• Tidak ada hasil yang ditemukan

Impacts of recent climate change

N/A
N/A
Protected

Academic year: 2018

Membagikan "Impacts of recent climate change"

Copied!
16
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hydrology:

Regional

Studies

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / e j r h

Impacts

of

recent

climate

change

on

the

hydrology

in

the

source

region

of

the

Yellow

River

basin

Fanchong

Meng

a,b

,

Fengge

Su

a,c,∗

,

Daqing

Yang

d

,

Kai

Tong

a

,

Zhenchun

Hao

e

aKeyLaboratoryofTibetanEnvironmentChangesandLandSurfaceProcesses,InstituteofTibetanPlateauResearch,ChineseAcademyof

Sciences,Beijing,China

bUniversityofChineseAcademyofSciences,Beijing,China

cCASCenterforExcellenceinTibetanPlateauEarthSciences,Beijing,China

dNationalHydrologyResearchCenter,EnvironmentCanada,Saskatoon,Saskatchewan,Canada

eStateKeyLaboratoryofHydrology—WaterResourcesandHydraulicEngineering,HohaiUniversity,Nanjing,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5July2015

Receivedinrevisedform25March2016 Accepted28March2016

Availableonline11April2016

Keywords:

Climatechange Hydrology Snow

SourceregionoftheYellowRiver

a

b

s

t

r

a

c

t

Studyregion:ThesourceregionoftheYellowRiver(SRYE)inthenortheasternTibetan Plateau.

Studyfocus:Thespatial-temporalchangesofhydrologicalandmeteorologicalvariablesand theirlinkagesovertheSRYEwereinvestigatedfor1961–2013.Meanwhile,wequantified theimpactsofprecipitationandevapotranspirationonhydrologicalchangesthrough cli-mateelasticitybyapplyingalandsurfacehydrologicalmodel.Furthermore,theimpactsof warmingclimateontheseasonalsnowcoverandspringflowovertheSRYEwereexamined. Newhydrological insightsfortheregion: Decreasedprecipitationand lightly increased evapotranspirationbothcontributedtoreducedrunoffinthe1990s,withthedecreased pre-cipitationplayingamoreimportantrole(70%)thantheincreasedevapotranspiration(30%). Inthe2000s,precipitationcontributed3%totherunoffreduction,whiletheincreased evap-otranspirationaccountedfor97%.Alongwithrapidwarming,evapotranspirationisplaying anincreasinglyimportantroleinaffectingrunoffchangesintheSRYE.During2001–2012, snowcoverinMaydecreasedovertheregion.Springpeakflowmainlycausedbysnowmelt occurredearlierforabout15daysattheJimaihydrologicalstationduetoanearliersnow meltassociatedwiththeclimatewarminginthepast3decades.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

TheYellowRiveroriginatesfromtheTibetanPlateau(TP),andflowsacrosseightprovincesfromwesttoeastacrossChina (Fig.1).Itis5464kmlongwithabasinareaof752,443km2,thesixthlongestriverintheworldandthesecondinChina

(Fuetal.,2004).TheYellowRiverplaysanimportantrolenotonlyinthewatersupplyfor107millionpeople(Wangetal., 2006)butalsointheagriculturalproductioninChinabecause13%ofthecountries’totalcultivatedareadependsonthe waterresourcesfromthisbasin(CaiandRosegrant,2004).ThedrainageareaupstreamoftheTangnaihai(TNH)hydrological station(Fig.1),locatedinthenortheastoftheTP,isgenerallyconsideredasthesourceregionoftheYellowRiver(SRYE) basin.TheSRYEisthe“watertower”oftheYellowRiverbasinsinceitcontributesabout35%oftotalannualrunofffrom

Correspondingauthorat:KeyLaboratoryofTibetanEnvironmentChangesandLandSurfaceProcesses,InstituteofTibetanPlateauResearch,Chinese

AcademyofSciences,Beijing,China.

E-mailaddress:fgsu@itpcas.ac.cn(F.Su). http://dx.doi.org/10.1016/j.ejrh.2016.03.003

(2)

Fig.1.LocationandtopographyofthesourceregionoftheYellowriver(SRYE).Redtrianglesdenotedischargestations.Fromuptodownstream,these areHuangheyan(HHY),Jimai(JM),Maqu(MQ)andTangnaihai(TNH)stations,respectively.Blackpointsrepresentmeteorologicalstations.Meanannual precipitationcontours(mm)arealsoindicated.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle.)

about16%ofthebasinarea(Lanetal.,2010b).Therefore,itisofvitalimportanceinmeetingdownstreamwaterresources requirements(Zhengetal.,2007).

Similartootherregions,climatechangeistakingplaceintheYellowRiverbasin(Wangetal.,2014;Yangetal.,2004; Zhaoetal.,2007).Studiesoflongtermclimaticrecordssuggestedanoticeablewarmingtrendof0.31–0.35◦C/10yroverthe SRYEinthepast5decades(Cuoetal.,2013;Huetal.,2011;Lanetal.,2010b).Nosignificantlong-termtrendshavebeen observedinthebasin-wideprecipitation(Huetal.,2012),althoughlargedecadalandspatialvariationsinprecipitationexist inthisregion(Lanetal.,2010b;ZhouandHuang,2012).Alongwiththechangingclimate,meanannualflowattheTNH hasdecreasedinthepast50years(Cuoetal.,2013;Huetal.,2011;Lanetal.,2010b;Lietal.,2012).Ithasbeennotedthat theflowinthe1990ssufferedaseriousdecreaseinthisregion(Chenetal.,2007),accompaniedwithanincreaseinthe numberofzero-flowdaysatthemostupstreamgaugingsite—theHuangheyan(HHY,Fig.1)station(Zhangetal.,2004a). AttemptshavebeenmadetounderstandthecausesofthechangesinstreamflowovertheSRYE(Cuoetal.,2013;Huetal., 2011;Lanetal.,2010a;Zhaoetal.,2009;ZhouandHuang,2012).Itisgenerallyrecognizedthatthehydrologicalchangesare mostlyattributedtoclimatechangeandclimatevariability.Studiesshowthatchangesinseasonalandspatialdistribution ofprecipitationplayedanimportantroleinregionalhydrology(Huetal.,2011;Lanetal.,2010a;ZhouandHuang,2012). However,itisstillnotcleartowhatextentprecipitationandtheclimatewarmingaffectedthestreamflowregimesoverthe region.

