧✐❝✐t② ❜✉t ✇✐t❤♦✉t ❧♦ss ♦❢ ❣❡♥❡r❛❧✐t②✳

✭❆✶✮b= 0✳

■♥❞❡❡❞✱ ❛s ❡①♣❧❛✐♥❡❞ ✐♥ ❬▲▼✵✻❪ ❙❡❝t✐♦♥ ✷✱ ✐❢ ✇❡ ❝❛♥ tr❡❛t t❤❡ ❝❛s❡

L= ρ

2∇

a∇, ✭✶✳✸✮

✇❡ ❝❛♥ tr❡❛t t❤❡ ❝❛s❡ ✭✶✳✶✮ ❢♦r ❛♥② ♠❡❛s✉r❛❜❧❡ ❜♦✉♥❞❡❞ b❜② ❞❡✜♥✐♥❣ t❤❡ ❝♦❡✣❝✐❡♥tsρ❛♥❞ a✐♥ ✭✶✳✸✮ ✐♥

t❤❡ ❢♦❧❧♦✇✐♥❣ ♠❛♥♥❡r✿

If ab :=aexpΨ andρb :=ρexp−Ψ,

with Ψ(x) =

Z x

0

h(y)dy andh(x) = 2 b(x)

ρ(x)a(x),

then ρb

2∇

ab∇

= ρ

2∇

a∇+b∇.

✭❆✷✮ ▲❡t ❜❡G= (l, r)❛♥ ♦♣❡♥ ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧ ♦❢R✳ ❲❡ ✇✐❧❧ ❛ss✉♠❡ t❤❡ ♣r♦❝❡ssX st❛rts ❢r♦♠xG

❛♥❞ ✐s ❦✐❧❧❡❞ ✇❤❡♥ r❡❛❝❤✐♥❣{l, r}✳ ❃❋r♦♠ ❛ P❉❊s ♣♦✐♥t ♦❢ ✈✐❡✇ t❤✐s ♠❡❛♥s t❤❡ ♣❛r❛❜♦❧✐❝ P❉❊s ✐♥✈♦❧✈✐♥❣ L ✇❡ ✇✐❧❧ st✉❞② ❛r❡ s✉❜♠✐tt❡❞ t♦ ✉♥✐❢♦r♠ ❉✐r✐❝❤❧❡t ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s✳ ❲❡ ❝♦✉❧❞ tr❡❛t ◆❡✉♠❛♥♥

❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥s ✭t❤❛♥❦s t♦ t❤❡ r❡s✉❧ts ♦❢ ❬❇❈✵✺❪ ❢♦r ✐♥st❛♥❝❡✮ ❛♥❞✱ ❜② ❧♦❝❛❧✐③❛t✐♦♥ ❛r❣✉♠❡♥ts✱ t❤❡ ❝❛s❡ ♦❢ ❛♥ ✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥G✭s❡❡ ❬▲▼✵✻❪✮✳ ❇✉t t❤✐s ❛ss✉♠♣t✐♦♥ ✇✐❧❧ ♠❛❦❡ t❤❡ ♠❛t❡r✐❛❧ ♦❢ t❤❡ ♣❛♣❡r

s✐♠♣❧❡r ❛♥❞ ❝❧❡❛r❡r✳

❖✉t❧✐♥❡ ♦❢ t❤❡ ♣❛♣❡r✳ ■♥ ❙❡❝t✐♦♥ ✷ ✇❡ ❞❡✜♥❡ ♣r❡❝✐s❡❧② ❉✐✈❡r❣❡♥❝❡ ❋♦r♠ ❖♣❡r❛t♦rs ✭❉❋❖✮ ❛♥❞ r❡❝❛❧❧ s♦♠❡ ♦❢ t❤❡✐r ♣r♦♣❡rt✐❡s✳ ■♥ ❙❡❝t✐♦♥ ✸ ✇❡ s♣❡❛❦ ♦❢ ❙t♦❝❤❛st✐❝ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s ✐♥✈♦❧✈✐♥❣ ▲♦❝❛❧ ❚✐♠❡ ✭❙❉❊▲❚✮✿ ✇❡ st❛t❡ ❛ ❣❡♥❡r❛❧ ❝❤❛♥❣❡ ♦❢ s❝❛❧❡ ❢♦r♠✉❧❛ ❛♥❞ r❡❝❛❧❧ s♦♠❡ ❝♦♥✈❡r❣❡♥❝❡ r❡s✉❧ts ❡st❛❜❧✐s❤❡❞ ❜② ❏✳❋✳ ▲❡ ●❛❧❧ ✐♥ ❬▲❡❣✽✺❪✳ ■♥ ❙❡❝t✐♦♥ ✹ ✇❡ ❧✐♥❦ ❉❋❖ ❛♥❞ ❙❉❊▲❚✿ ❛ ♣r♦❝❡ss ❣❡♥❡r❛t❡❞ ❜② ❛ ❉❋❖ ♦❢ ❝♦❡✣❝✐❡♥tsa❛♥❞ρ❤❛✈✐♥❣ ❝♦✉♥t❛❜❧❡ ❞✐s❝♦♥t✐♥✉✐t✐❡s ✇✐t❤♦✉t ❝❧✉st❡r ♣♦✐♥ts ✐s s♦❧✉t✐♦♥ ♦❢ ❛ ❙❉❊▲❚ ✇✐t❤

❝♦❡✣❝✐❡♥ts ❞❡t❡r♠✐♥❡❞ ❜② a ❛♥❞ρ✳ ■♥ ❙❡❝t✐♦♥ ✺ ✇❡ ♣r❡s❡♥t ♦✉r s❝❤❡♠❡✳ ■♥ ❙❡❝t✐♦♥ ✻ ✇❡ ❡st✐♠❛t❡ t❤❡

s♣❡❡❞ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤✐s s❝❤❡♠❡✳ ❙❡❝t✐♦♥ ✼ ✐s ❞❡✈♦t❡❞ t♦ ♥✉♠❡r✐❝❛❧ ❡①♣❡r✐♠❡♥ts✳

(4)

❙♦♠❡ ♥♦t❛t✐♦♥s✳ ❋♦r1≤p <∞✇❡ ❞❡♥♦t❡ ❜②Lp(G)t❤❡ s❡t ♦❢ ♠❡❛s✉r❛❜❧❡ ❢✉♥❝t✐♦♥sf ♦♥Gs✉❝❤ t❤❛t

kfkp:=

Z

G|

f(x)|pdx1/p<∞.

▲❡t ❜❡0< T <∞✜①❡❞✳ ❋♦r1≤p, q <∞✇❡ ❞❡♥♦t❡ ❜②Lq(0, T; Lp(G))t❤❡ s❡t ♦❢ ♠❡❛s✉r❛❜❧❡ ❢✉♥❝t✐♦♥s

f ♦♥(0, T)×Gs✉❝❤ t❤❛t

|||f|||p,q :=

Z T

0 k fkqpdt

1/q

<∞.

❋♦r u∈ Lp(G) ✇❡ ❞❡♥♦t❡ ❜② du

dx t❤❡ ✜rst ❞❡r✐✈❛t✐✈❡ ♦❢ u ✐♥ t❤❡ ❞✐str✐❜✉t✐♦♥❛❧ s❡♥s❡✳ ■t ✐s st❛♥❞❛r❞ t♦

❞❡♥♦t❡ ❜②W1,p(G)t❤❡ s♣❛❝❡ ♦❢ ❢✉♥❝t✐♦♥suLp(G)s✉❝❤ t❤❛t du dx ∈L

p(G)✱ ❛♥❞ ❜②W1,p

0 (G)t❤❡ ❝❧♦s✉r❡ ♦❢ C∞

c (G)✐♥W1,p(G)❡q✉✐♣♣❡❞ ✇✐t❤ t❤❡ ♥♦r♠(kuk p p+

du

dx

pp)1/p✳ ❲❡ ❞❡♥♦t❡ ❜②H1(G)t❤❡ s♣❛❝❡W1,2(G)

❛♥❞ ❜②H1

0(G)t❤❡ s♣❛❝❡W 1,2 0 (G)✳

❋♦r u ∈ L2(0, T; L2(G)) ✇❡ ❞❡♥♦t❡ ❜②

tu t❤❡ ❞✐str✐❜✉t✐♦♥ s✉❝❤ t❤❛t ❢♦r ❛❧❧ ϕ ∈ Cc∞((0, T)×G)✱ ✇❡

❤❛✈❡✱h∂tu, ϕi =−R0TRGu∂tϕ✳ ❲❡ st✐❧❧ ❞❡♥♦t❡ ❜② dudx t❤❡ ✜rst ❞❡r✐✈❛t✐✈❡ ♦❢u✇✐t❤ r❡s♣❡❝t t♦ x✐♥ t❤❡

❞✐str✐❜✉t✐♦♥❛❧ s❡♥s❡✳

❲❡ ✇✐❧❧ ❝❧❛ss✐❝❛❧② ❞❡♥♦t❡ ❜②k.k∞ ❛♥❞|||.|||∞,∞ t❤❡ s✉♣r❡♠✉♠ ♥♦r♠s✳

❋♦r t❤❡ ✉s❡ ♦❢ ♣r♦❜❛❜✐❧✐t② ✇❡ ✇✐❧❧ ❞❡♥♦t❡ ❜② C0(G)t❤❡ s❡t ♦❢ ❝♦♥t✐♥✉♦✉s ❜♦✉♥❞❡❞ ❢✉♥❝t✐♦♥s ♦♥ G✳ ❚❤❡

s②♠❜♦❧∼=✇✐❧❧ ❞❡♥♦t❡ ❡q✉❛❧✐t② ✐♥ ❧❛✇✳

✷ ❖♥ ❞✐✈❡r❣❡♥❝❡ ❢♦r♠ ♦♣❡r❛t♦rs

❋♦r0< λ <Λ<∞❧❡t ✉s ❞❡♥♦t❡ ❜②Ell(λ,Λ)t❤❡ s❡t ♦❢ ❢✉♥❝t✐♦♥sf ♦♥Gt❤❛t ❛r❡ ♠❡❛s✉r❛❜❧❡ ❛♥❞ s✉❝❤

t❤❛t

∀x∈G, λ≤f(x)≤Λ.

❋♦rρ∈Ell(λ,Λ)❧❡t ✉s ❞❡✜♥❡ t❤❡ ♠❡❛s✉r❡mρ(dx) :=ρ−1(x)dx✳

❋♦r ❛♥② ♠❡❛s✉r❡ m ✇✐t❤ ❛ ❜♦✉♥❞❡❞ ❞❡♥s✐t② ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ✇❡ t❤❡♥ ❞❡♥♦t❡ ❜②

L2(G, m)t❤❡ ❍✐❧❜❡rt s♣❛❝❡ ♦❢ ❢✉♥❝t✐♦♥s ✐♥L2(G)❡q✉✐♣♣❡❞ ✇✐t❤ t❤❡ s❝❛❧❛r ♣r♦❞✉❝t

(f, g)7−→

Z

G

f(x)g(x)m(dx).

❚❤✐s ✐s ❞♦♥❡ ✐♥ ♦r❞❡r t❤❛t t❤❡ ♦♣❡r❛t♦r ✇❡ ❞❡✜♥❡ ❜❡❧♦✇ ✐s s②♠♠❡tr✐❝ ♦♥L2(G, m

ρ)✳

❉❡✜♥✐t✐♦♥ ✷✳✶ ▲❡ta❛♥❞ρ❜❡ ✐♥Ell(λ,Λ)❢♦r s♦♠❡0< λ <Λ<∞✳ ❲❡ ❝❛❧❧ ❉✐✈❡r❣❡♥❝❡ ❢♦r♠ ♦♣❡r❛t♦r

♦❢ ❝♦❡✣❝✐❡♥ts a❛♥❞ρ✱ ❛♥❞ ✇❡ ♥♦t❡L(a, ρ)✱ t❤❡ ♦♣❡r❛t♦r(L, D(L))♦♥ L2(G, m

ρ)❞❡✜♥❡❞ ❜②

L=ρ 2

d dx

a d

dx

,

❛♥❞

D(L) ={u∈H10(G), Lu∈L2(G)}.

