• Tidak ada hasil yang ditemukan

Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces

N/A
N/A
Protected

Academic year: 2018

Membagikan "Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces"

Copied!
9
0
0

Teks penuh

(1)

p-ISSN: 2086-0382; e-ISSN: 2477-3344

Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces

Minanur Rohman

Department of Islamic Studies, Faculty of Tarbiyah, STAI Ma’Had Aly Al

-Hikam,

Malang, Indonesia

Email:

[email protected]

ABSTRACT

In this paper, we will discuss some applications of almost surjective πœ€-isometry mapping, one of them is in Lorentz space (𝐿𝑝,π‘ž-space). Furthermore, using some classical theorems of π‘€βˆ—-topology and concept of closed subspace 𝛼-complemented, for every almost surjective πœ€-isometry mapping f : X β†’ Y, where Y is a reflexive Banach space, then there exists a bounded linear operator T : Y β†’ X with ‖𝑇‖ ≀ 𝛼 such that

‖𝑇𝑓(π‘₯) βˆ’ π‘₯β€– ≀ 4πœ€ for every π‘₯ ∈ 𝑋.

Keywords: almost surjectivity; πœ€-isometry; Lorentz space; reflexive space.

INTRODUCTION

Suppose 𝑋and π‘Œ be real Banach spaces. A mapping π‘ˆ: 𝑋 β†’ π‘Œ is called an isometry if

β€–π‘ˆ(π‘₯) βˆ’ π‘ˆ(𝑦)β€–

π‘Œ

= β€–π‘₯ βˆ’ 𝑦‖

𝑋

, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋.

Mazur-Ulam showed that if π‘ˆ is a surjective isometry, then π‘ˆ is affine. In other word, a surjective isometry mapping can be translated. This result lead to the following definition.

Definition 1.1.

Let

𝑋

and

π‘Œ

be real Banach spaces. A mapping

𝑓: 𝑋 β†’ π‘Œ

is called an

πœ€

-isometry if there exists

πœ€ β‰₯ 0

such that

|‖𝑓(π‘₯) βˆ’ 𝑓(𝑦)β€–

π‘Œ

βˆ’ β€–π‘₯ βˆ’ 𝑦‖

𝑋

| ≀ πœ€, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋.

If πœ€ = 0, then 0-isometry is just an isometry. There are other names of πœ€-isometry, some of them are nearisometry [13], approximate isometry ([1], [7]), and perturbed metric preserved [3]. To simplify, the norm fuction is just written as β€–βˆ™β€– without mentioning the vector space.

Definition 1.1 above begs a question, β€œfor every πœ€-isometry f, does always exist an isometry mapping U and 𝛾 > 0 such that

‖𝑓(π‘₯) βˆ’ π‘ˆ(π‘₯)β€– ≀ π›Ύπœ€

(1.1)

for all π‘₯ ∈ 𝑋?”.

(2)

satisfying (1.1) with 𝛾 = 10. Some years later, D. G Bourgin studied πœ€-isometry mapping in the Lebesgue space with 𝛾 = 12.

In 1983, Gevirtz delivered 𝛾 = 5 which was hold for any Banach space X and Y [6]. This

result was sharpened by Omladić and Šemrl [10].

Theorem 1.2.

Let X and Y be Banach spaces and f

:

X

β†’

Y is a surjective

πœ€

-isometry, there

exists a linear surjective isometry mapping U

:

X

β†’

Y such that

‖𝑓(π‘₯) βˆ’ π‘ˆ(π‘₯)β€– ≀ 2πœ€, π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋.

There are many applications of πœ€-isometry mapping, such as Dai-Dong who use πœ€-isometry

mapping to determine the smoothness and rotundity of Banach spaces. Ε emrl and VΓ€isΓ€lΓ€

proposed a definition of almost surjective mapping as follows [13].

Definition 1.3. Let f : X β†’ Y is a mapping, π‘Œ1 is a closed subspace of Y, and 𝛿 β‰₯ 0. A mapping f is called almost surjective onto Y if for every 𝑦 ∈ π‘Œ1, there exists π‘₯ ∈ 𝑋 with ‖𝑓(π‘₯) βˆ’ 𝑦‖ ≀ 𝛿 and for every 𝑒 ∈ 𝑋, there exists 𝑣 ∈ π‘Œ1 with ‖𝑓(𝑒) βˆ’ 𝑣‖ ≀ 𝛿.