Throughstatisticalanalysis,Huetal.(2011)suggestedthatdecreasedprecipitationinthewetseasonandrising tempera-tureovertheperiod1959–2008mayberesponsibleforthegeneralflowreductionovertheSRYE.Satoetal.(2008)developed anewhydrologicalmodeltoinvestigatethewaterbalanceoftheSRYEbasinduring1960–2000.Althoughanincreasein evapotranspirationwasdetected,theyconcludedthatthedecreaseinprecipitationwasthemainfactorforthedecrease inriverdischarge.ZhouandHuang(2012),usingapointscalelandsurfacemodelandsurfacemeteorologicalobservations for1960–2006,investigatedtheinfluencesofclimaticchangesonthewaterbudgetovertheSRYE.Theirresultssuggested thatthechangesinspatialprecipitationpatternwasanimportantfactorforstreamflowchanges.Inaddition,increasein evapotranspirationduetorisingtemperaturewasanothercauseforrunoffdecrease.

(3)

isthereforeimportanttounderstandhowsnowcoverandsnowmeltrunoffrespondedtoclimatewarminginthisregion. StudiesonsnowcoverintheTPexist(Qinetal.,2006;Zhangetal.,2004b),butonlyfewfocusedonthesourceregionofthe YellowRiver(Luetal.,2009;Yangetal.,2007).

Inthiswork,weprovidedanupdateontheimpactsofclimatechangetothehydrologyoftheSRYEduring1961–2013.We appliedalargescalelandsurfacehydrologymodeltoquantifyevapotranspirationchanges.Thespecificobjectivesare:1)to investigatethespatial-temporalchangesofrunoff,precipitationandtemperature,aswellasthelinkagebetweenrunoffand climatevariables;2)toquantifytheimpactsofprecipitationandtemperaturevariationsonthehydrologicalchangesthrough climateelasticitybyapplyingthelandsurfacehydrologicalmodel;and3)toexaminetheimpactsofclimatewarmingon theseasonalsnowcoverandspringflowovertheSRYE.

2. Studyarea

TheSRYE,locatedintheregionbetween95◦50E–10330Eand32N–3540N(Fig.1),hasanareaof121,972km2,and

annualrunoffof2.04×1010m3,accountingfor34.5%oftotalannualrunoffoftheYellowRiverbasin.Itoriginatesfromthe BayanHarmountains,withthealtituderangingbetween2680mand6248mabovesealevelanddecreasingtowardsthe east.Thelandsurfaceinthisregionischaracterizedbyglaciers,snow,lakesandfrozensoils.Thevegetationtypeismostly grassland,covering80%ofthisregion(Zhengetal.,2009).ThehighestelevationisfoundattheAnyemaqenMountains,with permanentsnowcoverand58glaciers,accountingfor95.8%oftotalglacierareas(134km2)overtheSRYE.Sinceglacier

occupiesonlyabout0.11%ofthebasin(Zhangetal.,2013),itisnotconsideredinthiswork.Therearefourhydrological stationsinthemainstreamoftheSRYE:Huangheyan(HHY),Jimai(JM),Maqu(MQ),Tangnaihai(TNH)(Fig.1).TheHHY, withmeanannualrunoffof4.41×108m3(Zhangetal.,2012),contributeslessthan5%ofthetotalflowatTNH.Duetosmall flowcontributionandthemissingstreamflowdataduring1969–1975,datafromHHYwerenotusedintheanalysis.We dividedtheSRYEintothreeregions,theregionupstreamofJimai(JM)hydrologicalstation,betweenJMandMQ(JM-MQ), andbetweenMQandTNH(MQ-TNH).TheregionJM-MQ(Fig.1)isthemajorrunoffgenerationarea,witharunoffratioof 0.38andacontributionof51%tothetotalflowattheTNH.TheregionsupstreamofJMandMQ-TNHarerelativelydrywith runoffratiosof0.21–0.34andcontributing21%and28%tothetotalflow,respectively.Thereareabout5300lakeswitha totalareaof2000km2overtheSRYE(Huetal.,2011),ofwhichmorethan4000lakesarelocatedabovetheHHY(Lietal.,

2013).TheZalingandElinglakesarethetwolargestones,withareasof550km2and610km2,respectively(Fig.1)(Huetal.,

2011).Becausetherearenolargedamsintheregionandthepopulationdensityislow,humanactivitiesandtheirimpacts tobasinhydrologywerenotconsideredinthiswork.

TheaverageannualprecipitationovertheSRYEisabout522mm,rangingfrom350mminthenorthwestto750mmin thesoutheast(Fig.1).About75–90%ofprecipitationfallsinthewetseason(June–September)duetothesoutheastmonsoon fromtheBayofBengal(Zhengetal.,2009).Themeanannualtemperaturevariesbetween−4◦Cand−2◦Cfromthenorthwest tothesoutheast(Huetal.,2011).Januaryisthecoldestmonth,andthetemperaturestaysbelow0◦CfromOctobertoApril; thewarmestmonthisJuly,withameantemperatureof8.0◦C.

3. Datasetsandmethodology

3.1. Data

Thedailystreamflowdatacollectedatthethreehydrologicalstations(JM,MQandTNH;Fig.1)wereobtainedfromthe YellowRiverConservancyCommission(YRCC).Theflowdataareavailableduring1961–2009fortheJMandMQ,andduring 1961–2013fortheTNH.Thedailymeteorologicaldata(1961–2013)includingthemaximumtemperature(Tmax),the min-imum(Tmin),temperature,precipitationandwindspeedfrom20climatestationsovertheSRYEandthesurroundingareas (Fig.1)wereobtainedfromtheChinaMeteorologicalAdministration(CMA).ThedailyTmax,Tmin,precipitationandwind speedforthesestationswereinterpolatedtoobtain1/12◦×1/12gridsdatathroughtheinversedistanceweightingmethod. Thetemperaturewasadjustedforelevationbyapplyingacommontemperaturelapserate(0.6◦C/100m)forinterpolation frompointstogrids.