❆❝t✉❛❧❧② ✐❢a, ρ ∈Ell(λ,Λ)t❤❡ ♦♣❡r❛t♦rL(a, ρ)❤❛s s✉✣❝✐❡♥t ♣r♦♣❡rt✐❡s t♦ ❣❡♥❡r❛t❡ ❛ ❝♦♥t✐♥✉♦✉s ▼❛r❦♦✈

♣r♦❝❡ss✳ ❲❡ s✉♠ ✉♣ t❤❡s❡ ♣r♦♣❡rt✐❡s ✐♥ t❤❡ ♥❡①t t❤❡♦r❡♠✳

(5)

❚❤❡♦r❡♠ ✷✳✶ ▲❡ta❛♥❞ρ❜❡ ✐♥ Ell(λ,Λ)❢♦r s♦♠❡ 0< λ <Λ<∞✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿

✐✮ ❚❤❡ ♦♣❡r❛t♦rL(a, ρ)♦♥ L2(G, m

ρ)✐s ❝❧♦s❡❞ ❛♥❞ s❡❧❢✲❛❞❥♦✐♥t✱ ✇✐t❤ ❞❡♥s❡ ❞♦♠❛✐♥✳

✐✐✮ ❚❤✐s ♦♣❡r❛t♦r ✐s t❤❡ ✐♥✜♥✐t❡s✐♠❛❧ ❣❡♥❡r❛t♦r ♦❢ ❛ str♦♥❣❧② ❝♦♥t✐♥✉♦✉s s❡♠✐❣r♦✉♣ ♦❢ ❝♦♥tr❛❝t✐♦♥(St)t≥0

♦♥L2(G, m

ρ)✳

✐✐✐✮ ▼♦r❡♦✈❡r (St)t≥0 ✐s ❛ ❋❡❧❧❡r s❡♠✐❣r♦✉♣✳ ❚❤✉s L(a, ρ) ✐s t❤❡ ✐♥✜♥✐t❡s✐♠❛❧ ❣❡♥❡r❛t♦r ♦❢ ❛ ▼❛r❦♦✈

♣r♦❝❡ss(Xt, t≥0)✳

✐✈✮ ❚❤❡ ♣r♦❝❡ss(Xt, t≥0) ❤❛s ❝♦♥t✐♥✉♦✉s tr❛❥❡❝t♦r✐❡s✳

Pr♦♦❢✳ ❲❡ ❣✐✈❡ t❤❡ ❣r❡❛t ❧✐♥❡s ♦❢ t❤❡ ♣r♦♦❢ ❛♥❞ r❡❢❡r t❤❡ r❡❛❞❡r t♦ ❬▲❡❥✵✵❪ ❛♥❞ ❬❙tr✽✷❪ ❢♦r ❞❡t❛✐❧s✳ ❲❡ s❡t(L, D(L)) =L(a, ρ)✳ ❋✐rst ✐t ✐s ♣♦ss✐❜❧❡ t♦ ❜✉✐❧❞ ❛ s②♠♠❡tr✐❝ ❜✐❧✐♥❡❛r ❢♦r♠E ♦♥L2(G, m

ρ)❞❡✜♥❡❞

❜②

E(u, v) =

Z

G

a

2

du dx

dv

dxdx, ∀(u, v)∈ D(E)×D(E), and D(E) = H

1 0(G),

t❤❛t ✈❡r✐✜❡s✱

E(u, v) =− hLu, viL2(G,mρ), ∀(u, v)∈D(L)×D(E).

❚❤✉s t❤❡ r❡s♦❧✈❡♥t ♦❢(L, D(L))❝❛♥ ❜❡ ❜✉✐❧t ❛♥❞ ✇❡ ❣❡t ✐✮✳ ❆♥ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ t❤❡ ❍✐❧❧❡✲❨♦s✐❞❛ t❤❡♦r❡♠

t❤❡♥ ❧❡❛❞s t♦ ✐✐✮✳

❋✉rt❤❡r ✐t ✐s ❛ ❝❧❛ss✐❝❛❧ r❡s✉❧t ♦❢ P❉❊s t❤❛t t❤❡ s❡♠✐❣r♦✉♣(Pt)t≥0 ❤❛s ❛ ❞❡♥s✐t②p(t, x, y)✇✐t❤ r❡s♣❡❝t t♦

t❤❡ ♠❡❛s✉r❡mρ s✉❝❤ t❤❛t

u(t, x) =

Z

G

p(t, x, y)f(y)ρ−1(y)dy ✭✷✳✶✮

✐s ❛ ❝♦♥t✐♥✉♦✉s ✈❡rs✐♦♥ ♦❢Ptf(x)✳ ❚❤❡♥ ❢♦rf ✐♥C0(G)✱Ptf ❜❡❧♦♥❣s t♦C0(G)✳ ❇② t❤❡ ✉s❡ ♦❢ t❤❡ ♠❛①✐♠✉♠

♣r✐♥❝✐♣❧❡ ✐t ❝❛♥ ❜❡ s❤♦✇♥ t❤❛t(Pt)t≥0 ✐s s❡♠✐✲♠❛r❦♦✈✐❛♥ ❛♥❞ ✇❡ ❣❡t ✐✐✐✮✳

❋✐♥❛❧❧② ❆r♦♥s♦♥ ❡st✐♠❛t❡s ♦♥ t❤❡ ❞❡♥s✐t②p(t, x, y)❝❛♥ ❜❡ ✉s❡❞ t♦ s❤♦✇ ❢♦r ❡①❛♠♣❧❡ t❤❛t

∀ε >0, ∀x∈G, lim

t↓0

1

t Z

|y−x|>ε

p(t, x, y)ρ−1(y)dy= 0,

❛♥❞ t❤✉s ✇❡ ❣❡t ✐✈✮ ✭s❡❡ Pr♦♣♦s✐t✐♦♥ ✷✳✾ ✐♥ ❝❤❛♣t❡r ✹ ♦❢ ❬❊❑✽✻❪✮✳

❲❡ ❤❛✈❡ ❛ ❝♦♥s✐st❡♥❝② t❤❡♦r❡♠✳

❚❤❡♦r❡♠ ✷✳✷ ▲❡t ❜❡ 0 < λ < Λ < ∞✳ ▲❡t a ❛♥❞ ρ ❜❡ ✐♥ Ell(λ,Λ) ❛♥❞ (an, ρn) ❜❡ ❛ s❡q✉❡♥❝❡ ♦❢

Ell(λ,Λ)×Ell(λ,Λ)✳

▲❡t ✉s ❞❡♥♦t❡ ❜② S ❛♥❞ X r❡s♣❡❝t✐✈❡❧② t❤❡ s❡♠✐❣r♦✉♣ ❛♥❞ t❤❡ ♣r♦❝❡ss ❣❡♥❡r❛t❡❞ ❜② L(a, ρ) ❛♥❞ ❜②(Sn)

❛♥❞(Xn) t❤❡ s❡q✉❡♥❝❡s ♦❢ s❡♠✐❣r♦✉♣s ❛♥❞ ♣r♦❝❡ss❡s ❣❡♥❡r❛t❡❞ ❜② t❤❡ s❡q✉❡♥❝❡ ♦❢ ♦♣❡r❛t♦rsL(an, ρn)

❆ss✉♠❡ t❤❛t

1

an

L2(G)

−−−−⇀

n→∞

1

a, and

1

ρn

L2(G)

−−−−⇀

n→∞

1

ρ.

❚❤❡♥ ❢♦r ❛♥②T >0 ❛♥❞ ❛♥② f ∈L2(G)✇❡ ❤❛✈❡ ✿

(6)

✐✮ ❚❤❡ ❢✉♥❝t✐♦♥Sn

tf(x)❝♦♥✈❡r❣❡s ✇❡❛❦❧② ✐♥L2(0, T; H01(G))t♦Stf(x)✳

✐✐✮ ❚❤❡ ❝♦♥t✐♥✉♦✉s ✈❡rs✐♦♥ ♦❢ Sn

tf(x) ❣✐✈❡♥ ❜② ✭✷✳✶✮ ✇✐t❤ pr❡♣❧❛❝❡❞ ❜② pn ❝♦♥✈❡r❣❡s ✉♥✐❢♦r♠❧② ♦♥ ❡❛❝❤

❝♦♠♣❛❝t ♦❢(0, T)×Gt♦ t❤❡ ❝♦♥t✐♥✉♦✉s ✈❡rs✐♦♥ ♦❢ Stf(x) ❣✐✈❡♥ ❜② ✭✷✳✶✮✳

✐✐✐✮

(Xtn, t≥0)

L

−−−−→

n→∞ (Xt, t≥0).

Pr♦♦❢✳ ❙❡❡ ✐♥ ❬▲▼✵✻❪ t❤❡ ♣r♦♦❢s ♦❢ Pr♦♣♦s✐t✐♦♥s ✸ ❛♥❞ ✹✳

✸ ❖♥ ❙❉❊ ✐♥✈♦❧✈✐♥❣ ❧♦❝❛❧ t✐♠❡

❋✐rst ✇❡ ✐♥tr♦❞✉❝❡ ❛ ♥❡✇ ❝❧❛ss ♦❢ ❝♦❡✣❝✐❡♥ts✳ ❋♦r0 < λ <Λ <∞ ✇❡ ❞❡♥♦t❡ ❜②Coeff(λ,Λ)t❤❡ s❡t ♦❢

t❤❡ ❡❧❡♠❡♥tsf ♦❢Ell(λ,Λ)t❤❛t ✈❡r✐❢②✿

i) f ✐s r✐❣❤t ❝♦♥t✐♥✉♦✉s ✇✐t❤ ❧❡❢t ❧✐♠✐ts ✭r✳❝✳❧✳❧✳✮✳

ii) f ❜❡❧♦♥❣s t♦C1(G\ I)✱ ✇❤❡r❡I ✐s ❛ ❝♦✉♥t❛❜❧❡ s❡t ✇✐t❤♦✉t ❝❧✉st❡r ♣♦✐♥t✳

▲❡t ✉s ❛❧s♦ ❞❡♥♦t❡ ❜②Mt❤❡ s♣❛❝❡ ♦❢ ❛❧❧ ❜♦✉♥❞❡❞ ♠❡❛s✉r❡sν ♦♥Gs✉❝❤ t❤❛t|ν({x})|<1❢♦r ❛❧❧x✐♥G✳

❉❡✜♥✐t✐♦♥ ✸✳✶ ▲❡t σ ❜❡ ✐♥Coeff(λ,Λ) ❢♦r s♦♠❡ 0< λ <Λ<∞✱ ❛♥❞ ν ❜❡ ✐♥ M✳ ❲❡ ❝❛❧❧ ❙t♦❝❤❛st✐❝

❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥ ✇✐t❤ ▲♦❝❛❧ ❚✐♠❡ ♦❢ ❝♦❡✣❝✐❡♥tsσ❛♥❞ν✱ ❛♥❞ ✇❡ ♥♦t❡Sde(σ, ν)✱ t❤❡ ❢♦❧❧♦✇✐♥❣ ❙❉❊