Using Definition 1.3, Ε emrl and VΓ€isΓ€lΓ€ weakened the surjective condition become almost

surjective [13] (see also [14]).

Theorem 1.4. Let E and F be Hilbert spaces and f : E β†’ F is an almost surjective πœ€-isometry with

𝑓(0) = 0 that satisfies

sup

‖𝑦‖=1|𝑑|β†’βˆžliminf ‖𝑑𝑦 βˆ’

𝑓(𝐸)

𝑑 β€– < 1 , (1.2)

then there exists a linear surjective isometry π‘ˆ: 𝐸 β†’ 𝐹 such that

‖𝑓(π‘₯) βˆ’ π‘ˆ(π‘₯)β€– ≀ 2πœ€, π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝐸.

Ε emrl and VΓ€isΓ€lΓ€ showed that this result is true for E and F are Lebesgue spaces [13]. Vestfrid decrease the value 1 become Β½ in (1.2) and is valid for any Banach space [15].

On the other hand, Figiel proved that for any isometry mapping U : X β†’ Y with U(0) = 0, there exists an operator πœ™ ∢ π‘ π‘π‘Žπ‘›Μ…Μ…Μ…Μ…Μ…Μ…Μ… π‘ˆ(π‘₯) β†’ 𝑋 with β€–πœ™β€– = 1 such that πœ™ Β° π‘ˆ = 𝐼, the identity on X

[5].

Using Figiel’s theorem, Cheng et. al. Give the following lemma [2] (see also Qian [11]).

Lemma 1.5. If f : ℝ β†’ π‘Œis a surjective πœ€-isometry with f(0) = 0, then there exists πœ™ ∈ π‘Œβˆ— with β€–πœ™β€– =

1 such that

|βŒ©πœ™, 𝑓(𝑑)βŒͺ βˆ’ 𝑑| ≀ 3πœ€, π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑑 ∈ ℝ.

Using Vestfrid’s theorem and Lemma 1.5, Minan et. al. showed that the following lemma

is true [12].

Theorem 1.6. Let X and Y be real Banach spaces, f : X β†’ Y is an πœ€-isometry with f(0) = 0. If the mapping f satisfies almost surjective condition, i. e.

sup

π‘¦βˆˆπ‘†π‘Œ lim

|𝑑|β†’βˆžinf ‖𝑑𝑦 βˆ’

𝑓(𝑋) 𝑑 β€– <

1 2,

(3)

RESULTS AND DISCUSSION

We will discuss some applications of Theorem 1.6. Therefore, this paper will be organized as follows. Firstly, we will discuss two applications of Theorem 1.6, one of them is to determine the stability of almost surjective πœ€-isometry in 𝐿𝑝,π‘ž-spaces (also called as Lorentz spaces). Next, we will discuss the stability of almost surjective πœ€-isometry in reflexive Banach spaces.

The used notations and terminology are standard. π‘€βˆ—(pronounced β€œweak star”) topology

of the dual of normed space X is the smallest topology of π‘‹βˆ— such that for every π‘₯ ∈ 𝑋, the linear functional π‘₯βˆ—β†’ π‘₯βˆ—π‘₯ on π‘‹βˆ— is continuous.

The author is greatly indebted to anonymous referee for a number of important suggestions that help the author to simplify the proof.

1. Applications of Theorem 1.6

Let X and Y be Banach spaces and π‘Œ ∈ 𝔅(𝑋, π‘Œ). For bounded set 𝐢 βŠ‚X, is defined ‖𝑇‖𝐢 =

sup{‖𝑇π‘₯β€– ∢ π‘₯ ∈ 𝐢}. If there is 𝑐 ∈ 𝐢 such that ‖𝑇𝑐‖ = ‖𝑇‖𝐢, the T attains its supremum over C. Operator T is called as norm-attaining operator.

(4)

Recall that 𝑋 and π‘Œ are strictly convex, so 𝑓(π‘₯0) βˆ’ 𝑓(π‘₯) = βˆ‘ |πœ†π‘›π‘–=1 𝑖|𝑓(π‘₯𝑖) and π‘₯0βˆ’ π‘₯ = of equivalence classes of real valued measured function over (Ξ©, βˆ‘, πœ‡). The distribution 𝛿𝑓(𝑠) for

𝑓 ∈ 𝐿(Ξ©) is defined as

𝛿𝑓(𝑠) ∢= πœ‡(|𝑓| > 𝑠)

𝐿𝑝,π‘ž-spaces are collections of all measured function over Ξ© such that

‖𝑓‖𝑝,π‘žβˆΆ= (π‘žπ‘ ∫ π‘“βˆ—(𝑑)π‘žπ‘‘(

𝐿𝑝(Ξ©). The following theorem shows that there exists an isomorphism operator [8] in 𝐿𝑝,π‘ž-spaces.