The global 8-day and 0.05◦ Moderate Resolution ImagingSpectroradiometer (MODIS) snow products(MOD10C2) (http://nsidc.org/data/modis/index.html)during2001–2012wereusedforsnowcoveranalysis.

Theterrestrialwaterstorage(TWS)wasestimatedfromtheGravityRecoveryandClimateExperiment(GRACE)satellite launchedinMarch2002(Tapleyetal.,2004).GRACEproductshaveshownaremarkableprospectinwatermasschange (Wahretal.,2004).TherearethreeinstituteswhichofficiallyprovideGRACEproducts:theCenterforSpaceResearch(CSR)at theUniversityofTexasatAustin,GeoForschungsZentrum(GFZ)andJetPropulsionLaboratory(JPL).TheGRACEdatacanbe accessedfromhttp://www.csr.utexas.edu/grace/.Inthisstudy,theGRACERL5.0monthlysolutionsfromCSRfor2004–2013 wereusedtoderivetheevapotranspirationovertheSRYE.TheCSRproductsprovidemonthlyanomaliesoftotalTWSat 1◦

(4)

etal.,2004).WiththeP,RandGRACEdata,itispossibletocalculatetheevapotranspiration(ET)throughthewaterbalance equation:

ET =P−R−W; (1)

wherePisprecipitation(mm),Risrunoff(mm),andW(mm)istheTerrestrialwaterstoragechange(TWSC),whichisthe differenceoftwosequentialGRACEsolutions.

3.2. Hydrologicalmodel

Alarge-scalelandsurfacehydrologicalmodelnamedastheVariableInfiltrationCapacity(VIC)(Liangetal.,1994,1996; Lohmannetal.,1998)hasbeenusedinthiswork.TheVICmodel,agrid-basedlandsurfacemodel,parameterizesthedominant hydrometeorologicalprocessestakingplaceatthelandsurface-atmosphereinterface.Themodelsolvesbothwaterand energybalanceforindividualgridcells.Amosaicrepresentationoflandcoverandthevariableinfiltrationcapacitycurve accountingforsubgridheterogeneityinsaturatedextentareusedintheVICmodel.Throughachannelnetwork,surface runoffandbaseflowforeachgridcellareroutedtothebasinoutlet(Lohmannetal.,1998).TheVICmodelhasthecapacityto simulatecoldregionhydrologybecauseitadoptsatwolayerenergybalancesnowmodel(CherkauerandLettenmaier,1999; StorckandLettenmaier,1999)whichrepresentssnowaccumulationandablationandafrozensoil/permafrostalgorithm (CherkauerandLettenmaier,1999,2003)thatsolvesforsoilicecontents.FortheVICmodel,aroutingschemeisusedto obtainthedailysimulatedhydrographattheoutlets.TopographydatawereobtainedfromSRTM(resolution:90m×90m) (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp).TheDEM(digitalelevationmodel)datawereusedtocreatetheflow directionfilewhichisneededintheroutingschemeatthe1/12◦

×1/12◦grids.

Theevapotranspiration(ET) intheVICmodel consistsof threecomponents:canopy evaporation,transpirationand evaporationfrombaresoils(Liangetal.,1994).TheETwascalculatedasfollows:

ET=

N

n=1

Cv[n]×(Ec[n]+Et[n])+Cv[N+1]×E1 (2)

whereNisthelandcoverclasses;Cv[n]isthefractionofthenthvegetationtypewithinagridcell,andCv[N+1] isthe

fractionofbaresoilwith

N

n=1

Cv[n]=1.Ec[n] andEt[n] arethecanopyevaporationandtranspirationforthenthlandcover

type,respectively.E1istheevaporationfrombaresoils.Ec,EtandE1areestimatedasafunctionofpotentialevaporation(EP)

basedonthePenman-Monteithequationandotherparametersrelatedtovegetationtypeandsoilmoisture.Inthiswork, evapotranspirationfromthewaterbalanceEq.(1)wasusedtocomparewiththeevapotranspirationfromtheVICmodel.

Zhangetal.(2013)setupamodelingframeworkata1/12◦

×1/12◦ spatialresolutionovertheentireTibetplateau.In thisstudy,theVICmodelsetupfortheSRYEwasadoptedfromZhangetal.(2013)includingsoilandvegetationparameters. VegetationtypeswereobtainedfromtheUniversityofMaryland’s(UMD)1kmGlobalLandCoverproduct(Hansenetal., 2000).Thelandcovertypewasconsideredtobefixedduringthemodelsimulationperiod1961–2013.Therefore,theannual variationofsimulatedETismostlycontrolledbymeteorologicalvariables.

3.3. Statisticalanalysis

ThedischargedatawereusedtoevaluatetheVICmodelsimulations,thecalibrationhastwocriteria:relativeerror(Er)and Nash-Sutcliffeefficiency(ENS)(NashandSutcliffe,1970),whichdescribesthepredictionskillofthesimulatedstreamflow

relativetotheobservations.TheENSandErwascomputedfromthefollowingequations:

ENS=1−

M

m=1

Qobsm −Qsimm

2

M

m=1

Qobsm −Q¯

2

(3)

Er=

M

m=1

Qsimm −Qobsm

M

m=1

Qobsm

(5)

Table1

Recommendedstatisticsforsimulationperformanceratings(Moriasietal.,2007).

Rating ENS Er(%)

Excellent 0.75<ENS≤1.00 |Er|<10 Good 0.65<ENS≤0.75 10≤|Er|<15

Satisfactory 0.50<ENS≤0.65 15≤|Er|<25

Unsatisfactory ENS≤0.50 |Er|≥25

wheretheQobsm meanstheobservedmonthlystreamflow,andtheQsimm isthesimulateddischarge; ¯Q istheobservedmean monthlystreamflow;Misthenumberofmonths.AnENSvaluecloserto1andErcloserto0implybettersimulationresults; seeTable1forthesimulationperformanceratingsappliedinthisstudy(Moriasietal.,2007).