Xt=X0+

Z t

0

σ(Xs)dWs+

Z

R

ν(dx)Lxt(X),

✇❤❡r❡Lx

t(X)✐s t❤❡ s②♠♠❡tr✐❝ ❧♦❝❛❧ t✐♠❡ ♦❢ t❤❡ ✉♥❦♥♦✇♥ ♣r♦❝❡ssX✳

■♥ ❬▲❡❣✽✺❪ ❏✳❋✳ ▲❡ ●❛❧❧ st✉❞✐❡❞ s♦♠❡ ♣r♦♣❡rt✐❡s ♦❢ ❙❉❊s ♦❢ t❤❡ t②♣❡Sde(σ, ν)✳ ❲❡ ✇✐❧❧ r❡❝❛❧❧ ❤❡r❡ s♦♠❡

r❡s✉❧ts ♦❢ t❤✐s ✇♦r❦ ✇❡ ✇✐❧❧ ✉s❡ ✐♥ t❤❡ s❡q✉❡❧✳

❲❡ ✇✐❧❧ s❡❡ ❜❡❧♦✇ t❤❛t σ ∈ Coeff(λ,Λ) ❛♥❞ ν ∈ M✐s ❛ s✉✣❝✐❡♥t ❝♦♥❞✐t✐♦♥ t♦ ❤❛✈❡ ❛ ✉♥✐q✉❡ str♦♥❣

s♦❧✉t✐♦♥ t♦Sde(σ, ν)✳ ❲❡ ✜rst ✜① s♦♠❡ ❛❞❞✐t✐♦♥♥❛❧ ♥♦t❛t✐♦♥s✳

❋♦rf ✐♥Coeff(λ,Λ)✇❡ ❞❡♥♦t❡ ❜②f′(dx)t❤❡ ❜♦✉♥❞❡❞ ♠❡❛s✉r❡ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡ ✜rst ❞❡r✐✈❛t✐✈❡ ♦❢f

✐♥ t❤❡ ❣❡♥❡r❛❧✐③❡❞ s❡♥s❡✳ ❲❡ ❞❡♥♦t❡ ❜②f(x+) ❛♥❞f(x−)r❡s♣❡❝t✐✈❡❧② t❤❡ r✐❣❤t ❛♥❞ ❧❡❢t ❧✐♠✐ts ♦❢f ✐♥x✳

❲❡ ✇✐❧❧ ❛❧s♦ ❞❡♥♦t❡ ❜②f′(x)t❤❡ r✳❝✳❧✳❧✳ ❞❡♥s✐t② ♦❢ t❤❡ ❛❜s♦❧✉t❡❧② ❝♦♥t✐♥✉♦✉s ♣❛rt ♦❢f(dx)✭t❤❛t ✐t ✐s t♦

s❛② ✇❡ t❛❦❡ ❢♦rf′(x)t❤❡ r✐❣❤t ❞❡r✐✈❛t✐✈❡ ♦❢ f ✐♥ x✮✳

❋♦rν ✐♥M✇❡ ❞❡♥♦t❡ ❜②νc t❤❡ ❛❜s♦❧✉t❡❧② ❝♦♥t✐♥✉♦✉s ♣❛rt ♦❢ν

✸✳✶ ❆ ❝❤❛♥❣❡ ♦❢ s❝❛❧❡ ❢♦r♠✉❧❛

▲❡t ✉s ❞❡✜♥❡ t❤❡ ❝❧❛ss ♦❢ ❜✐❥❡❝t✐♦♥s ✇❡ ✇✐❧❧ ✉s❡ ✐♥ ♦✉r ❝❤❛♥❣❡ ♦❢ s❝❛❧❡✳

❋♦r0< λ <Λ<∞✇❡ ❞❡♥♦t❡ ❜②T(λ,Λ)t❤❡ s❡t ♦❢ ❛❧❧ ❢✉♥❝t✐♦♥sΦ♦♥Gt❤❛t ❤❛✈❡ ❛ ✜rst ❞❡r✐✈❛t✐✈❡Φ′

t❤❛t ❜❡❧♦♥❣s t♦Coeff(λ,Λ)✳ ❚❤❡ ❛ss✉♠♣t✐♦♥ ♠❛❞❡ ♦♥ t❤❡ ❜✐❥❡❝t✐♦♥ ✐s ♠✐♥✐♠❛❧ ❛♥❞ ✇❡ ❝❛♥ t❤❡♥ st❛t❡ ❛

✈❡r② ❣❡♥❡r❛❧ ❝❤❛♥❣❡ ♦❢ s❝❛❧❡ ❢♦r♠✉❧❛✳

(7)

Pr♦♣♦s✐t✐♦♥ ✸✳✶ ▲❡tσ❜❡ ✐♥ Coeff(λ,Λ)❢♦r s♦♠❡0< λ <Λ<∞✳ ▲❡t

ν(dx) =b(x)dx+ X

xi∈I

cxiδxi(dx),

❜❡ ✐♥ M✭✐✳❡✳✱ b ✐s ♠❡❛s✉r❛❜❧❡ ❛♥❞ ❜♦✉♥❞❡❞✱ ❛♥❞ ❡❛❝❤|cxi|<1✮✳

▲❡t Φ❜❡ ✐♥T(λ′,Λ)❢♦r s♦♠❡0< λ<Λ<❛♥❞ ❧❡tJ ❜❡ t❤❡ s❡t ♦❢ t❤❡ ♣♦✐♥ts ♦❢ ❞✐s❝♦♥t✐♥✉✐t② ♦❢ Φ

❚❤❡♥ t❤❡ ♥❡①t st❛t❡♠❡♥ts ❛r❡ ❡q✉✐✈❛❧❡♥t✿ ✐✮ ❚❤❡ ♣r♦❝❡ssX s♦❧✈❡s Sde(σ, ν)✳

✐✐✮ ❚❤❡ ♣r♦❝❡ss Y := Φ(X)s♦❧✈❡s Sde(γ, µ)✇✐t❤

γ(y) = (σΦ′)◦Φ−1(y),

❛♥❞

µ(dy) = Φ

b+1 2(Φ′)′

(Φ′)2 ◦Φ

−1(y)dy+ X

xi∈I∪J

βxiδΦ(xi)(dy),

✇❤❡r❡✱

βx= Φ

(x+)(1 +c

x)−Φ′(x−)(1−cx)

Φ′(x+)(1 +c

x) + Φ′(x−)(1−cx),

✇✐t❤cx= 0 ✐❢ x∈ J \ I✳

❘❡♠❛r❦ ✸✳✶ ◆♦t❡ t❤❛tγ♦❜✈✐♦✉s❧② ❜❡❧♦♥❣s t♦Coeff(λ′′,Λ′′)❢♦r s♦♠❡0< λ′′<Λ′′<✱ ❛♥❞ t❤❛tµ✐s

✐♥M✱ s♦ ✐t ♠❛❦❡s s❡♥s❡ t♦ s♣❡❛❦ ♦❢Sde(γ, µ)✳

❲❡ ❝❛♥ s❛② t❤❛t t❤❡ ❝❧❛ss ♦❢ ❙❉❊ ♦❢ t②♣❡Sde(σ, ν)✐s st❛❜❧❡ ❜② tr❛♥s❢♦r♠❛t✐♦♥ ❜② ❛ ❜✐❥❡❝t✐♦♥ ❜❡❧♦♥❣✐♥❣

t♦T(λ,Λ)❢♦r s♦♠❡ 0< λ <Λ<∞✳

Pr♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✸✳✶✳ ❲❡ ♣r♦✈❡i)⇒ii)✳ ❚❤❡ ❝♦♥✈❡rs❡ ❝❛♥ ❜❡ ♣r♦✈❡♥ ✐♥ t❤❡ s❛♠❡ ♠❛♥♥❡r q✉✐t❡

❜❡✐♥❣ t❡❝❤♥✐❝❛❧❧② ♠♦r❡ ❝✉♠❜❡rs♦♠❡✳

❇② t❤❡ s②♠♠❡tr✐❝ ■tô✲❚❛♥❛❦❛ ❢♦r♠✉❧❛ ✇❡ ✜rst ❣❡t✿

Yt= Φ(Xt) = Φ(X0) +R0t(σΦ′)(Xs)dWs+R0t(σ2bΦ′)(Xs)ds

+Pxi∈IΦ

(xi+)+Φ′(xi−) 2 cxiL

xi t (X)

+12R0t[σ2)](X

s)ds+Pxi∈J

Φ′(xi+)−Φ′(xi−)

2 L

xi t (X)

= Φ(X0) +R0t(σΦ′)Φ−1(Y

s)dWs

+R0t[σ2b+1

2(Φ

))]Φ−1(Y

s)ds+Pxi∈I∪JKxiLxit (X),

✇✐t❤Kx=cx(Φ′(x+) + Φ′(x−))/2 + (Φ′(x+)−Φ′(x−))/2.

❲❡ ❤❛✈❡ t❤❡♥ t♦ ❡①♣r❡ssLx

t(X)✐♥ ❢✉♥❝t✐♦♥ ♦❢L

Φ(x)

t (Y)❢♦rx∈ I ∪ J✳

(8)

❯s✐♥❣ ❈♦r♦❧❧❛r② ❱■✳✶✳✾ ♦❢ ❬❘❨✾✶❪ ✐t ❝❛♥ ❜❡ s❤♦✇♥ t❤❛t

LΦ(x)

±

t (Y) = Φ′(x±)Lxt±(X). ✭✸✳✶✮

❇❡s✐❞❡s t❤❡♦r❡♠ ❱■✳✶✳✼ ♦❢ ❬❘❨✾✶❪ ❧❡❛❞s t♦ (Lxt+(X)−Ltx−(X))/2 = cxLxt(X) ❛♥❞ ❝♦♠❜✐♥✐♥❣ ✇✐t❤

(Lxt+(X) +Lxt−(X))/2 =Lxt(X)✇❡ ❣❡t

Lxt+(X) = (1 +cx)Lxt(X). ✭✸✳✷✮

■♥ ❛ s✐♠✐❧❛r ♠❛♥♥❡r ✇❡ ❤❛✈❡(LΦ(t x)+(Y)−L

Φ(x)−

t (Y))/2 =KxLxt(X)❛♥❞ ✇❡ ❝❛♥ ❣❡t

KxLt(X) +LΦ(t x)(Y) =L

Φ(x)+

t (Y).

❚❤❡♥ ✉s✐♥❣ ✭✸✳✶✮ ❛♥❞ ✭✸✳✷✮ ✇❡ ❣❡t

LΦ(t x)(Y) = (Φ′(x+)(1 +cx)−Kx)Lxt(X),

❛♥❞ t❤❡ ❢♦r♠✉❧❛ ✐s ♣r♦✈❡❞✳

❚♦ ♣r♦✈❡ t❤❡ ♣r♦♣♦s✐t✐♦♥ ❜❡❧♦✇✱ ▲❡ ●❛❧❧ ✉s❡❞ ✐♥ ❬▲❡❣✽✺❪ ❛ s♣❛❝❡ ❜✐❥❡❝t✐♦♥ t❤❛t ❡♥t❡rs ✐♥ t❤❡ ❣❡♥❡r❛❧ s❡tt✐♥❣ ♦❢ Pr♦♣♦s✐t✐♦♥✸✳✶✳

Pr♦♣♦s✐t✐♦♥ ✸✳✷ ✭▲❡ ●❛❧❧ ✶✾✽✺✮ ▲❡t σ ❜❡ ✐♥ Coeff(λ,Λ) ❢♦r s♦♠❡ 0 < λ <Λ<∞ ❛♥❞ ν ❜❡ ✐♥ M✳

❚❤❡r❡ ✐s ❛ ✉♥✐q✉❡ str♦♥❣ s♦❧✉t✐♦♥ t♦Sde(σ, ν)✳

❲❡ ♥❡❡❞ t✇♦ ❧❡♠♠❛s✳

▲❡♠♠❛ ✸✳✶ ✭▲❡ ●❛❧❧ ✶✾✽✺✮ ▲❡t σ ❜❡ ✐♥ Coeff(λ,Λ) ❢♦r s♦♠❡ 0 < λ < Λ < ∞✳ ❚❤❡r❡ ✐s ❛ ✉♥✐q✉❡

str♦♥❣ s♦❧✉t✐♦♥ t♦Sde(σ,0)✳

Pr♦♦❢✳ ❙❡❡ ❬▲❡❣✽✺❪✳

❚❤❡ ♥❡①t ❧❡♠♠❛ ✇✐❧❧ ♣❧❛② ❛ ❣r❡❛t r♦❧❡ ❢♦r ❝❛❧❝✉❧❛t✐♦♥s ✐♥ t❤❡ s❡q✉❡❧✳

▲❡♠♠❛ ✸✳✷ ▲❡t ν ❜❡ ✐♥ M✳ ❚❤❡r❡ ❡①✐sts ❛ ❢✉♥❝t✐♦♥ fν ✐♥ Coeff(λ,Λ) ✭❢♦r s♦♠❡ 0 < λ < Λ < ∞✮✱

✉♥✐q✉❡ ✉♣ t♦ ❛ ♠✉❧t✐♣❧✐❝❛t✐✈❡ ❝♦♥st❛♥t✱ s✉❝❤ t❤❛t✿

fν′(dx) + (fν(x+) +fν(x−))ν(dx) = 0. ✭✸✳✸✮

Pr♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✸✳✷✳ ■t s✉✣❝❡s t♦ s❡t

Φν(x) =

Z x

0

fν(y)dy.