Theorem 2.2. Suppose that 1 ≀ 𝑝,π‘ž ≀ ∞, 𝑝 β‰  π‘ž, 𝑝 β‰  1, 𝑝 β‰  2. Then there exists no weakly sequence

Now, using Theorem 2.2, the author will show that the following theorem is true.

Theorem 2.3. Let X =𝐿𝑝,π‘ž and Y be Banach space. If f : X β†’ Y is an almost surjective πœ€-isometry with f(0)= 0, then there exists an operator S : Y β†’ X with ‖𝑆‖ = 1 such that

‖𝑆𝑓(π‘₯) βˆ’ π‘₯β€– ≀ 4πœ€, π‘“π‘œπ‘Ÿ π‘’π‘£π‘’π‘Ÿπ‘¦ π‘₯ ∈ 𝑋.

(5)

Let S : Y β†’ X is defined by S(y) = βŒ©πœ™π‘‘, 𝑓(π‘₯)βŒͺ𝑒𝑑 = π‘₯0. Clearly ‖𝑆‖ = 1 and

‖𝑆𝑓(π‘₯) βˆ’ π‘₯‖𝑝,π‘ž = (π‘žπ‘ ∫(π‘₯0(𝑑)π‘žβˆ’ π‘₯(𝑑)π‘ž)𝑑(

π‘ž 𝑝) βˆ’ 1𝑑𝑑

1

0

) 1 π‘ž

≀ sup

π‘‘βˆˆ(0,1)|βŒ©πœ™π‘‘, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯𝑑

βˆ—, π‘₯βŒͺ| ≀ 4πœ€ . ∎

2. Almost Surjective 𝜺-Isometry in The Reflexive Banach Spaces

A normed space is reflexive if the natural mapping πœ‹(π‘₯) from 𝑋 into π‘‹βˆ—βˆ— which is defined by πœ‹(π‘₯) : f β†’ f(x) where 𝑓 ∈ π‘‹βˆ—, is onto π‘‹βˆ—βˆ—, or 𝑋 β‰ˆ π‘‹βˆ—βˆ—. Therefore, every reflexive normed space is Banach space. In addition, every closed subspace of reflexive Banach space is reflexive [4].

Proposition 3.1 (Megginson [9], Proposition 1.11.11). Let X be reflexive normed space. Every functional π‘₯βˆ—βˆˆ π‘‹βˆ— is norm-attaining functional.

The following definitions are classic (for more detail see [4]). Let X be Banach space and

𝑀 βŠ‚ 𝑋. The polar set of M is π‘€βˆ˜βˆΆ= { π‘₯βˆ—βˆˆ π‘‹βˆ—βˆΆ 〈π‘₯βˆ—, π‘₯βŒͺ ≀ 1, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑀}. Conversely,

π‘€Β°βˆΆ= { π‘₯ ∈ 𝑋 ∢ 〈π‘₯βˆ—, π‘₯βŒͺ ≀ 1, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯βˆ—βˆˆ 𝑀°}

Β° . The annihilator of M is 𝑀βŠ₯∢= { π‘₯βˆ—βˆˆ π‘‹βˆ—βˆΆ 〈π‘₯βˆ—, π‘₯βŒͺ =

0, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑀}, and preannihilator 𝑀βŠ₯ is βŠ₯𝑀βŠ₯∢= { π‘₯ ∈ 𝑋: 〈π‘₯βˆ—, π‘₯βŒͺ = 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯βˆ—βˆˆ 𝑀βŠ₯}. For an almost surjective πœ€-isometry mapping f : X β†’ Y with f(0) = 0 and πœ€ > 0, 𝐢(𝑓) is a closed convex hull of f(X), E is an annihilator of subspace FβŠ‚ π‘Œβˆ— where F is a set of all bounded functionals over 𝐢(𝑓), and

π‘€πœ€ ∢= {πœ™ ∈ π‘Œβˆ—: πœ™ 𝑖𝑠 π‘π‘œπ‘’π‘›π‘‘π‘’π‘‘ 𝑏𝑦 π›½πœ€ π‘œπ‘£π‘’π‘Ÿ 𝐢(𝑓), π‘“π‘œπ‘Ÿ 𝛽 > 0}.