Theprecipitation,temperatureandrunoffvalueswerenormalizedbysubtractingtheirtimeseriesmeanvaluesand dividingbytheirstandarddeviations.Lineartrendanalysisthroughsimpleregressionallowedustoinvestigatelong-term changesofthehistoricaldata.Inthismethod,thesumofsquaredresidualsasthedifferencebetweentheobservedvalues andthefittedvaluesisminimized.Thestatisticalsignificanceofthetrendsinthisstudywassetatthe10%level.

Correlationanalysiswasusedtoexaminethestrengthanddirectionoftherelationshipbetweenthehydrologicaland meteorologicalvariables.Thecorrelationcoefficient(r)iscalculatedusingthePearsonmethod.Thestatisticalsignificance ofthecorrelationswasagainsetatthe10%level.

Climateelasticity,proposedbySchaake(1990),wasappliedtoevaluatethesensitivityofstreamflowtoclimatechange (Fuetal.,2007;Sankarasubramanianetal.,2001;YangandYang,2011).Morespecifically,therelativecontributionof precip-itationandevapotranspirationchangestorunoffchangeswasquantifiedwhereevapotranspirationinsteadoftemperature wasconsideredsinceevapotranspirationbetterrepresentstheeffectsofclimatechangeonbasinwaterbalance(Zhengetal., 2009).Onthelongterm,thebasinwaterstoragechangescanbeneglected,thusthebasinwaterbalancecanberepresented as:

R= P−ET; (5)

Withoutconsideringtheimpactsofhumanactivity,thechangesofrunoffbetweentwoperiods(R)canbeestimated as:

R= RP+RET; (6)

whereRPandRETarechangesinrunoffduetoprecipitationandevapotranspirationchanges,respectively.Rcanbe

estimatedasfollows(Doogeetal.,1999;Liuetal.,2012):

R= RP+RET= (␧pP/P+␧ETET/ET)R; (7)

wherePandETarethechangesofPandETbetweentwoperiods.␧Pand␧ETaretheclimateelasticityofPandETto runoff,whichimpliesthat1%changeinPorETinduces␧%changeinR(Tangetal.,2013).Inthisstudy,twoperiods1990s and2000srelativeto1960–1990wereconsidered.SincestreamflowdataattheJMandMQwereonlyavailableto2009,we definetheperiod2001–2009asthe2000s.Eq.(7)wassetupforeachperiodandthevaluesfor␧Pand␧ETcomputedfrom thetwoequation,toobtaintheimpactofPandETchangesonrunoff.

4. Precipitation,temperature,andrunoffchanges

4.1. Long-termchanges

Fig.2displaysannualtimeseriesofnormalizedrunoff,regionalmeanprecipitationand temperatureforthebasins upstreamoftheJM,MQandTNHstationsduring1961–2013.Precipitationshowspositivetrendsforallthebasins(Fig.2a–c), withincreasingratesof8.3mm/10yr,1.1mm/10yr,and2.1mm/10yrfortheregionsupstreamofJM,MQ,andTNH, respec-tively.However,thetrendsarenotstatisticallysignificantexceptforthebasinupstreamofJM.Insignificantprecipitation changesduring1960–2006werealsosuggestedbyHuetal.(2012),whopointedoutthatannualprecipitationchangesover theSRYEwerenotnoticeableexceptintheupperpartoftheregion.Theentireregionshowsasignificantwarmingtrend dur-ing1961–2013(Fig.2d–f),withameanwarmingrateofabout0.35◦C/10yr.Particularly,anacceleratedwarmingisnoticed fortherecent30yearsacrosstheSRYE.Differentlyfromthechangesinprecipitation,yearlyrunoffshowsadecreasingtrend forallthethreebasins,althoughthetrendsarenotstatisticallysignificantexceptforthatatMQ(decreaseby9.2mm/10yr). AtJMandTNH,therunoffdecreasesby3.2mm/10yrand6.0mm/10yr,respectively.

4.2. Decadalvariation

(6)

Fig.2. Annualtimeseriesofnormalizedbasin-averagedrunoff,precipitationandtemperatureforthebasinsupstreamofJM,MQandTNHstationsforthe period1961–2013.Dashedlinesarethelineartrends.

(7)

Fig.4. Correlationcoefficientsbetweenmonthlyrunoffandprecipitation(a,b)ortemperature(c,d)forcurrentmonth(a,c)andtherelationsbetween currentmonthandpreviousmonth(b,d)overthethreebasinsfor1961–2009.

themeanvaluesfortheperiods1961–1990,1990sand2000s.Amongthesethreeperiods,theperiod1961–1990showsthe highestrunoffinallthreebasins;whiletheflowdramaticallydecreasesinthe1990s(Fig.3a–c)accompaniedbyalower precipitationforallthebasins(Fig.3d–f).Precipitationreboundedinthe2000sandreturnedtoasimilarlevelasduringthe period1961–1990.However,therunoffinthe2000sdidnotreboundtothelevelasinthereferenceperiod.Atthesame time,althoughprecipitationinthe2000swashigherthanthatinthe1990sinallthreebasins,runoffwasalmostthesame inthetwoperiodsexceptatJMwithhigherflowsinthe2000s.Acontinuouswarmingwasobservedforallbasinsduring 1961–2013(Fig.3g–i).ThisresultisconsistentwiththeIntergovernmentalPanelonClimateChange(IPCC)fifthreport, whichrevealsthateachofthepastthreedecadeshasahighertemperaturethanallthepreviousdecadesintheinstrumental records(IPCC,2013).Whyrunoffdidnotrecoverduringthe2000sattheMQandTNHstationsalongwiththerecovered precipitationrelativetotheperiod1961–1990,ZhouandHuang(2012)explainedthattheincreaseinprecipitationmostly occurredinthedryregionoftheSRYEwhereprecipitationismostlyevaporated.Wewillfurtherdiscussandquantifythe impactsofprecipitationandtemperaturechangesonrunoffovertheSRYEinSection5.2.

4.3. Linkagebetweenrunoffandclimatevariables

Throughacorrelationanalysis,thenormalizedannualtimeseriesofprecipitation,temperature,andrunoff(Fig.2)reveal thattheinter-annualrunoffvariationsarehighlyconsistentwiththeprecipitationfluctuations(Fig.2a–c),withcorrelation coefficientsrof0.75,0.86and0.85attheJM,MQandTNH,respectively(significantat10%level).Therelationshipbetween runoffandtemperatureisnegative,lessstrongandinsignificant(Fig.2d–f).Thegoodcorrespondencebetweenrunoffand precipitationvariationssuggeststhatprecipitationplaysadominantroleintherunoffgenerationovertheSRYE.