❇② ▲❡♠♠❛✸✳✷Φν♦❜✈✐♦✉s❧② ❜❡❧♦♥❣s t♦T(λ,Λ)❢♦r s♦♠❡0< λ <Λ<∞✳ ❇② Pr♦♣♦s✐t✐♦♥✸✳✶❛♥❞ ▲❡♠♠❛ ✸✳✷ ✇❡ ❣❡t t❤❛tX s♦❧✈❡sSde(σ, ν)✐❢ ❛♥❞ ♦♥❧② ✐❢ Y := Φν(X) s♦❧✈❡sSde (σfν)◦Φ−ν1,0

✳ ❇② ▲❡♠♠❛

✸✳✶t❤❡ ♣r♦♦❢ ✐s ❝♦♠♣❧❡t❡❞✳

(9)

✸✳✷ ❈♦♥✈❡r❣❡♥❝❡ r❡s✉❧ts

▲❡ ●❛❧❧ ♣r♦✈❡❞ t❤❡ ♥❡①t ❝♦♥s✐st❡♥❝② r❡s✉❧t ❢♦r ❡q✉❛t✐♦♥s ♦❢ t❤❡ t②♣❡Sde(σ, ν)✳

❚❤❡♦r❡♠ ✸✳✶ ✭▲❡ ●❛❧❧ ✶✾✽✺✮ ▲❡t ❜❡ t✇♦ s❡q✉❡♥❝❡s(σn)❛♥❞(νn)❢♦r ✇❤✐❝❤ t❤❡r❡ ❡①✐st0< λ <Λ<

0< M <∞ ❛♥❞δ >0 s✉❝❤ t❤❛t

(H1) σn Coeff(λ,Λ), nN,

(H2) |νn({x})| ≤1δ, nN,xG.

(H3) |νn|(G)≤M, ∀n∈N,

s♦ t❤❛t ❡❛❝❤ νn ✐s ✐♥ M✳ ❆ss✉♠❡ t❤❛t t❤❡r❡ ❡①✐st t✇♦ ❢✉♥❝t✐♦♥s σ ❛♥❞ f ✐♥ Coeff(λ′,Λ′) ✭❢♦r s♦♠❡ 0< λ′<Λ<✮ s✉❝❤ t❤❛t

σn L1

loc(R)

−−−−−→n→∞ σ ❛♥❞ fνn L1

loc(R)

−−−−−→n→∞ f,

❛♥❞ s❡t✿

ν(dx) =− f

(dx)

f(x+) +f(x−). ✭✸✳✹✮

▲❡t (Ω,F,(Ft)t≥0,Px) ❜❡ ❛ ✜❧t❡r❡❞ ♣r♦❜❛❜✐❧✐t② s♣❛❝❡ ❝❛rr②✐♥❣ ❛♥ ❛❞❛♣t❡❞ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥ W✳ ❖♥ t❤✐s

s♣❛❝❡✱ ❢♦r ❡❛❝❤ n∈N ❧❡t ❜❡ Xn t❤❡ str♦♥❣ s♦❧✉t✐♦♥ ♦❢ Sde(σn, νn)✱ ❛♥❞ ❧❡t ❜❡ X t❤❡ str♦♥❣ s♦❧✉t✐♦♥ ♦❢

Sde(σ, ν)✳ ❚❤❡♥✿

E[ sup

0≤s≤t|

Xsn−Xs|]−−−−→

n→∞ 0 ❛♥❞ (X

n t, t≥0)

L

−−−−→n→∞ (Xt, t≥0).

❘❡♠❛r❦ ✸✳✷ ■♥ t❤✐s t❤❡♦r❡♠νn❛♣♣r♦❛❝❤❡sν ✐♥ t❤❡ s❡♥s❡ t❤❛tfνnt❡♥❞s t♦fν ❢♦r t❤❡L1loc❝♦♥✈❡r❣❡♥❝❡✳

◆♦t❡ ✇❡ ❝❛♥ ❤❛✈❡νn ⇀ ν1✱ ❜✉tf

νn →fν2 ❢♦r t❤❡Lloc1 ❝♦♥✈❡r❣❡♥❝❡✱ ✇✐t❤ ν16=ν2 ✭❙❡❡ ❬▲❡❣✽✺❪ ♣ ✻✺ ❢♦r

❛♥ ❡①❛♠♣❧❡✮✳ ❚❤❡ t❤❡♦r❡♠ ❛ss❡rts t❤❛tXn t❡♥❞s t♦X t❤❛t s♦❧✈❡sSde(σ, ν2)❛♥❞ ♥♦tSde(σ, ν1)

▲❡ ●❛❧❧ ❛❧s♦ ♣r♦✈❡❞ ❛ ❉♦♥s❦❡r t❤❡♦r❡♠ ❢♦r s♦❧✉t✐♦♥ t♦ ❙❉❊s ♦❢ t❤❡ t②♣❡Sde(σ, ν)❢♦rσ≡1✳ ▲❡t ❜❡µ

✐♥M❛♥❞Y ❜❡ t❤❡ s♦❧✉t✐♦♥ t♦Sde(1, µ)✳

❲❡ ❞❡✜♥❡ s♦♠❡ ❝♦❡✣❝✐❡♥tsβn

k ❢♦r ❛❧❧k∈Z✱ ❛♥❞ ❛❧❧n∈N∗✱ ❜②✿

1−βkn

1 +βn

k

= exp −2µc(]k

n, k+ 1

n ])

Y

k n<y≤

k+1 n

1µ({y})

1 +µ({y})

= fµ(

k+1

n )

fµ(kn)

. ✭✸✳✺✮

❲❡ ❞❡✜♥❡ ❛ s❡q✉❡♥❝❡(µn)♦❢ ♠❡❛s✉r❡s ✐♥M❜②

µn=Xβnkδk

n, ✭✸✳✻✮

❛♥❞ ❛ s❡q✉❡♥❝❡(Yn)♦❢ ♣r♦❝❡ss❡s s✉❝❤ t❤❛t ❡❛❝❤Yn s♦❧✈❡sSde(1, µn)

❋✐♥❛❧❧② ✇❡ ❞❡✜♥❡ ❢♦r ❛❧❧n∈N∗❛ s❡q✉❡♥❝❡ (τpn)pN♦❢ st♦♣♣✐♥❣ t✐♠❡s ❜②✱

(10)

τn

0 = 0

τn

p+1= inf{t > τpn :|Ytn−Yτnn

p|=

1

n}.

✭✸✳✼✮

❲❡ ❤❛✈❡ t❤❡ ♥❡①t t❤❡♦r❡♠✳

❚❤❡♦r❡♠ ✸✳✷ ✭▲❡ ●❛❧❧ ✶✾✽✺✮ ■♥ t❤❡ ♣r❡✈✐♦✉s ❝♦♥t❡①tSn

p :=nYτnn

p ❞❡✜♥❡s ❛ s❡q✉❡♥❝❡ ♦❢ r❛♥❞♦♠ ✇❛❧❦s

♦♥ t❤❡ ✐♥t❡❣❡rs s✉❝❤ t❤❛t✿ ✐✮

Sn

0 = 0, ∀n∈N∗,

P[Spn+1=k+ 1|Spn=k] = 1

2(1 +β

n

k), ∀n, p∈N∗,∀k∈Z,

P[Spn+1=k1|Spn=k] = 1

2(1−β

n

k), ∀n, p∈N∗,∀k∈Z.

✐✐✮

❚❤❡ s❡q✉❡♥❝❡ ♦❢ ♣r♦❝❡ss❡s ❞❡✜♥❡❞ ❜② Yen

t := (1/n)S[nn2t]✱ ✇❤❡r❡ ⌊.⌋ st❛♥❞s ❢♦r t❤❡ ✐♥t❡❣❡r ♣❛rt ♦❢ ❛ ♥♦♥

♥❡❣❛t✐✈❡ r❡❛❧ ♥✉♠❜❡r✱ ✈❡r✐✜❡s ❢♦r ❛❧❧0< T <∞✿

E|YetnYt| −−−−→

n→∞ 0, ∀t∈[0, T] and (Ye

n t , t≥0)

L

−−−−→n→∞ (Yt, t≥0).

✹ ▲✐♥❦ ❜❡t✇❡❡♥ ❉❋❖ ❛♥❞ ❙❉❊▲❚

❚❤✐s ❧✐♥❦ ✐s st❛t❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣♦s✐t✐♦♥✳

Pr♦♣♦s✐t✐♦♥ ✹✳✶ ▲❡ta❛♥❞ρ❜❡ ✐♥Coeff(λ,Λ)❢♦r s♦♠❡ 0< λ <Λ<∞✳ ▲❡t ✉s ❞❡♥♦t❡ ❜②I t❤❡ s❡t ♦❢

t❤❡ ♣♦✐♥ts ♦❢ ❞✐s❝♦♥t✐♥✉✐t② ♦❢a✳ ❚❤❡♥L(a, ρ)✐s t❤❡ ✐♥✜♥✐t❡s✐♠❛❧ ❣❡♥❡r❛t♦r ♦❢ t❤❡ ✉♥✐q✉❡ str♦♥❣ s♦❧✉t✐♦♥

♦❢Sde(√aρ, ν)✇✐t❤✱

ν(dx) =a

(x)

2a(x)

dx+ X

xi∈I

a(xi+)−a(xi−)

a(xi+) +a(xi−)

δxi(dx). ✭✹✳✶✮

■♥ ❬▲▼✵✻❪ t❤❡ ❛✉t❤♦rs ♣r♦✈❡❞ t❤❡ ♣r♦♣♦s✐t✐♦♥ ❛❜♦✈❡ ❜② t❤❡ ✉s❡ ♦❢ ❉✐r✐❝❤❧❡t ❢♦r♠s ❛♥❞ ❘❡✈✉③ ♠❡❛s✉r❡s✳ ❲❡ ❣✐✈❡ ❤❡r❡ ❛ ♠♦r❡ s✐♠♣❧❡ ♣r♦♦❢✱ ❜❛s❡❞ ♦♥ s♠♦♦t❤✐♥❣ t❤❡ ❝♦❡✣❝✐❡♥ts ❛♥❞ ✉s✐♥❣ t❤❡ ❝♦♥s✐st❡♥❝② t❤❡♦r❡♠s ♦❢ t❤❡ t✇♦ ♣r❡❝❡❡❞✐♥❣ s❡❝t✐♦♥s✳

Pr♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✹✳✶✳ ❆sa❛♥❞ρ❛r❡ ✐♥Coeff(λ,Λ)t❤❡ ❢✉♥❝t✐♦♥√ρa✐s ✐♥Coeff(λ,Λ)✳ ❇❡s✐❞❡s✱

❛s|a−b|/|a+b|<1❢♦r ❛♥②a✱b✐♥R∗+✱ t❤❡ ♠❡❛s✉r❡ν❞❡✜♥❡❞ ❜② ✭✹✳✶✮ ✐s ✐♥M✳ ❚❤❡ ❡①✐st❡♥❝❡ ♦❢ ❛ ✉♥✐q✉❡

str♦♥❣ s♦❧✉t✐♦♥X t♦Sde(√aρ, ν)❢♦❧❧♦✇s ❢r♦♠ Pr♦♣♦s✐t✐♦♥✸✳✷✳

❲❡ t❤❡♥ ✐❞❡♥t✐❢② t❤❡ ✐♥✜♥✐t❡s✐♠❛❧ ❣❡♥❡r❛t♦r ♦❢X✳ ❲❡ ❝❛♥ ❜✉✐❧❞ t✇♦ s❡q✉❡♥❝❡s(an)❛♥❞(ρn)♦❢ ❢✉♥❝t✐♦♥s

✐♥Coeff(λ,Λ)∩ C∞(G)✱ s✉❝❤ t❤❛t

an −−−−→

n→∞ a a.e. ❛♥❞ ρ

n−−−−→ n→∞ ρ a.e.

