• Tidak ada hasil yang ditemukan

Institutional Repository | Satya Wacana Christian University: Alat Ukur Intensitas Cahaya dan Suara Portabel T1 612005084 BAB II

N/A
N/A
Protected

Academic year: 2017

Membagikan "Institutional Repository | Satya Wacana Christian University: Alat Ukur Intensitas Cahaya dan Suara Portabel T1 612005084 BAB II"

Copied!
16
0
0

Teks penuh

(1)

5

BAB II

DASAR TEORI

Pada bab ini akan dibahas mengenai definisi dan dasar teori yang menunjang dalam merancang pengukur intensitas cahaya dan suara. Antara lain dasar akustika dan pendengaran manusia, Light Dependent Resistor (LDR), mikrofon kondenser, tapis pembobot A dan C, True RMS to DC Converter. Bagian pengendali akan dijelaskan dasar mikrokontroler ATMega 8535 dan seven segment sebagai media penampil hasil pengukuran.

2.1.Cahaya

2.1.1. Definisi cahaya

Cahaya adalah energi berbentuk gelombang elektromagnetik yang kasat mata dengan panjang gelombang sekitar 380-700 nm dan kecepatan merambat dalam ruang hampa sebesar 3x108 m/s.

Intensitas cahaya merupakan jumlah energi radiasi yang dipancarkan oleh sumber cahaya ke suatu arah tertentu dan dinyatakan dengan satuan candela (cd) dengan lambang I. Intensitas penerangan di suatu bidang adalah fluk cahaya yang jatuh pada 1 m2 dari bidang itu dinyatakan dengan satuan lux dengan lambang E. Intensitas penerangan rata-rata dapat dihitung dengan persamaan berikut ini:

(2)

6 2.1.2. Tranduser Isyarat Cahaya

Tranduser berfungsi untuk mendeteksi perubahan cahaya dengan menggunakan LDR (Light Dependent Resistor). LDR yang digunakan adalah Cadmium Sulphide Photoconductive Cell. Berikut simbol dari LDR:

Gambar 2.1. Simbol LDR

LDR merupakan resistor yang nilai resistansi berubah-ubah sesuai dengan intensitas cahaya yang diterima. Pada kondisi terang cadmium sulphide mengalami penurunan resistansi, sehingga akan lebih banyak melepaskan muatan atau arus listrik meningkat. Saat cahaya gelap, resistansi sangat besar mencapai 1 MΩ dan ketika kondisi sangat terang maka resistansi akan sangat kecil hingga 0,1 Ω.

(3)

7 2.2. Suara

2.2.1. Dasar Akustika dan Pendengaran Manusia

Akustika adalah bidang ilmu yang mempelajari tentang suara termasuk hal reproduksi, perambatan, dan akibat yang ditimbulkan. Menurut Kinsler dan Frey dari bukunya Fundamental of Acoustics, 3rd, akustika meliputi:

Ultrasonics , daerah frekuensi lebih dari 20 kHz

ACOUSTICS Sonics , daerah frekuensi antara 20-20 kHz

Infrasonics , daerah frekuensi kurang dari 20 Hz

Studi akustika saat ini semakin diperlukan karena meningkatnya kesadaran manusia akan akibat dari polusi akustik yaitu kerusakan pada indera pendengaran manusia akibat tekanan suara yang terlalu tinggi, lingkungan kerja yang memiliki taraf kebisingan yang melebihi batas dapat menurunkan produktifitas kerja. Kebisingan yang terus menerus dan di atas ambang batas kebisingan dapat menimbulkan gangguan psikis pada manusia.

Definisi suara dari gejala gelombang adalah usikan pada sejumlah kecil volume udara yang diteruskan oleh sejumlah kecil udara di sekitarnya dan seterusnya yang mengandung mengandung informasi dan tenaga yang dirambatkan dari suatu tempat ke tempat lainnya.