Fig.4showscorrelationsbetweenmonthlyrunoffandprecipitation/temperaturewithlagsfrom0to1month.There isasignificantpositiverelationshipbetweenprecipitationandrunoffduringJune–Octoberforallthebasins(rvaluesof 0.32–0.70),withthehighestcorrelationsinJune,JulyandSeptember,andthelowestoneinAugust(Fig.4a).Thestrong correlationslastfromsummertoNovemberatMQandTNH(rvaluesof0.27and0.36).Fig.4bexhibitsthecorrelations betweenrunoffandprecipitationinthepreviousmonth.RandPmon-1arepositivelycorrelatedsignificantlyfromMayto

NovemberatJM,whileitlastsfromApriltoDecemberatMQandTNH.ThervaluesarehigherinAugust,Octoberand Novemberthanthosewithazerolag,suggestingthatrunoffisinfluencedbyprecipitationnotonlyincurrentmonthbut alsopreviousmonthduetothedelayofflowtravelingdownstream.ItwasalsonoticedthatthervaluesbetweenRandPmon-1

atMQandTNHaregenerallylargerthanthoseforJMduringApril–November(Fig.4b),indicatingthattheconcentration timeofstreamflowclosetothemonthlyscaleconsideredforprecipitationishigherdownstreamthanupstream.

(8)

Fig.5.MonthlytimeseriesofsimulatedandobservedstreamflowfortheSRYEatTNHstationduringthecalibrationperiod1961–1990(a)andthevalidation period1991–2013(b).

StrongnegativerelationshipalsoexistsbetweenRandTmon-1duringApril–JunforMQandTNH(negativervaluesinthe

range0.31–0.62)(Fig.4d).Thereasonwhyrunoffisnegativelycorrelatedwithtemperatureduringspringandearlysummer isstillunknown.AsignificantpositiverelationshipbetweenRandTmon-1inNovemberisobserved,withrvaluesintherange

0.33–0.41(Fig.4d)forallbasins.Thestrongpositiverelationsbetweenrunoffandtemperatureintheautumnmaysuggest afastmeltofsnowfalltoproducerunoffinthisperiod.ThemodelingresultsinZhangetal.(2013)alsosuggestedasnowfall runoffpeakinOctoberovertheSRYE.

5. Hydrologicimpactsofmeteorologicalchanges

ThecorrelationanalysisinSection4.3hassuggestedadominantroleofprecipitationinrunoffgenerationovertheSRYE. However,theoveralldecreasingrunofftrendoverthestudyperiodwasaccompaniedbyanoveralllong-termincreasing trendinprecipitation(Fig.2).Thisresultmayimplythatotherfactorsalsoaffectflowvariations.Onthedecadaltimescales (Fig.3),precipitationinthe2000swas3.1%and5.3%higherthanthatinthe1990sforMQandTNH,whereasrunoffwas almostthesameinthesetwotimeperiods(Fig.3b–c).Thismaysuggestareductioninrunoffgeneration.Theincrease inevapotranspirationinarapidlywarmingclimatemaybethereason.Sinceactualevapotranspirationobservationswith long-termrecordsatlargescalesarenotavailableintheSRYE,wequantifiedtheevapotranspirationchangesinbothtime andspacewiththeVIClandsurfacemodel.TheVICmodelwasevaluatedthroughcomparisonsbetweensimulatedand observedstreamflowattheTNHstation.

5.1. Calibrationandvalidationofhydrologicalmodel

Fig.5presentsmonthlytimeseriesofsimulatedandobservedstreamflowattheTNHstationduring1961–2013.Regarding theuseofthehydrologicalmodelforsimulatingrunoffchangesduetochangesinmeteorologicalconditions,wesplitthe studyperiodintocalibrationperiod(1961–1990)andvalidationperiod(1991–2013).TheVICmodelsimulationscaptured thevariationsandmagnitudeofstreamflowwellduringboththecalibrationandvalidationperiods(Fig.5),withthe Nash-Sutcliffeefficiency(ENS)andrelativeerror(Er)valuesof0.90,and−1.4%,respectivelyinthecalibrationperiodand0.84and 2.8%inthevalidationperiod.Thisperformancecanbeclassifiedasgoodforthecalibrationperiodandsatisfactoryforthe validationperiodfollowingtheratingsinTable1.

(9)

Fig.6.EstimatesofmonthlyactualevapotranspirationfromtheVICmodelandGRACEdatafor2004–2013.

Fig.7.Spatialdistributionofmeanannualprecipitation,evapotranspirationandrunoffinthereferenceperiod1961–1990(a–c),andtheirchangesinthe 1990s(d–f)and2000s(g–i)relativetothereferenceperiod.

actualevapotranspirationestimatessuggeststhattheVICsimulatedETisreasonableandcanbeusedtoquantifytheET changesovertheSRYE.

5.2. Meteorologicalchangeimpactsonannualrunoff

(10)

Table2

Precipitation(P),runoff(R)andevapotranspiration(ET)changesinthe1990sand2000scomparedwiththereferenceperiod1961–1990forJM,JM-MQ, MQ-TNHandtheentireSRYE.

JM JM-MQ MQ-TNH TNH

1961–1990 427.1 682.5 482.3 525.3

P 1991–2000 415.2(−2.8%) 635.4(−6.9%) 454.4(−5.8%) 497.9(−5.2%) 2001–2009 442.8(3.7%) 637.6(−6.6%) 506.6(5.1%) 524.4(−0.2%)

1961–1990 99.3 274.3 178.2 180.8

R 1991–2000 75.7(−23.8%) 225.4(−17.8%) 133.8(−24.9%) 143.1(−20.8%) 2001–2009 88.1(−11.3%) 207.2(−24.5%) 144.8(−18.7% 144.9(−19.9%)

1961–1990 294.8 417.9 328.1 344.3

ET 1991–2000 307.1(4.2%) 425.6(1.8%) 333.8(1.7%) 352.2(2.3%)

2001–2009 320.4(8.7%) 441.6(5.7%) 352.6(7.5%) 369(7.1%)

Table3

Contributionofprecipitationandevapotranspirationtorunoffchangesinthe1990sand2000s.