❋♦r ❛♥②n✐♥N✇❡ ❞❡♥♦t❡ ❜②Xn t❤❡ ♣r♦❝❡ss ❣❡♥❡r❛t❡❞ ❜②L(an, ρn)

❖♥ ♦♥❡ ❤❛♥❞✱ ❜② ❞♦♠✐♥❛t❡❞ ❝♦♥✈❡r❣❡♥❝❡ t❤❡ ❤②♣♦t❤❡s❡s ♦❢ ❚❤❡♦r❡♠✷✳✷❛r❡ ❢✉❧✜❧❧❡❞✱ ❛♥❞ ✇❡ ❤❛✈❡✱

(11)

(Xtn, t≥0)

L

−−−−→n→∞ (Xet, t≥0), ✭✹✳✷✮

✇❤❡r❡ t❤❡ ♣r♦❝❡ssXe ✐s ❣❡♥❡r❛t❡❞ ❜②L(a, ρ)✳

❖♥ t❤❡ ♦t❤❡r ❤❛♥❞ ✇❡ ✇✐❧❧ s❤♦✇ ❜② ❚❤❡♦r❡♠✸✳✶t❤❛t

(Xtn, t≥0)

L

−−−−→n→∞ (Xt, t≥0). ✭✹✳✸✮

❚❤✉s t❛❦✐♥❣ ✐♥ ❝❛r❡ ✭✹✳✷✮ ❛♥❞ ✭✹✳✸✮ ✇❡ ✇✐❧❧ ❝♦♥❝❧✉❞❡ t❤❛t t❤❡ ✐♥✜♥✐t❡s✐♠❛❧ ❣❡♥❡r❛t♦r ♦❢X ✐sL(a, ρ)✳

❆san ❛♥❞ρn ❛r❡C(Ln, D(Ln)) =L(an, ρn)❝❛♥ ❜❡ ✇r✐tt❡♥✱

Ln= ρ

n

2

h an′ d

dx +a

n d2

dx2 i

,

s♦ ✐t ✐s st❛♥❞❛r❞ t♦ s❛② t❤❛tXn s♦❧✈❡s

Xtn=x+

Z t

0 p

ρn(Xn

s)an(Xsn)dWs+

Z t

0

ρn(Xn s)an

(Xn

s)

2 ds. ✭✹✳✹✮

❆sdhXni

s=ρn(Xsn)an(Xsn)ds✱ ❜② t❤❡ ♦❝❝✉♣❛t✐♦♥ t✐♠❡ ❞❡♥s✐t② ❢♦r♠✉❧❛ ✇❡ ❝❛♥ r❡✇r✐t❡ ✭✹✳✹✮ ❛♥❞ ❛ss❡rt

t❤❛tXn s♦❧✈❡s✱

Xtn=x+

Z t

0 p

ρn(Xn

s)an(Xsn)dWs+

Z

R

νn(dx)Lxt(Xn),

✇❤❡r❡νn(dx) = (an ′

(x)/2an(x))λ(dx)

❚❤❡♥ ❡❧❡♠❡♥t❛r② ❝❛❧❝✉❧❛t✐♦♥s s❤♦✇ t❤❛t t❤❡ ❢✉♥❝t✐♦♥fνn ❛ss♦❝✐❛t❡❞ t♦νn ❜② ▲❡♠♠❛✸✳✷ ✐s ♦❢ t❤❡ ❢♦r♠

fνn(x) = K/an(x) ✇✐t❤ K ❛ r❡❛❧ ♥✉♠❜❡r✳ ❚❤✐s ♦❜✈✐♦✉s❧② t❡♥❞s t♦ K/a(x) =: f(x) ❢♦r t❤❡ L1loc(R)✲

❝♦♥✈❡r❣❡♥❝❡✳ ❲❡ t❤❡♥ ❞❡t❡r♠✐♥❡ t❤❡ ♠❡❛s✉r❡ ν ❛ss♦❝✐❛t❡❞ t♦ f ❜② ✭✸✳✹✮✳ ❋✐rst ✇❡ ❝❤❡❝❦ t❤❛tνc(dx) =

(a′(x)/2(a(x))λ(dx)✳ ❙❡❝♦♥❞✱ t❤❡ s❡t{xG: ν({x})6= 0}✐s ❡q✉❛❧ t♦I✱ ❛♥❞ ✇❡ ❤❛✈❡ ❢♦r ❛❧❧x∈ I

ν({x}) =−ff((xx+)+) +ff((xx−) −) =

a(x+)−a(x−)

a(x+) +a(x−).

❙♦ t❤❡ ♠❡❛s✉r❡ν ✐s ❡q✉❛❧ t♦ t❤❡ ♦♥❡ ❞❡✜♥❡❞ ❜② ✭✹✳✶✮✳ ❆s ✐t ✐s ♦❜✈✐♦✉s t❤❛t

√ ρnan L

1 loc(R)

−−−−−→n→∞ √ρa,

❛♥❞ t❤❛t t❤❡ ❤②♣♦t❤❡s❡s(H1)−(H3)♦❢ ❚❤❡♦r❡♠✸✳✶❛r❡ ❢✉❧✜❧❧❡❞✱ ✇❡ ❝❛♥ s❛② t❤❛t ✭✹✳✸✮ ❤♦❧❞s✳ ❚❤❡ ♣r♦♦❢

✐s ❝♦♠♣❧❡t❡❞✳

✺ ❘❛♥❞♦♠ ✇❛❧❦ ❛♣♣r♦①✐♠❛t✐♦♥

✺✳✶ ▼♦♥t❡ ❈❛r❧♦ ❆♣♣r♦①✐♠❛t✐♦♥

❋r♦♠ ♥♦✇ t❤❡ ❤♦r✐③♦♥ 0 < T <∞ ✐s ✜①❡❞✳ ❋♦r ❛♥② a, ρ ∈Coeff(λ,Λ) ❛♥❞ ❛♥② ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥f ✇❡

❞❡♥♦t❡ ❜②(P)(a, ρ, f)t❤❡ ♣❛r❛❜♦❧✐❝ P❉❊

(12)

(P)(a, ρ, f)

          

∂u(t,x)

∂t =Lu(t, x), ❢♦r(t, x)∈[0, T]×G,

u(t, l) =u(t, r) = 0 ❢♦rt∈[0, T],

u(0, x) =f(x) ❢♦rx∈G,

✇✐t❤(L, D(L)) =L(a, ρ)✳

▲❡t ❜❡0< λ <Λ<∞✳ ❋r♦♠ ♥♦✇ t✐❧❧ t❤❡ ❡♥❞ ♦❢ t❤✐s ♣❛♣❡r ✇❡ ❛ss✉♠❡ t❤❛t a❛♥❞ρ❛r❡ ✐♥Coeff(λ,Λ)✳

❲❡ ❞❡♥♦t❡ ❜②I={xi}i∈I t❤❡ s❡t ♦❢ t❤❡ ♣♦✐♥ts ♦❢ ❞✐s❝♦♥t✐♥✉✐t② ♦❢a✭I={0≤i≤k1} ⊂Z✐s ✜♥✐t❡✮✳ ❲❡

s❡tX t♦ ❜❡ t❤❡ ♣r♦❝❡ss ❣❡♥❡r❛t❡❞ ❜②L(a, ρ)✳

❲❡ s❡❡❦ ❢♦r ❛ ♣r♦❜❛❜✐❧✐st✐❝ ♥✉♠❡r✐❝❛❧ ♠❡t❤♦❞ t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ s♦❧✉t✐♦♥ ♦❢ (P)(a, ρ, f)✳ ❇② ❚❤❡♦r❡♠

✷✳✶❛♥❞ s♦♠❡ st❛♥❞❛r❞ P❉❊s r❡✜♥❡♠❡♥ts ✇❡ ❦♥♦✇ t❤❛t ❢♦r ❛❧❧f ∈L2(G)(P)(a, ρ, f)❤❛s ❛ ✉♥✐q✉❡ ✇❡❛❦

s♦❧✉t✐♦♥u(t, x)✐♥C([0, T],L2(G, mρ))∩L2(0, T; H10(G))✳ ❲❡ ❦♥♦✇ t❤❛tEx[f(Xt)]✐s ❛ ❝♦♥t✐♥✉♦✉s ✈❡rs✐♦♥

♦❢u(t, x)✳

❖✉r ❣♦❛❧ ✐s t♦ ❜✉✐❧❞ ❛ ♣r♦❝❡ssXbn ❡❛s② t♦ s✐♠✉❧❛t❡ ❛♥❞ s✉❝❤ t❤❛t

(Xbn

t, t≥0)

L

−−−−→

n→∞ (Xt, t≥0). ✭✺✳✶✮

❚❤✉sEx[f(Xbtn)]Ex[f(Xt)]❢♦r ❛♥②t[0, T]✱ ❛♥❞ t❤❡ str♦♥❣ ❧❛✇ ♦❢ ❧❛r❣❡ ♥✉♠❜❡rs ❛ss❡rts t❤❛t✱

1

N

N

X

i=1

f(Xbtn,(i)) n→∞

−−−−→

N→∞ u(t, x), ✭✺✳✷✮

✇❤❡r❡ ❢♦r ❡❛❝❤i✱Xbn,(i) ✐s ❛ r❡❛❧✐s❛t✐♦♥ ♦❢ t❤❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡Xbn

✺✳✷ ❙❦❡✇ ❇r♦✇♥✐❛♥ ▼♦t✐♦♥

❚❤❡ ❙❦❡✇ ❇r♦✇♥✐❛♥ ▼♦t✐♦♥ ✭❙❇▼✮ ♦❢ ♣❛r❛♠❡t❡rβ ∈(−1,1)st❛rt✐♥❣ ❢r♦♠ y✱ ✇❤✐❝❤ ✇❡ ❞❡♥♦t❡ ❜②Yβ,y

✐s ❦♥♦✇♥ t♦ s♦❧✈❡✿

Ytβ,y=y+Wt+βLyt(Yβ,y), ✭✺✳✸✮

✐✳❡✳ Yβ,y s♦❧✈❡sSde(1, βδ0)✭s❡❡ ❬❍❙✽✶❪✮✳

■t ✇❛s ✜rst ❝♦♥str✉❝t❡❞ ❜② ■tô ❛♥❞ ▼❝❑❡❛♥ ✐♥ ❬■▼✼✹❪ ✭Pr♦❜❧❡♠ ✶ ♣✶✶✺✮ ❜② ✢✐♣♣✐♥❣ t❤❡ ❡①❝✉rs✐♦♥s ♦❢ ❛ r❡✢❡❝t❡❞ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥ ✇✐t❤ ♣r♦❜❛❜✐❧✐t②α= (β+ 1)/2✳ ❖♥ ❙❇▼ s❡❡ ❛❧s♦ ❬❲❛❧✼✽❪ ✳ ■t ❜❡❤❛✈❡s ❧✐❦❡ ❛