Partikel udara yang bergetar tidak merambat. Kepesatan udara merambat tergantung jenis media dan keadaan media. Sebagai contoh diudara pada suhu 20°C 343 meter/detik, sedangkan di air tawar pada suhu 20°C sebesar 14 meter/detik. Kepesatan itu dilambangkan dengan huruf c.

(4)

8

Sound Pressure Level dalam dBSPL = 20 log

ref

Rata-rata percakapan manusia (average conversation) jika diukur dengan Sound Level Meter menunjukkan sekitar 70 dBA SPL, lalu mesin pemadat tanah misalnya menunjukkan 100 dBA SPL. Ambang tidak dengar telinga manusia (inaudible) ditetapkan sebesar 0 dBA SPL dan ambang sakit telinga manusia sekitar 140 dBA SPL.

Dalam teknik audio pengukuran dilakukan dengan sumber sinyal dari sinyal elektrik juga jadi tidak diperlukan konversi dari besaran tekanan suara ke elektrik. Skala yang digunakan untuk sinyal audio adalah dBVoltrms dengan tegangan

referensi 1 voltrms. Sebagai contoh tegangan 1 voltrms diperoleh dari sinyal masukan DC sebesar 1 volt atau sinyal AC sebesar 2,8 volt peak to peak.

dBVoltrms = 20 log10 [ X / Vref] ...2.4

dimana X = tegangan masukan (VRMS)

(5)

9 Contoh konversi voltrms ke dBVoltrms ditunjukkan pada tabel 2.1 berikut:

Tabel 2.1. Konversi Vrms ke dBVrms

Vrms Vref dBVrms

10 1 20

5 1 13.9794

1 1 0

0.5 1 -6.0206

0.1 1 -20

0.05 1 -26.0206

0.01 1 -40

2.2.2. Karakteristik Telinga Manusia

Karakteristik telinga manusia dalam menanggapi suara dapat digambarkan sebagai berikut:

Gambar 2.2. Kurva Fletcher Munson

(6)

10 2.2.3. Tingkat Kebisingan

Tabel 2.2. Taraf bising yang diizinkan

Lamanya dengar

Berdasarkan Tabel 2.2 dapat dilihat bagaimana dan seberapa besar bising yang diizinkan untuk manusia dengar setiap harinya. Contoh: bunyi yang mempunyai tekanan suara sebesar 100 dBA SPL hanya boleh didengar oleh telinga manusia paling lama 2 jam, semakin tinggi tekanan suaranya maka semakin pendek waktu yang diizinkan. Jika melebihi taraf yang diizinkan maka akan menimbulkan kerusakan alat pendengaran.

2.2.4. Tranduser Isyarat Akustik

(7)

11 Gambar 2.3. Struktur Mikrofon Kondenser

Gambar 2.4. Ilustrasi pengubahan isyarat akustik ke elektrik

Mikrofon yang digunakan menggunakan jenis tranduser elektrostatik seperti kapasitor, sering disebut mikrofon kondenser. Perubahan tekanan yang diterima tranduser mengakibatkan perubahan kapasitansi.

Prinsip kerja tranduser ini adalah tekanan suara akan mengakibatkan perubahan kapasitansi dan mengubah jumlah muatan.

Q = C.V ...2.5 Keterangan :

(8)

12 2.2.5. Tapis Pembobot A

Tanggapan frekuensi audio yang dapat didengar oleh manusia adalah antara 20 Hz - 20.000 Hz.

Gambar 2.5. Tanggapan frekuensi audio 20 hingga 20 KHz

(9)

13 Gambar 2.6. Grafik respons frekuensi filter pembobot A dan C

Tapis pembobot C, A dan B mempunyai fungsi pindah sebagai berikut:

 

2

2

Opamp merupakan salah satu hasil revolusi dalam bidang elektronika yang memungkinkan penggunaannya secara luas. Penguat operasi (opamp) adalah salah satu rangkaian linier yang sering digunakan dalam alat elektronik. Dalam tugas akhir ini opamp digunakan dalam beberapa hal antara lain, filter aktif dan penguat. 2.3.1.Penguat Membalik

(10)

14 Pada Gambar 2.7 dengan asumsi opamp yang ideal maka pada masukan membalik dan tak membalik mempunyai beda tegangan sebesar 0 volt.