Time Formula Contribution

P E

JM 1991–2000 −23.8=4×(−2.8)+(−3)×4.2 47% 53%

2001–2009 −11.3=4×3.7+(−3)×8.7 100%

JM-MQ 1991–2000 −17.8=2.09×(−6.9)+(−1.88)×1.8 81% 19%

2001–2009 −24.5=2.09×(−6.6)+(−1.88)×5.7 56% 44%

MQ-TNH 1991–2000 −24.9=2.97×(−5.8)+(−4.51)×1.7 69% 31% 2001–2009 −18.7=2.97×5.1+(−4.51)×7.5 100%

TNH 1991–2000 −20.8=2.8×(−5.2)+(−2.72)×2.3 70% 30% 2001–2009 −19.9=2.8×(−0.2)+(−2.72)×7.1 3% 97%

the1990sand2000srelativetothereferenceperiod.Thedatashowthehighestannualprecipitationinthesoutheastofthe SRYE,withameanannualvalueofabout700–800mm,anddecreasingtowardsthenorthwest,withannualprecipitationas lowas150–250mmintheveryupstreampartsoftheSRYE(Fig.7a).Thespatialpatternsofactualevapotranspirationand runoff(Fig.7bandc)generallyfollowthatofprecipitation,withthehighestevapotranspirationandrunoffinthesoutheastof thebasinwherethereissufficientwaterforevaporation.TheregionJM-MQ(Fig.7c)inthesoutheastisalsothemajorrunoff generationarea(annualRof300–500mm)intheSRYE.ThedriestareaisintheupstreamregionofJM(annualR<150mm) andtheverydownstreampartsoftheSRYE(Fig.7c).

Precipitationconsistentlydecreasedalmostovertheentirebasininthe1990s(Fig.7d)by2.8–6.9%relativetothereference periodoverthethreesub-regions(Table2).Thespatialpatternofrunoffchangesinthe1990sissimilartothatofprecipitation (Fig.7f),butwithastrongerdecreaseof20.8%(Table2).However,actualevapotranspirationshowspositivechangesinthe 1990s(Fig.7e),withameanincreaseof2.3%(Table2),whichisconsistentwiththecontinuouswarminginthe1990s (Fig.3).Therefore,thedecreaseinprecipitationandincreaseinevapotranspirationbothcontributedtotherunoffdecrease inthe1990s.Inthe2000s,precipitation(Fig.7g)exhibitedinhomogeneouschangeoverthebasin,withanincreaseinthe upstreamregionsofJM(3.7%)andMQ-TNH(5.1%),opposedtoadecreaseinthemajorrunoffgenerationareaforJM-MQ (6.6%).Despitethesechanges,precipitationalmoststayedunchangedforthebasinasawhole(Table2).Inthe2000s,the patternofrunoffchangesdifferedfromthatofprecipitation(Fig.7gandi).RunoffdecreasedintheupstreampartsofJM andMQ-TNH(11.3–18.9%)whileprecipitationincreased,andtherunoffdecreasedevenmoreintheregionJM-MQ(24.5%), leadingtoameandecreaseinrunoffbynearly20%overtheentireSRYE.Alongwiththerapidwarminginthe2000s(Fig.3), evapotranspirationlargelyincreasedinthe2000s(Fig.7h)relativetothereferenceperiod(meanincreaseof7.1%;Table2). ResultsinFig.7andTable2alsosuggestthattherunoffchangesinthe1990sand2000sovertheSRYEaretheresultofboth precipitationandevapotranspirationchangesassociatedwiththewarmingclimate.However,whatisthecontributionof eachmeteorologicalvariabletotherunoffchangesovertheSRYE?

(11)

Fig.8. Spatialdistributionofmeanmonthlysnowcoverage(%)intheSRYEfor2001–2012.

ofevapotranspiration(44%;Table3).Forthebasinaverage,evapotranspirationcontributed97%oftherunoffchangesin the2000s(Table3),suggestingthattheinfluenceofevapotranspirationontherunoffisincreasingalongwiththeincreased warmingovertheSRYE.Thismaypartlyexplainthereasonwhyprecipitationrecoveredtothelevelof1960–1990inthe 2000sbutrunoffwasstilllow(Fig.3).TheincreasedprecipitationinJMandMQ-TNHmostlyevaporatedduetotherapid warminginthe2000s.AnotherreasonwasthatprecipitationdecreasedinthemajorrunoffgenerationareaJM-MQinthe 2000s,resultinginalargerrunoffdecreaseaccompaniedwiththeincreasedevapotranspiration(5.7%;Table2).

5.3. Meteorologicalchangeimpactsonseasonalsnowcoverandspringflow

TheSRYEisextensivelycoveredbysnowwithameanannualcoverageofabout18%basedontheMOD10C2dataduring 2001–2012(Fig.8).TheregionupstreamofJMhasthemostextensivesnowcover,withmeanannualcoverageofabout 21%,whiletheJM-MQ(16%)andMQ-TNH(14%)areashaverelativelysmallercoverage.Thesnowpackbeginstoaccumulate inOctober,withthehighestconcentrationinthesoutheastoftheupstreambasinsandtheAnyemaqenmountains(Fig.8). ThesnowcoverstartstomeltinAprilandMay,andmostlymeltsawayinJuneexceptfortheAnyemaqenMountains.We examinedthetrendsofsnowcoverforeachmonthduring2001–2012andfoundthatitdecreasedforallthebasinsinMayby 1.1–1.3%/yr(Fig.9a).Fig.9b–dpresentthenormalizedvariationsoftemperatureandsnowcoverinMayduring2001–2012 forthethreebasins.ThetemperatureinMayexhibitsawarmingtrendduring2001–2012andisnegativelycorrelatedwith thesnowcovervariations(Fig.9b–d),withhighcorrelationcoefficientsof−0.7atJM,−0.8atMQand−0.85atTNH.

(12)

Fig.9. TrendsofsnowcoverageinMayinthebasinsupstreamofJM,MQandTNH(a),andnormalizedsnowcoverageandtemperatureinMayduring 2001–2012inthethreebasins(b–d).