❇r♦✇♥✐❛♥ ♠♦t✐♦♥ ❡①❝❡♣t ✐♥y ✇❤❡r❡ ✐ts ❜❡❤❛✈✐♦✉r ✐s ♣❡rt✉❜❛t❡❞✱ s♦ t❤❛t

P(Ytβ,y > y) =α, t >0. ✭✺✳✹✮

❲❡ ❞❡♥♦t❡ ❜② T(∆) t❤❡ ❧❛✇ ♦❢ t❤❡ st♦♣♣✐♥❣ t✐♠❡ τ = inf{t ≥ 0, |Wt| = ∆} ✇❤❡r❡ W ✐s ❛ st❛♥❞❛r❞

❇r♦✇♥✐❛♥ ♠♦t✐♦♥ st❛rt✐♥❣ ❛t ③❡r♦✳ ❋♦r t❤❡ ❙❇▼ Yβ,0 ❛♥❞ ✐♥ R

+ ✇❡ ❞❡✜♥❡ t❤❡ st♦♣♣✐♥❣ t✐♠❡ τ∆ =

inf{t≥0, Ytβ,0∈ {∆,−∆}}✳ ❖✉r ❛♣♣r♦❛❝❤ r❡❧✐❡s ♦♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧❡♠♠❛✳

▲❡♠♠❛ ✺✳✶ ▲❡ty ❛♥❞x❜❡ ✐♥ R✱ ✐♥ R∗+ ❛♥❞β ✐♥ (1,1)✳ ❙❡tα= (β+ 1)/2✳ ❚❤❡♥

✐✮Yβ,y+x=Yβ,y+x ❛♥❞ ✐✐✮(τ∆, Yβ,0

τ∆ )∼=T(∆)⊗Ber(α).

Pr♦♦❢✳ ❚❤✐s ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ t❤❡ ❙❇▼ ❜② ■tô ❛♥❞ ▼❝❑❡❛♥ ✐♥ ❬■▼✼✹❪✳

(13)

✺✳✸ ❙♦♠❡ ♣♦ss✐❜❧❡ ❛♣♣r♦❛❝❤❡s

❘❡❝❡♥t❧② t✇♦ ♠❡t❤♦❞s ❤❛✈❡ ❜❡❡♥ ♣r♦♣♦s❡❞ t♦ ❜✉✐❧❞Xbn s❛t✐s❢②✐♥❣ ✭✺✳✶✮✳

■♥ ❬▼❛r✵✹❪ ▼✳ ▼❛rt✐♥❡③ ♣r♦♣♦s❡❞ t♦ ✉s❡ ❛♥ ❊✉❧❡r s❝❤❡♠❡✳ ❲❡ ❦♥♦✇ ❜② Pr♦♣♦s✐t✐♦♥✹✳✶ t❤❛t X s♦❧✈❡s

Sde(√aρ, ν) ✇✐t❤ ν ❞❡✜♥❡❞ ❜② ✭✹✳✶✮✳ ❲❡ ❤❛✈❡ s❡❡♥ ✐♥ t❤❡ ♣r♦♦❢ ♦❢ Pr♦♣♦s✐t✐♦♥ ✸✳✷ t❤❛t ✐❢ ✇❡ ❞❡✜♥❡

Φ(x) =R0xfν(y)t❤❡♥ Y = Φ(X)s♦❧✈❡sSde(γ,0) ✇✐t❤γ ✐♥ s♦♠❡ Coeff(m, M)✳ ❚❤✉s ❛♥ ❊✉❧❡r s❝❤❡♠❡

❛♣♣r♦①✐♠❛t✐♦♥ Ybn ♦❢ Y ❝❛♥ ❜❡ ❜✉✐❧t ❛♥❞ ❜② s❡tt✐♥❣ Xbn = Φ−1(Ybn) ✇❡ ❣❡t ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ X

❇❡❝❛✉s❡ t❤❡ ❝♦❡✣❝✐❡♥tγ✐s ♥♦t ▲✐♣s❝❤✐t③ ✐❢a❛♥❞ρ❛r❡ ♥♦t✱ ❡✈❛❧✉❛t✐♥❣ t❤❡ s♣❡❡❞ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ s✉❝❤

❛ s❝❤❡♠❡ ✐s ♥♦t ❡❛s②✳

■♥ ❬▲▼✵✻❪✱ ❆✳ ▲❡❥❛② ❛♥❞ ▼✳ ▼❛rt✐♥❡③ ♣r♦♣♦s❡❞ t♦ ✉s❡ t❤❡ ❙❇▼✳ ❚❤❡② ✜rst ❜✉✐❧❞ ❛ ♣✐❡❝❡✇✐s❡ ❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥ (an, ρn) ♦❢ (a, ρ) ✐♥ ♦r❞❡r t❤❛t t❤❡ ♣r♦❝❡ss Xn ❣❡♥❡r❛t❡❞ ❜② L(an, ρn) s♦❧✈❡s Sde(√anρn, νn)✇✐t❤ νn s❛t✐s❢②✐♥❣(νn)c = 0✳ ❙❡❝♦♥❞ ❜② ❛ ♣r♦♣❡r ❜✐❥❡❝t✐♦♥ Φn T(m, M)✱ t❤❡② ❣❡t

t❤❛t Yn = Φn(Xn) s♦❧✈❡s Sde(1, µn) ✇✐t❤ µn = Pβ

kδyk✱ ✐✳❡✳ Yn ❜❡❤❛✈❡s ❧♦❝❛❧❧② ❧✐❦❡ ❛ ❙❇▼✳ ❚❤✐r❞

t❤❡② ♣r♦♣♦s❡❞ ❛ s❝❤❡♠❡Ybn ❢♦rYn ❜❛s❡❞ ♦♥ ▲❡♠♠❛✺✳✶❛♥❞ s✐♠✉❧❛t✐♦♥s ♦❢ ❡①✐t t✐♠❡s ♦❢ t❤❡ ❙❇▼ ❛♥❞

t❤❡② ✜♥❛❧❧② s❡tXbn= (Φn)−1(Ybn)

❖✉r ♠❡t❤♦❞ ❝❛♥ ❜❡ s❡❡♥ ❛s ❛ ✈❛r✐❛t✐♦♥ ♦❢ t❤✐s ❧❛st ❛♣♣r♦❛❝❤ ❜❡❝❛✉s❡ ✐t ❛❧s♦ ❞❡❡♣❧② r❡❧✐❡s ♦♥ ❣❡tt✐♥❣ s✉❝❤ ❛Yn ❛♥❞ ✉s✐♥❣ ▲❡♠♠❛ ✺✳✶✳ ❇✉t ✇❡ t❤❡♥ ✉s❡ r❛♥❞♦♠ ✇❛❧❦s ✐♥st❡❛❞ ♦❢ t❤❡ s❝❤❡♠❡ ♣r♦♣♦s❡❞ ✐♥ ❬▲▼✵✻❪✳

✺✳✹ ❚❤❡ ❜❛s✐❝ ✐❞❡❛ ♦❢ ♦✉r ❛♣♣r♦❛❝❤

❲❡ ❢♦❝✉s ♦♥ ✇❡❛❦ ❝♦♥✈❡r❣❡♥❝❡ ❛♥❞ ♣r♦♣♦s❡ ❛ t❤r❡❡✲st❡♣ ❛♣♣r♦①✐♠❛t✐♦♥ s❝❤❡♠❡ ❞✐✛❡r✐♥❣ s❧✐❣❤t❧② ❢r♦♠ t❤❡ ♦♥❡ ♣r♦♣♦s❡❞ ❜② ❚❤❡♦r❡♠✸✳✷✳

❲❡ ✜①n∈N∗✱ ❛♥❞1/n ✇✐❧❧ ❜❡ t❤❡ s♣❛t✐❛❧ ❞✐s❝r❡t✐③❛t✐♦♥ st❡♣ s✐③❡✳

❙❚❊P ✶✳ ❲❡ ❜✉✐❧❞(an, ρn)✐♥ Coeff(λ,Λ)×Coeff(λ,Λ)s✉❝❤ t❤❛t✿

✐✮ ❚❤❡ ❢✉♥❝t✐♦♥s an ❛♥❞ ρn ❛r❡ ♣✐❡❝❡✇✐s❡ ❝♦♥st❛♥t✳ ❚❤❡ ♣♦✐♥ts ♦❢ ❞✐s❝♦♥t✐♥✉✐t② ♦❢ ❡✐t❤❡r an ❛♥❞ ρn

❛r❡ ✐♥❝❧✉❞❡❞ ✐♥ s♦♠❡ s❡t In✳ ❲❡ ❛ss✉♠❡ In = {xn

k}k∈In ❢♦r In = {0 ≤ k ≤ k1n} ⊂ Z ✜♥✐t❡ ❛♥❞

xn

k < xnk+1, ∀k∈In✳

✐✐✮ ❋♦r ❡❛❝❤xn

k ∈ In ✇❡ ❤❛✈❡an(xnk) =a(xnk)❛♥❞ρn(xnk) =ρ(xnk)✳

✐✐✐✮ ❈♦♥s✐❞❡r t❤❡ ❢✉♥❝t✐♦♥

Φn(x) =

kn,x−1 X

k=0 xn

k+1−xnk

p a(xn

k)ρ(xnk)

+ x−x

n kn,x

q a(xn

kn,x)ρ(x n kn,x)

, ✭✺✳✺✮

✇❤❡r❡ t❤❡ ✐♥t❡❣❡rkn,x✈❡r✐✜❡sxnkn,x ≤x≤xnkn,x+1✳

❚❤❡ s❡tIn s❛t✐s✜❡sΦn(In) = {k/n, kZ} ∩Φn(G)✳ ❋r♦♠ ♥♦✇ ✇❡ ❛ss✉♠❡ xn

k ✐s t❤❡ ♣♦✐♥t ♦❢ In s✉❝❤

t❤❛tΦn(xn

k) =k/n✳

❘❡♠❛r❦ ✺✳✶ ■♥ ❢❛❝t t❤❡ ✜rst t❤✐♥❣ t♦ ❞♦ ✐s t♦ ❝♦♥str✉❝t t❤❡ ❣r✐❞ In s❛t✐s❢②✐♥❣ ✐✐✐✮✳ ■t ✐s ✈❡r② ❡❛s② ❛♥❞

♦♥❧② r❡q✉✐r❡s t♦ ❦♥♦✇ t❤❡ ❝♦❡✣❝✐❡♥tsa❛♥❞ρ✭s❡❡ ♣♦✐♥t ✶ ♦❢ t❤❡ ❛❧❣♦r✐t❤♠ ✐♥ ❙✉❜s❡❝t✐♦♥✺✳✺✮✳ ❚❤❡♥an

❛♥❞ρn ❝❛♥ ❜❡ ❝♦♥str✉❝t❡❞✳

❘❡♠❛r❦ ✺✳✷ ❚❤❡ s❡tsI ❛♥❞In ♠❛② ❤❛✈❡ ♥♦ ❝♦♠♠♦♥ ♣♦✐♥ts✳

❲❡ t❛❦❡Xn t♦ ❜❡ t❤❡ ♣r♦❝❡ss ❣❡♥❡r❛t❡❞ ❜②L(an, ρn)

(14)

❘❡♠❛r❦ ✺✳✸ ■t ❝❛♥ ❜❡ s❤♦✇♥ ❜② ❚❤❡♦r❡♠✷✳✷t❤❛tXn ❝♦♥✈❡r❣❡s ✐♥ ❧❛✇ t♦X

❙❚❊P ✷✳ ❇② Pr♦♣♦s✐t✐♦♥✹✳✶t❤❡ ♣r♦❝❡ssXn s♦❧✈❡sSde(anρn, νn)✇✐t❤

νn= X

xn k∈In

an(xn

k+)−an(xnk−)

an(xn

k+) +an(xnk−)

δxn k.