Obviously, 𝐢(𝑓) is symmetric, then π‘€πœ€ is linear subspace of π‘Œβˆ— with π‘€πœ€ = β‹ƒβˆžπ‘›=1𝑛𝐢(𝑓)Β°. Therefore, 𝐸 = β‹‚{π‘˜π‘’π‘Ÿπœ™ ∢ πœ™ ∈ 𝑀}. The following lemma is easy to be proved (see [2]).

Lemma 3.2. Let Y be Banach space, the following statements are equicalence.

(1)𝐢(𝑓) βŠ‚ 𝐸 + 𝐹for a bounded 𝐡 βŠ‚ π‘Œ; (2)π‘€πœ€is π‘€βˆ—-closed;

(3)π‘€πœ€is closed.

For every almost surjective πœ€-isometry f, is defined a linear mapping β„“ :π‘‹βˆ—β†’ 2π‘Œβˆ—by

β„“π‘₯βˆ—βˆΆ= {πœ™ ∈ π‘Œβˆ—: |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ π›½πœ€, π‘“π‘œπ‘Ÿ 𝛽 > 0 π‘Žπ‘›π‘‘ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋}.

Since β„“ is a linear mapping, the definition of π‘€πœ€ implies

β„“0 = {πœ™ ∈ π‘Œβˆ—: |βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈0, π‘₯βŒͺ| ≀ π›½πœ€}

= {πœ™ ∈ π‘Œβˆ—: |βŒ©πœ™, 𝑓(π‘₯)βŒͺ| ≀ π›½πœ€}

= {πœ™ ∈ π‘Œβˆ—: πœ™ 𝑖𝑠 π‘π‘œπ‘’π‘›π‘‘π‘’π‘‘ 𝑏𝑦 π›½πœ€ π‘œπ‘£π‘’π‘Ÿ 𝐢(𝑓)} = π‘€πœ€ and

β„“π‘₯βˆ—= β„“(π‘₯βˆ—+ 0) = β„“π‘₯βˆ—+ β„“0 βŠƒ πœ™ + β„“0 = πœ™ + 𝑀 πœ€.

Lemma 3.3. If π‘₯βˆ—β‰  π‘¦βˆ—, then β„“π‘₯βˆ—βˆ© β„“π‘¦βˆ—= βˆ….

Proof. Suppose that β„“π‘₯βˆ—βˆ© β„“π‘¦βˆ— is nonempty, then there exists πœ‘ ∈ β„“π‘₯βˆ—βˆ© β„“π‘¦βˆ—. Assume

πœ‘π‘₯βˆ—= {πœ‘ ∈ π‘Œβˆ—: |βŒ©πœ‘, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ π›½πœ€, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋)

(6)

πœ‘π‘¦βˆ— = {πœ‘ ∈ π‘Œβˆ—: |βŒ©πœ‘, 𝑓(π‘₯)βŒͺ βˆ’ βŒ©π‘¦βˆ—, π‘₯βŒͺ| ≀ π›½πœ€, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋).

For π‘₯βˆ—β‰  π‘¦βˆ—, there exists πœ‘ ∈ β„“π‘₯βˆ—βˆ© β„“π‘¦βˆ— such that πœ‘π‘₯βˆ—= πœ‘π‘¦βˆ—. This is impossible because πœ‘ is a linear functional and the proof is complete. ∎

Let π‘ˆ ∈ 𝔅(𝑋, π‘Œ). Then π‘ˆβˆ—βˆˆ 𝔅(π‘Œβˆ—, π‘‹βˆ—) is called an adjoint operator such that βŒ©π‘ˆπ‘₯, 𝑓βŒͺ =

〈π‘₯, π‘ˆβˆ—π‘“βŒͺ for all π‘₯ ∈ 𝑋. Two results below are classic.

Proposition 3.4 (Fabian et. al. [4], Proposition 2.6).Let M is a closed subspace of Banach space X. Then (𝑋/π‘Œ)βˆ— is isometric with 𝑀βŠ₯ and π‘€βˆ— is isometric with π‘‹βˆ—/𝑀βŠ₯.