Gambar 2.7. Konfigurasi Penguat Membalik

Sehingga persamaan dari penguat membalik adalah sebagai berikut:

2.3.2. Penguat Tak Membalik

Penguat tak membalik merupakan konfigurasi penguatan pada opamp, dimana masukan dan keluaran memiliki fasa yang sama. Pada Gambar 2.8 mengasumsikan keidealan opamp bahwa pada titik membalik dan tak membalik mempunyai beda tegangan sebesar 0 volt dan besar arus yang masuk ke masing-masing masukan adalah nol (IB = 0). Arus masukan dari VIN pada masukan tak membalik dan karena

keidealan opamp sehingga pada titik membalik juga mendapat tegangan yang sama sehingga arus keluaran opamp mengalir melalui RF dan kemudian RG sehingga tidak

...2.8

...2.9

(11)

15 ada beda fasa pada masukan dan keluarannya Sehingga jika masukan berpolaritas positif, maka pada keluaran akan berpolaritas positif juga dan sebaliknya.

Gambar 2.8. Konfigurasi Tak Membalik Opamp

2.4.True RMS to DC Converter

Root Mean Square merupakan pengukuran untuk mengetahui nilai magnitude dari sinyal AC. Nilai RMS sinyal AC merupakan besarnya nilai sinyal DC yang dibutuhkan untuk menghasilkan panas pada sebuah beban. Sebuah sinyal AC dengan amplitudo 1 volt rms dan sinyal DC 1 volt akan menghasilkan panas yang sama pada sebuah resistor. Nilai RMS dapat dihitung dengan persamaan berikut ini :

ERMS AVG.(V2) ...2.12 ...2.10

...2.11

(12)

16 Tabel 2.3. Nilai RMS Sinyal AC

Sinyal 1VPP Nilai RMS

Gelombang Sinusoidal VP 0.707volt 2 

Gelombang Kotak VP volt

1 1 

Gelombang Gigi Gergaji VP 0.707volt 3 

2.5.ADC (Analog to Digital Converter) ATMega8535

Pengubahan besaran analog ke digital diperlukan karena data dari sensor diolah dengan menggunakan mikrokontroler. Masukan ADC mikrokontroler dihubungkan ke sebuah 8 channel analog multiplexer yang digunakan untuk single ended input channel. Secara umum, proses inisialisasi ADC meliputi proses penentuan clock, tegangan referensi, format output data, dan metode pembacaan. Register yang perlu di atur nilainya adalah ADMUX, ADCSRA, dan SFIOR.

ADMUX merupakan register 8 bit yang berfungsi menentukan tegangan referensi ADC, format data keluaran dan saluran ADC yang digunakan.

Gambar 2.9. Register ADMUX

(13)

17 internal sebesar 2,56 volt. Fitur ADC jika ingin digunakan maka ADEN harus diberi logika high „1‟.

Setelah konversi selesai (ADIF high), hasil konversi dapat diperoleh pada register hasil (ADCL, ADCH). Untuk konversi single ended, hasilnya adalah:

REF

tegangan referensi untuk konversi. Jika menggunakan ADC 10 bit, maka dikalikan 1024 untuk mendapatkan nilai digital.

2.6.Mikrokontroler AVR Tipe ATMega8535

Secara garis besar arsitektur mikrokontroler ATMega8535 terdiri dari : a. Saluran I/O sebanyak 32 buah, yaitu Port A, Port B, Port C, Port D b. ADC 10 bit dengan 8 saluran (Analog to Digital Converter) c. 4 saluran PWM

d. 4 sleep mode : Idle, ADC Noise Reduction, Power save, Power down, Standby dan Extended Standby

e. 3 buah timer/counter f. Analog Komparator

g. Watchdog timer dengan osilator internal h. 512 byte SRAM

i. 512 byte EEPROM

j. 8 Kb Flash memory dengan kemampuan Read While Write k. Unit interupsi (internal&eksternal)