❚❤❡ ❢✉♥❝t✐♦♥Φn ❞❡✜♥❡❞ ❜② ✭✺✳✺✮ ❜❡❧♦♥❣s t♦T(1/Λ,1)✳ ❚❤❡ ♣♦✐♥ts ♦❢ ❞✐s❝♦♥t✐♥✉✐t② ♦❢Φn′

❛r❡ t❤♦s❡ ✐♥

In✱ ❛♥❞n′

)′= 0✱ s♦ ❜② Pr♦♣♦s✐t✐♦♥✸✳✶t❤❡ ♣r♦❝❡ssYn= Φn(Xn)s♦❧✈❡s

Ytn=Y0n+Wt+

X

xn k∈In

βknL k/n

t (Yn), ✭✺✳✻✮

✇❤❡r❡

βnk =

p a(xn

k)/ρ(xnk)−

q a(xn

k−1)/ρ(xnk−1) p

a(xn

k)/ρ(xnk) +

q a(xn

k−1)/ρ(xnk−1)

. ✭✺✳✼✮

❚♦ ✇r✐t❡ t❤❡s❡ ❝♦❡✣❝✐❡♥ts ✇❡ ❤❛✈❡ ✉s❡❞ t❤❡ ❢❛❝t t❤❛tan❛♥❞ρn❛r❡ r✳❝✳❧✳❧✳ ❛♥❞ t❤❛t ❢♦r ✐♥st❛♥❝❡an(xn k+) =

a(xnk)❛♥❞an(xkn−) =a(xnk−1)✳

❘❡♠❛r❦ ✺✳✹ ❲❡ ❤❛✈❡ ❣♦tYn t❤❛t s♦❧✈❡sSde(1,Pβn

kδk/n)✐♥ ❛ ❞✐✛❡r❡♥t ✇❛② t❤❛♥ t❤❡ ♦♥❡ ✉s❡❞ ❜② ▲❡

●❛❧❧ ✐♥ ❚❤❡♦r❡♠✸✳✷✳ ❲❡ ♥♦✇ ✉s❡ ❤✐s ♠❡t❤♦❞ t♦ ❣❡tYen t❤❛t ✈❡r✐✜❡s

E|YetnYtn| −−−−→

n→∞ 0, ∀t∈[0, T]. ✭✺✳✽✮

❙❚❊P ✸✳ ▲✐❦❡ ✐♥ ✭✸✳✼✮ ✇❡ ❞❡✜♥❡ ❛ s❡q✉❡♥❝❡(τn

p)p∈N♦❢ st♦♣♣✐♥❣ t✐♠❡s ❜②✱

τ0n= 0, ❛♥❞ τpn+1= inf{t > τpn:|Ytn−Yτnn

p|= 1/n}.

❚❤❛♥❦s t♦ t❤❡ ✉♥✐❢♦r♠✐t② ♦❢ t❤❡ ❣r✐❞{k/n, k∈In}✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧❡♠♠❛✳

▲❡♠♠❛ ✺✳✷ ✐✮ ❋♦r ❛❧❧k∈Z❛♥❞ ❛❧❧pN✱(Yτnn p+u−Y

n τn

p,0≤u≤τ

n

p+1−τpn)❦♥♦✇✐♥❣ t❤❛t{Yτnn

p =k/n}

❤❛s t❤❡ s❛♠❡ ❧❛✇ ❛s(Yβkn,0

t ,0≤t≤τ1/n)✳

✐✐✮

∀p∈N, σnp :=n2 τpnτpn1=T(1),

❛♥❞ t❤❡σn

p✬s ❛r❡ ✐♥❞❡♣❡♥❞❡♥t✳

Pr♦♦❢✳ ❚❤❡ st❛t❡♠❡♥t ✐✮ ❢♦❧❧♦✇s s✐♠♣❧② ❢r♦♠ ♣♦✐♥t ✐✮ ♦❢ ▲❡♠♠❛✺✳✶❛♥❞ t❤❡ ❝♦♠♣❛r✐s♦♥ ❜❡t✇❡❡♥ ✭✺✳✸✮ ❛♥❞ ✭✺✳✻✮✳ ❋r♦♠ ✐✮✱ t❤❡ str♦♥❣ ▼❛r❦♦✈ ♣r♦♣❡rt②✱ ❛♥❞ ♣♦✐♥t ✐✐✮ ♦❢ ▲❡♠♠❛✺✳✶✱ ✇❡ ❣❡t t❤❛t(τn

p−τpn−1)∼=T(1/n2)✱

❛♥❞ t❤❡ st❛t❡♠❡♥t ✐✐✮ ❢♦❧❧♦✇s ❜② s❝❛❧✐♥❣✳ ❯s✐♥❣ ❛❣❛✐♥ t❤❡ ▼❛r❦♦✈ ♣r♦♣❡rt② ✇❡ ❣❡t t❤❡ ✐♥❞❡♣❡♥❞❡♥❝❡ ♦❢ t❤❡σn

p✬s✳

▲❡ ●❛❧❧ ✉s❡❞ t❤✐s ❧❡♠♠❛ ✐♥ ❤✐s ♣r♦♦❢ ♦❢ ❚❤❡♦r❡♠✸✳✷✳ ■♥❞❡❡❞ ✐t ✐s ♦❜✈✐♦✉s ❜② t❤❡ ✐✮ ♦❢ ▲❡♠♠❛ ✺✳✷ ❛♥❞ t❤❡ ✐✐✮ ♦❢ ▲❡♠♠❛✺✳✶t❤❛tSn

p :=nYτnn

p s❛t✐s✜❡s

(15)

Sn

0 = 0,

P[Spn+1=k+ 1|Spn=k] = 1

2(1 +β

n

k) =:αnk, ∀p∈N∗,∀k∈In,

P[Spn+1=k1|Spn=k] = 1

2(1−β

n

k) = 1−αnk, ∀p∈N∗,∀k∈In.

✭✺✳✾✮

▼♦r❡♦✈❡r t❤❡ ✐✐✮ ♦❢ ▲❡♠♠❛✺✳✷❛❧❧♦✇s t♦ s❤♦✇ t❤❛tYen

t := (1/n)S[nn2t]=Yτnn

[n2t] s❛t✐s✜❡s ✭✺✳✽✮✳

❚❤✉s t❤❡ ✐❞❡❛ ✐s t♦ t❛❦❡

b

Xtn:= (Φn)−1

1

nSb

n

[n2t]

, ✭✺✳✶✵✮

✇❤❡r❡ Sbn ✐s ❛ r❛♥❞♦♠ ✇❛❧❦ ♦♥ t❤❡ ✐♥t❡❣❡rs ❞❡✜♥❡❞ ❜② ✭✺✳✾✮✳ ❚❤❡ ♣r♦❝❡ssXbn ✐s ❛ r❛♥❞♦♠ ✇❛❧❦ ♦♥ t❤❡

❣r✐❞ In✳ ■♥ ❢❛❝t t❤✐s ❣r✐❞ ✐s ♠❛❞❡ ✐♥ ♦r❞❡r t❤❛t Xbn s♣❡♥❞s t❤❡ s❛♠❡ ❛✈❡r❛❣❡ t✐♠❡ ✐♥ ❡❛❝❤ ♦❢ ✐ts ❝❡❧❧s✳

❈♦♠❜✐♥✐♥❣ r❡♠❛r❦✺✳✸❛♥❞ t❤❡♦r❡♠✸✳✷✇❡ s❤♦✉❧❞ ❤❛✈❡ ✭✺✳✶✮✳ ❚♦ s✉♠ ✉♣ t❤✐s s❡❝t✐♦♥ ✇❡ ✇r✐t❡ ♦✉r s❝❤❡♠❡ ✐♥ t❤❡ ❛❧❣♦r✐t❤♠ ❢♦r♠✳ ■♥ t❤❡ ♥❡①t s❡❝t✐♦♥ ✇❡ ✇✐❧❧ ❡st✐♠❛t❡ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ❡rr♦r ♦❢ ♦✉r s❝❤❡♠❡✳

✺✳✺ ❚❤❡ ❛❧❣♦r✐t❤♠

◆♦t❡ t❤❛t ❜② ❝♦♥str✉❝t✐♦♥(Φn)−1 k/n=xn

k ❢♦r ❛❧❧k∈In✳

❲❡ ❞❡✜♥❡ ❛ ❢✉♥❝t✐♦♥ALGO✐♥ t❤❡ ♥❡①t ♠❛♥♥❡r✿

■◆P❯❚ ❉❆❚❆✿ t❤❡ ❝♦❡✣❝✐❡♥tsa❛♥❞ρ✱ t❤❡ st❛rt✐♥❣ ♣♦✐♥tx✱ t❤❡ ♣r❡❝✐s✐♦♥ ♦r❞❡rn❛♥❞ t❤❡ ✜♥❛❧ t✐♠❡t✳

❖❯❚P❯❚ ❉❆❚❆✿ ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ✐♥ ❧❛✇Xbn ♦❢X ❛t t✐♠❡ t

✶✳ ❙❡txn

0 ←l✳

✇❤✐❧❡xn k ≤r

s❡t xn k ←

p a(xn

k)ρ(xnk)(1/n) +xnk ❛♥❞k←k+ 1✳

❡♥❞✇❤✐❧❡

✷✳ ❈♦♠♣✉t❡ t❤❡αn

k = (1 +βkn)/2 ✇✐t❤βkn ❞❡✜♥❡❞ ❜② ✭✺✳✼✮✳

✸✳ ❙❡ty←Φn(x)

✐❢(n y− ⌊n y⌋)<0.5

s❡t s0← ⌊n y⌋✳

❡❧s❡

s❡t s0← ⌊n y⌋+ 1✳

❡♥❞✐❢

✹✳ ❢♦ri= 0 t♦i=⌊n2t=:N

✐❢xn

si∈R\(l, r)

❘❡t✉r♥xn si✳

❡♥❞✐❢

❲❡ ❤❛✈❡ si=k ❢♦r s♦♠❡k∈Ik✳ ❙✐♠✉❧❛t❡ ❛ r❡❛❧✐③❛t✐♦♥B ♦❢Ber(αnk)✳

❚❤❡♥ s❡t si←si+B✳

(16)

❡♥❞❢♦r ✺✳ ❘❡t✉r♥xn

sN✳

✻ ❙♣❡❡❞ ♦❢ ❝♦♥✈❡r❣❡♥❝❡

■♥ t❤✐s s❡❝t✐♦♥ ✇❡ ✇✐❧❧ ♣r♦✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠✳

❚❤❡♦r❡♠ ✻✳✶ ❆ss✉♠❡ t❤❛ta, ρ∈Coeff(λ,Λ)❢♦r s♦♠❡ 0< λ≤Λ<∞✳ ▲❡t ❜❡0< T <∞ ❛♥❞X t❤❡

♣r♦❝❡ss ❣❡♥❡r❛t❡❞ ❜②L(a, ρ)✳ ❋♦rn∈N ❝♦♥s✐❞❡r t❤❡ ♣r♦❝❡ssXbn st❛rt✐♥❣ ❢r♦♠x❞❡✜♥❡❞ ❜②✱

∀t∈[0, T], Xbtn=ALGO(a, ρ, x, n, t).

❋♦r ❛❧❧f ∈W10,∞(G)∩ C0(G)✱ ❛❧❧ε >0✱ ❛♥❞ ❛❧❧γ∈(0,1/2)t❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥tC ❞❡♣❡♥❞✐♥❣ ♦♥ε✱γ✱ T✱λ✱Λ✱G✱ka′k

∞✱kρ′k∞ kfk∞✱kdf /dxk2✱kdf /dxk∞✱supi∈I1/(xi+1−xi)✱ ❛♥❞ t❤❡ t✇♦ ✜rst ♠♦♠❡♥ts

♦❢T(1) s✉❝❤ t❤❛t✱ ❢♦rn❧❛r❣❡ ❡♥♦✉❣❤✱

sup

(t,x)∈[ε,T]×G¯

Exf(Xt)Exf(Xbtn)

≤Cn−γ.