Theorem 3.5 (Megginson [9], Proposition 3.1.11).Let X and Y be normed spaces. If π‘ˆ ∈ 𝔅(𝑋, π‘Œ), then π‘ˆβˆ— is π‘€βˆ—-to-π‘€βˆ— continuous. Conversely, if 𝑄 is π‘€βˆ—-to-π‘€βˆ— linear continuous operator from π‘Œβˆ— to

π‘‹βˆ—, then there exists π‘ˆ ∈ 𝔅(𝑋, π‘Œ) such that π‘ˆβˆ—= 𝑄.

Now, using Proposition 3.4 and Theorem 3.5, we will show that the following theorem is true.

Theorem 3.6. Let X and Y be Banach spaces, f : X β†’ Y is an almost surjective πœ€-isometry with f(0) = 0, and 𝑀 = β„“Μ…0. Then

(1)𝑄: π‘‹βˆ—β†’ π‘Œβˆ—/𝑀, which is defined by 𝑄π‘₯βˆ—= β„“π‘₯βˆ—+ 𝑀, is linear isometry. (2) If M is π‘€βˆ—-closed, then 𝑄 is an adjoint operator of π‘ˆ: 𝐸 β†’ 𝑋 with β€–π‘ˆβ€– = 1.

Proof.(1) From Lemma 3.3 and definition of β„“, it is clear that 𝑄 is linear. Lemma 3.2 implies 𝑀 =

β„“Μ…0 = π‘€Μ…Μ…Μ…Μ…πœ€. For every π‘₯βˆ—βˆˆ π‘‹βˆ—,

‖𝑄π‘₯βˆ—β€– = inf{β€–πœ™ βˆ’ π‘šβ€– : πœ™ ∈ β„“π‘₯βˆ—, π‘š ∈ 𝑀}

= inf{β€–πœ™ βˆ’ π‘šβ€– : πœ™ ∈ β„“π‘₯βˆ—, π‘š ∈ π‘€πœ€}. From definition of β„“π‘₯βˆ— and π‘€πœ€, we have

‖𝑄π‘₯βˆ—β€– = inf{β€–πœ™β€– : πœ™ ∈ β„“π‘₯βˆ—}.

Theorem 1.6 gives

inf{β€–πœ™β€– : πœ™ ∈ β„“π‘₯βˆ—} ≀ β€–π‘₯βˆ—β€–. (3.1)

To show the conversely, from definition of β„“, there exists 𝛽 > 0 such that

|βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ π›½πœ€, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋.

For any 𝛿 > 0, we can choose π‘₯0∈ 𝑆𝑋 such that

〈π‘₯βˆ—, π‘₯

0βŒͺ > β€–π‘₯βˆ—β€– βˆ’ 𝛿.

For all 𝑛 ∈ β„•, we get

|βŒ©πœ™,𝑓(𝑛π‘₯𝑛0)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯

0βŒͺ| β‰€π›½πœ€π‘›

As 𝑛 β†’ ∞,

β€–πœ™β€– β‰₯ lim sup

𝑛 |βŒ©πœ™,

𝑓(𝑛π‘₯0)

(7)

Since 𝛿 is arbitrary, then

β€–πœ™β€– β‰₯ β€–π‘₯βˆ—β€–. (3.2)

From (3.1) and (3.2), then β€–πœ™β€– = β€–π‘₯βˆ—β€– which shows that 𝑄 is an isometry.

(2) Since 𝑀 is π‘€βˆ—-closed, then 𝑀 = { 𝑀βŠ₯ }βŠ₯= { 𝑀βŠ₯ πœ€}βŠ₯= 𝐸βŠ₯. Therefore, π‘Œβˆ—/𝑀 = π‘Œβˆ—/𝐸βŠ₯. From definitions of 𝐸 and π‘€πœ€, Proposition 3.4 implies π‘Œβˆ—/𝐸βŠ₯= πΈβˆ—.

We will prove that πœ™ is π‘€βˆ—-to-π‘€βˆ—continuous over the unit ball π΅π‘‹βˆ—. Let 𝐼 is an index set and

𝛼 ∈ 𝐼. Suppose there exists net (π‘₯βˆ—) βŠ‚ π΅π‘‹βˆ— which is π‘€βˆ—-converging to π‘₯βˆ—βˆˆ π‘‹βˆ—. Using Theorem 1.6, there exists net (πœ™π›Ό) βŠ‚ π‘Œβˆ— with β€–πœ™π›Όβ€– = β€–π‘₯π›Όβˆ—β€– = π‘Ÿπ›Όβ‰€ 1 such that

|βŒ©πœ™π›Ό, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯π›Όβˆ—, π‘₯βŒͺ| ≀ 4πœ€π‘Ÿπ›Ό, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋.