(13)

the1980s–2000s,consistentwiththeshiftofspringpeakflowsatJM.ForMQandTNH(Fig.10c–d),thespringflowrises moresmoothlythanatJMandseldomhasclearsharppeaksduringMarch–May.ThisisprobablybecausetheMQandTNH areashavelesssnowcoverageandtherainfallrunoffplaysamoreimportantroleinthespringandsummerrunoffflowsof downstreamareas.

6. Discussion

Ouranalysessuggestthat,inthe1990s,runoffchangesovertheSRYEwerecausedbybothdecreaseinprecipitationand increaseinevapotranspiration,withthedecreaseinprecipitationplayingadominaterole.Inthe2000s,runoffchangeswere mainlycausedbytheincreaseinevapotranspirationespeciallyinthedryregionsupstreamofJMandMQ-TNH(runoffratios of0.21–0.34).ThewidespreadoflakesandwetlandsatJMmayfavortheincreaseinevapotranspirationalongwithclimate warming.Inthiswork,weonlytookmeteorologicalchangesandvariationsintoconsideration,whiletheimpactsofland coverchangesonrunoffwerenotanalyzedbecausetheSRYElessaffectedbyhumanactivities(Cuoetal.,2013,2015).Cuo etal.(2013),throughamodelingapproach,reportedthattherunoffchangesupstreamofTNHduringthepastfewdecades weremostlycausedbymeteorologicalchanges,andtheimpactsoflandcoverchangesonrunoffchangeswereverysmall. However,Zhengetal.(2009),usingaclimateelasticityapproach,estimatedthatthelandcoverchangescontributedfor morethan70%totherunoffreductioninthe1990s.Theinconsistenciesbetweenourandtheirconclusionsmaybepartly causedbythedifferentapproachesused.StudiesinotherbasinsintheTibetanPlateausuggestedthatlandcoverchangeand humanactivitiessuchassurfacewaterandgroundwaterexploitation,newwater-relatedpolicyimplementation,agricultural productionactivitiesmayexertgreatinfluenceonrunoffchanges(Zhangetal.,2015;PervezandHenebry,2015;Huoetal., 2008).Infact,inawarmingclimate,theSRYEisundergoinggreatchanges,suchaswetlandandfrozensoilchanges,aswell aslakesexpansion,whichmayresultinlandcoverchanges.Thegrasslandareaafter1990decreasedbyabout10%relative tothepreviousyears,andthesandylandincreasedbyaround4%overtheSRYE(Zhengetal.,2009).Limitedbytheharsh livingconditions,thepopulationsizeissmallinthisregion.Theurbanizationandindustrializationareveryslowaswell,thus waterabstractionshavenotchangedtoomuch.Whilethenumberoflivestockincreasedthreefoldduring1970–2000inthe areaupstreamofHHY(Wangetal.,2000),waterabstractionsforlivestockcertainlyincreased.Meanwhile,ahydropower 17KmdownstreamofElinglakewasbuildin1998andinoperationsince2001.Towhatextentthesechangesandhuman activitiesareresponsibleforthedecreasingrunoffshouldbeconsideredinthefuturework.

ThereareextensivefrozensoilsintheSRYE,whichisessentialtopreservethewaterresources(Lietal.,2012).Along withthewarmingclimate,manystudieshavesuggestedthattheTPisexperiencingpermafrostdegradation(ChengandJin, 2012;ChengandWu,2007;Wuetal.,2007).Theincreaseinactivelayerthicknessofpermafrostduetowarmertemperature leadstomorewaterforevaporationandhencereducedrunoff.Atthesametime,thegraduallythickenactivelayermayhold morewaterinthesoillayersandleadtolesssurfacerunoff.Althoughitisacceptedthatclimatechangeisoneofthemajor driversforhydrologicalchanges,theeffectsofpermafrostdegradationonrunoffprocessesstillremaincontroversial.Thus, furtherresearchisneededtoexploretowhatextentpermafrostdegradationmightimpactrunoffchangesovertheSRYE.In thecomplexbackgroundofenvironmentchangesincludingclimatechange,landcoverchanges,frozensoildegradationand humanactivities,soilmoistureandgroundwatermayalsochange,thusleadingtodifferentconditionsofrunoffgeneration. Thelong-termlineartrendsofprecipitation,runoffandtemperature(Fig.2)presentageneraltemporalchangeofthese variablesinthepast50years.However,giventherelativelyshortrecords,thesealsomightbetheinfluenceofinter-annual anddecadalvariability(Fig.3)(Hannafordetal.,2013;Willems,2013b).Fig.2clearlyexhibiteddecadalvariationsinrunoff andprecipitation.AsshownbyWillems(2013a)andTayeandWillems(2013)andothersforotherregionsintheworld, thedecadalvariationsmightbeexplainedbyatmosphericoroceanographicoscillationssuchasElNi ˜nosouthernoscillation (ENSO),thePacificDecadalOscillation(PDO),theSouthernOscillationIndex(SOI),theNorthAtlanticOscillation(NAO),and theAtlanticMultidecadalOscillation(AMO).AstudyintheBlueNileriverbasininEastAfricashowedthatmulti-decadal oscillationsmodulatedthehighstreamflowsandthattheinfluenceofwatershedcharacteristicschangesisverysmall(Taye etal.,2015).IntheSRYE,thetemporalchangesinrunoffappearexplainedbybothlong-termtrendsanddecadalvariations ofclimate.

AnnualrunoffandannualmeantemperaturewerefoundnegativelycorrelatedovertheSRYEduring1961–2009,which isconsistentwiththefindingoftheclimatesensitivityanalysiswiththeVICmodel,whichshowedthattheincreasein evapotranspirationalongwiththewarmingclimatewasthemainfactorforrunoffdecreaseinthe2000s.Attheannual scale,thenegativecorrelationbetweenrunoffandtemperaturewasnotsignificant.Thisisdifferentatmonthlyscale,where significantnegativecorrelationwasfoundduringMarchtoJune(Fig.4candd).Inthesemonths,theevapotranspirationmay increaseduetothewarmingtemperature,explainsthedropinstreamflow.Inthewetseason(July–September),therewas nosignificantrelationshipbetweentemperatureandprecipitation,becauseprecipitationwasquitehigh,andtemperature hadarelativelysmalleffectontherunoffchanges.Inspringandlatesummer,precipitationisnotthathighasinthewet season,thusitseffectonrunoffisveryweak,andtheroleoftemperatureonrunoffisbiggerrelativetoprecipitation.This mayexplainwhyrunoffandtemperaturearenotsignificantlycorrelatedatannualscales.