❲❡ ❤❛✈❡✱

|Exf(Xt)Exf(Xbtn)| ≤ |Exf(Xt)Exf(Xtn)|+|Exf(Xtn)Exf(Xbtn)|

=: e1(t, x, n) +e2(t, x, n).

✭✻✳✶✮

❲❡ ✇✐❧❧ ❡st✐♠❛t❡e1(t, x, n)❜② P❉❊s t❡❝❤♥✐q✉❡s ❛♥❞e2(t, x, n)❜② ✈❡r② s✐♠♣❧❡ ♣r♦❜❛❜✐❧✐st✐❝ t❡❝❤♥✐q✉❡s✳

✻✳✶ ❊st✐♠❛t❡ ♦❢ ❛ ✇❡❛❦ ❡rr♦r

■♥ t❤✐s s✉❜s❡❝t✐♦♥ ✇❡ ♣r♦✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣♦s✐t✐♦♥✳

Pr♦♣♦s✐t✐♦♥ ✻✳✶ ❆ss✉♠❡f❜❡❧♦♥❣s t♦H1

0(G)∩C0(G)✳ ▲❡t ❜❡u(t, x)❛♥❞un(t, x)r❡s♣❡❝t✐✈❡❧② t❤❡ s♦❧✉t✐♦♥s

♦❢(P)(a, ρ, f)❛♥❞(P)(an, ρn, f)✱ ✇✐t❤an ❛♥❞ρn ❧✐❦❡ ✐♥ ❙✉❜s❡❝t✐♦♥ ✺✳✹✱ ❙t❡♣ ✶✳ ❚❤❡♥ ❢♦r ❛❧❧ ε >0t❤❡r❡

✐s ❛ ❝♦♥st❛♥tC1 ❞❡♣❡♥❞✐♥❣ ♦♥ε✱ T✱ λ✱ Λ✱G✱kfk∞✱kdf /dxk2✱ka′k∞✱kρ′k∞✱ ❛♥❞ supi∈I1/(xi+1−xi)

s✉❝❤ t❤❛t ❢♦rn ❧❛r❣❡ ❡♥♦✉❣❤✱

sup

(t,x)∈[ε,T]×G¯

|u(t, x)−un(t, x)| ≤ C1√1n.

❆s ✇❡ ✇✐❧❧ s❡❡ ✐♥ Pr♦♣♦s✐t✐♦♥✻✳✷✱ ✐❢ ✇❡ ❤❛❞I ⊂ In ✇❡ ❝♦✉❧❞ ♦❜t❛✐♥ ❛♥ ✉♣♣❡r ❜♦✉♥❞ ❢♦r|||uun|||

∞,∞

♦❢ t❤❡ ❢♦r♠K(ka−ank2

∞+kρ−ρnk∞)✳ ❇✉t t❤✐s ✐s ♥♦t ♥❡❝❡ss❛r② t❤❡ ❝❛s❡ ✭s❡❡ ❘❡♠❛r❦✺✳✷✮✳ ❍♦✇❡✈❡r

✐t ✐s ♣♦ss✐❜❧❡ t♦ ♠♦❞✐❢②a❛♥❞ ρ✐♥ ♦r❞❡r t♦ r❡✜♥❞ ✉s ✐♥ ❛ s✐t✉❛t✐♦♥ ❝❧♦s❡ t♦ t❤✐s ♦♥❡✱ ❛♥❞ ✇❡ ✇✐❧❧ ❞♦ t❤❛t

t♦ ♣r♦✈❡ Pr♦♣♦s✐t✐♦♥✻✳✶✳

Pr♦♣♦s✐t✐♦♥ ✻✳✷ ▲❡t ❜❡f ∈H10(G)∩C0(G)✳ ▲❡t ❜❡a1, ρ1, a2, ρ2∈Coeff(λ,Λ)✱ ❛♥❞I1❛♥❞I2r❡s♣❡❝t✐✈❡❧②

t❤❡ s❡t ♦❢ ♣♦✐♥ts ♦❢ ❞✐s❝♦♥t✐♥✉✐t② ♦❢ a1 ❛♥❞ρ1 ❛♥❞a2 ❛♥❞ρ2✳ ❆ss✉♠❡ I1⊂ I2✳ ▲❡t ❜❡ u1(t, x) t❤❡ ✇❡❛❦

s♦❧✉t✐♦♥ ♦❢ (P)(a1, ρ1, f) ❛♥❞ u2(t, x) t❤❡ ✇❡❛❦ s♦❧✉t✐♦♥ ♦❢ (P)(a2, ρ2, f)✳ ❚❤❡r❡ ❡①✐sts ❛ ❝♦♥st❛♥t C1e

❞❡♣❡♥❞✐♥❣ ♦♥T✱λ✱Λ✱G✱kfk∞✱ ❛♥❞kdf /dxk2✱ s✉❝❤ t❤❛t✱

|||u1−u2|||∞,∞≤ C1e

ka1−a2k2∞+kρ1−ρ2k∞

.

(17)
(18)
(19)
(20)

❋✐♥❛❧❧②✱ ✇❡ ❦♥♦✇ t❤❛tu(t, x)✐s ❝♦♥t✐♥✉♦✉s ♦♥[0, T]×G¯ ❛♥❞ ♦❢ ❝❧❛ssC1♦♥ ❡❛❝❤[ε, T]×(x

i, xi+1)✭s❡❡ ✐♥

❬▲❘❯✻✽❪ ❚❤❡♦r❡♠s ✻ ❛♥❞ ✼✮✳ ❙♦ ✐❢x❛♥❞φn(x)❜❡❧♦♥❣ t♦ t❤❡ s❛♠❡ ✐♥t❡r✈❛❧(xi, xi+1)✇❡ ❤❛✈❡✱

|u(t, x)−u(t, φn(x))| ≤ sup

(t,x)∈[ε,T]×(xi,xi+1)

|dudx(t, x)| · |x−φn(x)|.

▲❡t ✉s s❡t

M = sup

i∈I (t,x)∈[ε,Tsup]×(xi,xi+1)

|dudx(t, x)|.

■❢ ❢♦r ✐♥st❛♥❝❡x∈(xi−1, xi)❛♥❞φn(x)∈(xi, xi+1)✇❡ ❤❛✈❡✱

|u(t, x)−u(t, φn(x))| ≤ |u(t, x)−u(t, xi)|+|u(t, xi)−u(t, φn(x))| ≤2Mkid−φnk. ✭✻✳✶✷✮

❲❡ ✇✐❧❧ s❡❡ ❜❡❧♦✇ t❤❛tkid−φnk∞ →0 ❛sn→ ∞✱ s♦ ❢♦r n❧❛r❣❡ ❡♥♦✉❣❤ ✇❡ ❛r❡ ❛❧✇❛②s ❛t ❧❡❛st ✐♥ t❤❡

❧❛st s✐t✉❛t✐♦♥✳

❙t❡♣ ✹✳ ❇② ❝♦♥str✉❝t✐♦♥ ✭s❡❡ ♣♦✐♥t ✶ ♦❢ t❤❡ ❛❧❣♦r✐t❤♠✮ t❤❡ ❣r✐❞ In s❛t✐s✜❡s |xn

k+1−xnk| ≤ Λ/n✱ ❢♦r ❛❧❧

k∈In

❙♦ ❡❧❡♠❡♥t❛r② ❝♦♠♣✉t❛t✐♦♥s s❤♦✇ t❤❛t

kid−φnk≤ 3Λ

n and 1−φ1′

n

≤2Λ sup

i∈I

1

xi+1−xi

.1 n.

❆s ✇❡ ❤❛✈❡ s❛✐❞ ❛❜♦✈❡✱ ❢♦rn❧❛r❣❡ ❡♥♦✉❣❤ ✭✻✳✶✷✮ ✐s ✈❛❧✐❞ ❛♥❞ ✇❡ t❤❡♥ ❤❛✈❡✱

|u(t, x)−u(t, φn(x))| ≤6MΛ1

n. ✭✻✳✶✸✮

■t r❡♠❛✐♥s t♦ ❡✈❛❧✉❛t❡k˜anank

∞ ❛♥❞kρ˜n−ρnk∞✳ ❖♥ ❡❛❝❤ (xi, xi+1)✱a✐s ♦❢ ❝❧❛ssC1❛♥❞ a′ ✐s r✳❝✳❧✳❧✳✱

s♦ ✐t ♠❛❦❡s s❡♥s❡ t♦ s♣❡❛❦ ♦❢ ka′k

∞✳ ▼♦r❡♦✈❡r ❡❛❝❤φn([xnk, xnk+1))✐s ✐♥❝❧✉❞❡❞ ✐♥ s♦♠❡ [xi, xi+1] t❤❛t

❝♦♥t❛✐♥sxn

k✱ s♦ ✇❡ ❤❛✈❡✱

ka˜nank

∞ ≤ supk∈Insupx[xn

k,xnk+1)|a(φn(x))/φ

n(x)−an(x)|

≤ ka′k

∞supx∈[xn

k,xnk+1)|φn(x)−x n

k|+ Λ supx∈[xn

k,xnk+1)|1−

1

φ′ n(x)|.

■♥ ❛❞❞✐t✐♦♥|φn(x)−xkn| ≤ |φn(x)−x|+|x−xnk| ≤4Λ/n✱ ❢♦r ❛❧❧x∈[xnk, xnk+1)✱ ❛♥❞ ✇❡ ❝❛♥ ❣❡t ❛ s✐♠✐❧❛r

❜♦✉♥❞ ❢♦r|1−φ′1

n(x)|s♦ ✜♥❛❧❧② t❤❡r❡ ❡①✐stsK1s✉❝❤ t❤❛t

k˜an−ank∞≤ K1

1

n. ✭✻✳✶✹✮

■♥ ❛ s✐♠✐❧❛r ♠❛♥♥❡r ✇❡ ❣❡tK2s✉❝❤ t❤❛t✱

kρ˜n−ρnk∞≤ K2

1

n. ✭✻✳✶✺✮

❚❤✉s✱ ❝♦♠❜✐♥✐♥❣ ✭✻✳✶✵✮✱ ✭✻✳✶✶✮✱ ✭✻✳✶✸✮✱ ✭✻✳✶✹✮ ❛♥❞ ✭✻✳✶✺✮✱ ✇❡ ❝♦♠♣❧❡t❡ t❤❡ ♣r♦♦❢✳

Referensi

Dokumen terkait

[r]

Dari permasalahan tersebut penulis mencoba merancang dan membangun sebuah game edukasi sebagai alat bantu mengajar, dimana tema yang diangkat dalam game tersebut ialah

menggunakan logika kampanye yang sama, yakni, logika menjegal, “kalau tidak memilih, maka mereka akan menang.” Di sini, elit politik tinggal menata sedikit logika publik untuk

Pada hari ini, Senin tanggal Sembilan bulan Oktober tahun Dua Ribu Tujuh Belas , Kami Pokja ULP Barang/Jasa Balai Diklat Transportasi Darat Palembang Tahun

Strategi pull marketing yang merupakan bagian dari marketing politik yang dilakukan oleh pasangan Jokowi-Ahok adalah pilihan strategi yang cocok dengan keadaan Jakarta

PENGADAAN PERALATAN SOFT SKILL TARUNA BPPTD PALEMBANG dinyatakan GAGAL. tidak ada peserta lelang yang memenuhi persyaratan kualifikasi.Tindaklanjut PELELANGAN GAGAL ini

Masa depan media sosial dengan demikian bisa diringkas sebagai berikut; (a) sumber dari segala sumber informasi, (b) ketergantungan manusia yang semakin tinggi pada media sosial.

[r]