Since (πœ™π›Ό) is π‘€βˆ—-compact, then there exists π‘€βˆ—-limit point ∈ π‘Œβˆ— such that

|βŒ©πœ™, 𝑓(π‘₯)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 4πœ€π‘Ÿ, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋

Therefore, 𝑄π‘₯π›Όβˆ— = β„“π‘₯π›Όβˆ— + 𝑀 = πœ™π›Ό+ 𝑀 is π‘€βˆ—-convergence to πœ™ + 𝑀 = 𝑄π‘₯βˆ—. This result shows that 𝑄: π΅π‘‹βˆ— β†’ πΈβˆ— is π‘€βˆ—-to-π‘€βˆ— continuous. From Theorem 3.5, there exists π‘ˆ: 𝐸 β†’ 𝑋 such that π‘ˆβˆ—= 𝑄. Definition of 𝐸 shows that π‘ˆ is a surjective mapping. Since π‘ˆβˆ—= 𝑄 is a linear

isometry, then β€–π‘ˆβ€– = 1. ∎

Before discussing the stability of an almost surjective πœ€-isometry in reflexive Banach space, we need some resuls below.

Proposition 3.7 (Fabian et. al. [4], Proposition 3.114). Let Y be reflexive Banach space. If 𝑀 is a closed subspace of Y, then 𝑀 is Banach space.

Corollary 3.8. If Y be reflexive Banach space, then the mapping 𝑄 in Theorem 3.6 is an adjoint operator.

Proof. Since Y is reflexive, from Proposition 3.7, 𝑀 is π‘€βˆ—-closed. The proof can be completed by Theorem 3.6.

Definition 3.9. Let X be Banach space and 0 ≀ Ξ± < ∞. A closed subspace 𝑀 βŠ‚ 𝑋 is called 𝛼 -complemented in X if there is a closed subspace 𝑁 βŠ‚ 𝑋 with 𝑀 ∩ 𝑁 = {0} and projection 𝑃: 𝑋 β†’

𝑀 π‘Žπ‘™π‘œπ‘›π‘” 𝑁 such that 𝑋 = 𝑀 + 𝑁 and ‖𝑃‖ ≀ 𝛼.

Theorem 3.10. Let X and Y be Banach spaces where Y is reflexive, and f : X β†’ Y is an almost surjective

πœ€-isometry, then there exists a bounded linear operator T : Y β†’ X and ‖𝑇‖ ≀ 𝛼 such that

‖𝑇𝑓(π‘₯) βˆ’ π‘₯β€– ≀ 4πœ€, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋.

Proof. Since Y is reflexive, from Corollary 3.8 and Theorem 3.6, there exists a surjective operator

π‘ˆ: 𝐸 β†’ 𝑋 with β€–π‘ˆβ€– = 1 such that 𝑄 = π‘ˆβˆ—. Since 𝐸 is 𝛼-complemented in Y, there is a closed subspace 𝐹 βŠ‚ π‘Œ and 𝐸 ∩ 𝐹 = {0} such that 𝐸 + 𝐹 = π‘Œ and projection 𝑃: π‘Œ β†’ 𝐸 π‘Žπ‘™π‘œπ‘›π‘” 𝐹 satisfies

‖𝑃‖ ≀ 𝛼. Let 𝑇 = π‘ˆπ‘ƒ, then

‖𝑇‖ = β€–π‘ˆπ‘ƒβ€– ≀ β€–π‘ˆβ€–β€–π‘ƒβ€– = ‖𝑃‖ ≀ 𝛼.