(14)

18 m.Port USART untuk komunikasi serial dengan kecepatan maksimal 2,5 Mbps n. Tegangan operasi 4,5 - 5,5 v, dan crystal 0 sampai 16MHz

Gambar 2.10. Konfigurasi pin ATMega8535

ATMega 8535 memiliki jumlah kaki sebanyak 40 buah yang memiliki kegunaan sebagai berikut :

a. VCC = pin masukan catu daya b. GND = pin ground

c. Port A (PA0-PA7) = pin I/O (bidirectional), pin ADC

d. Port B (PB0-PB7) = pin I/O (bidirectional), pin timer/counter, analog komparator, SPI

e. Port C (PC0-PC7) = pin I/O (bidirectional), TWI, analog komparator, timer oscillator

f. Port D (PD0-PD7) = pin I/O (bidirectional), analog komparator, interupsi eksternal, USART

g. RESET = pin reset mikrokontroler

h. XTAL1 dan XTAL2 = pin untuk clock eksternal i. AVCC = pin input tegangan ADC

(15)

19 2.7.Dekoder 7447

Dekoder 7447 merupakan komponen yang digunakan untuk mengendalikan seven segment (common anode). Berikut ini merupakan konfigurasi dari dekoder 7447:

Gambar 2.11. Konfigurasi IC Decoder 7447

Dekoder 7447 mendapatkan masukan BCD 4 bit dengan urutan 8, 4, 2, 1 kemudian keluaran dengan urutan a, b, c, d, e, f, g, dimana akan diubah menjadi pola tertentu agar bisa tertampil di seven segment. Masukan BCD akan aktif jika diberikan logika high „1‟ dan keluaran dari dekoder 7447 aktif low „0‟. Tegangan maksimum yang dibutuhkan untuk mengaktifkan dekoder 7447 adalah 7 volt dan tegangan masukan maksimal 5,5 volt. Di bawah ini merupakan tabel konversi nilai 4 bit masukan menjadi pola tertentu pada seven segment:

(16)

20 2.8.Penampil Seven Segment

Penampil seven segment secara umum digunakan untuk menampilkan informasi secara visual mengenai data-data yang sudah diolah. Seven segment tersusun atas 8 bagian yang setiap bagiannya merupakan LED (Light Emitting Diode).

Gambar 2.12. Seven Segment

Gambar

Gambar 2.1. Simbol LDR
Tabel 2.1. Konversi Vrms ke dBVrms
Tabel 2.2. Taraf bising yang diizinkan
Gambar 2.3. Struktur Mikrofon Kondenser
+7

Referensi

Dokumen terkait

 Audit energi untuk menentukan bagian/unit kegiatan yang mana yang potensial untuk diusahakan penghematan energi listrik.  Pengumpulan data

pembangunan untuk pembangkitan, penyaluran dan pendistribusian energi listrik Biaya kapasitas daya terpasang yang dihitung berdasarkan jumlah daya VA atau KVA.. 

Sehubungan dengan diterbitkannya Addendum Dokumen Pengadaan paket tersebut diatas, maka kepada peserta dipersilahkan untuk mengunduh (download) Addendum Dokumen dimaksud.

Nilai korelasi (r) antara partisipasi orang tua dan motivasi belajar dengan hasil belajar yang diperoleh dari hasil penghitungan adalah 0,468 yang berarti terdapat korelasi yang

DAS bagian tengah didefinisikan sebagai daerah aliran yang terbatas pada bagian tengah dengan 50% dari permukaan DAS tersebut mempunyai kemiringan lahan <8% baik

[r]

Hasil regresi dengan model spatial lag with fixed effect, menunjukkan bahwa dengan adanya pertimbangan aspek spasial tersebut, dana perimbangan secara

Kepada para penyedia jasa yang merasa keberatan atas pengumuman ini dapat menyampaikan sanggahan secara on line melalui aplikasi SPSE pada website