Furthermore,

βŒ©π‘„π‘₯βˆ—, 𝑃𝑦βŒͺ = βŒ©π‘„π‘₯βˆ—, 𝑦βŒͺ

(8)

|βŒ©π‘„π‘₯βˆ—, 𝑃𝑓(𝑋)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| = |βŒ©π‘„π‘₯βˆ—, 𝑓(𝑋)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| ≀ 4πœ€β€–π‘₯βˆ—β€–, (3.3)

for all π‘₯ ∈ 𝑋 and π‘₯βˆ— ∈ π‘‹βˆ—. Definition of adjoint operator gives

βŒ©π‘„π‘₯βˆ—, 𝑃𝑓(𝑋)βŒͺ = 〈π‘₯βˆ—, π‘„βˆ—π‘ƒπ‘“(𝑋)βŒͺ

= 〈π‘₯βˆ—, π‘ˆπ‘ƒπ‘“(𝑋)βŒͺ = 〈π‘₯βˆ—, 𝑇𝑓(𝑋)βŒͺ. (3.4)

Substitute (3.4) into (3.3), then

|〈π‘₯βˆ—, 𝑇𝑓(𝑋)βŒͺ βˆ’ 〈π‘₯βˆ—, π‘₯βŒͺ| = |〈π‘₯βˆ—, 𝑇𝑓(𝑋) βˆ’ π‘₯βŒͺ| ≀ 4πœ€β€–π‘₯βˆ—β€–

for all π‘₯ ∈ 𝑋 and π‘₯βˆ— ∈ π‘‹βˆ—. In addition,

|〈π‘₯βˆ—, 𝑇𝑓(𝑋) βˆ’ π‘₯βŒͺ| ≀ β€–π‘₯βˆ—β€–β€–π‘‡π‘“(𝑋) βˆ’ π‘₯β€–

≀ 4πœ€β€–π‘₯βˆ—β€–

or

‖𝑇𝑓(𝑋) βˆ’ π‘₯β€– ≀ 4πœ€

for all π‘₯ ∈ 𝑋. ∎

CONCLUSION

In this paper, the author has shown simple applications of Theorem 1.6. In addition, almost surjective πœ€-isometries are remain stable in the reflexive Banach spaces.

Open Problem 1.This paper has shown that almost surjective πœ€-isometries are stable in Lorentz spaces when the conditions in Theorem 2.2 are satisfied. Is it possible to generalize these restrictions?

Open Problem 2.According to the results of this paper, is it possible to determine the stability of almost surjective πœ€-isometries in the higher dual of Banach spaces?

REFERENCES

[1] D. G. Bourgin, "Approximate isometries", Bull. Amer. Math. Soc., vol. 52, no. 8, pp. 704-713, 1954.

[2] L. Cheng, Y. Dong, and W. Zhang, "On stability of non-linear non-surjective Ξ΅-isometries of Banach spaces", J. Funct. Anal., vol. 264, no. 3, pp. 713-734, 2013.

[3] L. Cheng and Y. Zhou, "On perturbed metric-preserved mapping and their stability characteristic", J. Funct. Anal., vol. 264, no. 8, pp. 4995-5015, 2014.

[4] M. Fabian, P. Habala, P. HΓ‘jek, V. Montesinos, and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2010.

[5] T. Figiel, "On nonlinear isometric embedding of normed linear spaces", Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., vol. 16, pp. 185-188, 1968.

[6] J. Gevirtz, "Stability of isometries on Banach spaces", Proc. Amer. Math. Soc., vol. 89, no. 4, pp. 633-636, 1983.

[7] D. H. Hyers and S. M. Ulam, "On approximate isometries", Bull. Amer. Math. Soc., vol. 51, no. 4, pp. 288-292, 1945.

(9)

[9] R. E. Megginson, An Introduction to Banach Space Theory, Graduate Text in Mathematics 183, Springer, New York, 1989.

[10] M. Omladič and P. Šemrl, "On nonlinear perturbation of isometries", Math. Ann. vol. 303, no. 4, pp. 617-628, 1995.

[11] S. Qian, "Ξ΅-isometries embedding", Proc. Amer. Math. Soc., vol. 123, no. 6, pp. 1797-1803, 1995.

[12] M. Rohman, R. B. E. Wibowo, and Marjono, "Stability of an almost surjective epsilon-isometry in the dual of real Banach spaces", Aust. J. Math. Anal. Appl., vol. 13, no. 1, pp. 1-9, 2016.

[13] P. Ε emrl and J. VΓ€isΓ€lΓ€, "Nonsurjective nearisometries of Banach spaces", J. Funct. Anal., vol. 198, no. 1, pp. 268-278, 2003.

[14] I. A. Vestfid, "Almost surjective Ξ΅-isometries of Banach spaces", Colloq. Math., vol. 100, no. 1, pp. 17-22, 2004.

Referensi

Dokumen terkait