(14)

simulatechangesinrunoffasaresultofmeteorologicalchangesbeyondtherangeofmeteorologicalconditions consid-eredduringthestandardmodelcalibrationandvalidationasconsideredinthisstudy;seeRefsgaardetal.(2014)andVan SteenbergenandWillems(2012)forpotentialmethods.

7. Conclusions

Inthiswork,wehaveinvestigatedthespatial-temporalchangesofhydrologicalandmeteorologicalvariablesandthe linkagebetweenrunoffandprecipitation/temperatureovertheSRYEduring1961–2013.Theimpactsofprecipitationand temperatureonthehydrologicalchangeswerequantifiedthroughclimateelasticitybyapplyingtheVIClandsurface hydro-logicalmodel.TheimpactsofthewarmingclimateontheseasonalsnowcoverandspringstreamflowovertheSRYEwere alsoexamined.Themainfindingsofthisstudyareasbelow:

(1) Duringtheperiod1961–2013,annualprecipitationovertheSRYEexhibitedweaklyincreasingtrends,whilethe pre-cipitationupstreamofJMincreasedsignificantlybyabout8.3mm/10yr.Temperatureshowedconsistentlywarming trendsinallthebasinsoftheSRYEwithameanwarmingrateof0.35◦C/10yr.Meanwhile,runoffdecreasedatthethree hydrologicalstationsbyabout3.2mm/10yr,9.2mm/10yrand6.0mm/10yrattheJM,MQandTNHstations,respectively. (2) Relativetothereferenceperiod1961–1990,runoffdecreasedbyabout21%inthe1990sovertheSRYE.Thedecrease inprecipitationandtheweakincreaseinevapotranspirationbothcontributedtotherunoffdropinthe1990s. How-ever,decreaseinprecipitationplayedamoreimportantrole(70%)thanincreaseinevapotranspiration(30%)inthis runoffreduction.Runoffdecreasedbyabout20%inthe2000s,duringwhichprecipitationcontributedfor3%tothe runoffreduction,whiletheincreaseinevapotranspirationaccountedfor97%.DuetostrongwarmingovertheSRYE, evapotranspirationisplayinganincreasinglyimportantroleinaffectingrunoffchangesinrecentdecades.

(3) AnalysisoftheMODISdatashowadecreasedtrendofsnowcoverinMayovertheSRYEduring2001–2012;thischange wascloselyrelatedtothestrongwarmingtemperatureinthepastdecade.Inthepast30years,thespringpeakflow mainlycausedbysnowmeltoccurredearlierforabout15daysattheJMstation.Thisshiftinpeakflowtimingisexpected tobeduetoanearliersnowmeltingassociatedwiththeclimatewarmingovertheSRYE.

Conflictofinterest

Duetotheconflictofinterest,wewouldsuggestavoidthepotentialreviewersfromthesameinstituteasthefirstand correspondingauthors-theInstituteofTibetanPlateauResearch,CAS.

Acknowledgments

WethankProf.ZhongboYuforhishelpfulcomments.ThisworkwassupportedbytheNationalNaturalScienceFoundation ofChina(41190081,41171051)and the“StrategicPriorityResearchProgram(B)”of theChineseAcademyofSciences (XDB03030209).

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ejrh.2016.03.003.

References

Barnett,T.P.,Adam,J.C.,Lettenmaier,D.P.,2005.Potentialimpactsofawarmingclimateonwateravailabilityinsnow-dominatedregions.Nature438 (7066),303–309,http://dx.doi.org/10.1038/nature04141.

Cai,X.,Rosegrant,M.W.,2004.OptionalwaterdevelopmentstrategiesfortheYellowRiverbasin:balancingagriculturalandecologicalwaterdemands. WaterResour.Res.40(8),http://dx.doi.org/10.1029/2003wr002488,n/a–n/a.

Chen,L.,Liu,C.,Li,Y.,Wang,G.,2007.ImpactsofclimaticfactorsonrunoffcoefficientsinsourceregionsoftheHuangheRiver.Chin.Geogr.Sci.17(1), 047–055,http://dx.doi.org/10.1007/s11769-007-0047-4.

Cheng,G.,Jin,H.,2012.PermafrostandgroundwaterontheQinghai-TibetPlateauandinnortheastChina.Hydrol.J.21(1),5–23, http://dx.doi.org/10.1007/s10040-012-0927-2.

Cheng,G.,Wu,T.,2007.Responsesofpermafrosttoclimatechangeandtheirenvironmentalsignificance,Qinghai-TibetPlateau.J.Geophys.Res.112(F2), http://dx.doi.org/10.1029/2006jf000631.

Cherkauer,K.A.,Lettenmaier,D.P.,2003.Simulationofspatialvariabilityinsnowandfrozensoil.J.Geophys.Res.108(D22),8858, http://dx.doi.org/10.1029/2003jd003575.

Cherkauer,K.A.,Lettenmaier,D.P.,1999.HydrologiceffectsoffrozensoilsintheupperMississippiRiverbasin.J.Geophys.Res.104(D16),19599–19610. Cuo,L.,Zhang,Y.,Gao,Y.,Hao,Z.,Cairang,L.,2013.Theimpactsofclimatechangeandlandcover/usetransitiononthehydrologyintheupperYellow

Riverbasin,China.J.Hydrol.502,37–52,http://dx.doi.org/10.1016/j.jhydrol.2013.08.003.

Cuo,L.,Zhang,Y.,Zhu,F.,Liang,L.,2015.CharacteristicsandchangesofstreamflowontheTibetanPlateau:areview.J.Hydrol.:Reg.Stud.2,49–68. Dooge,J.C.I.,Bruen,M.,Parmentier,B.,1999.Asimplemodelforestimatingthesensitivityofrunofftolong-termchangesinprecipitationwithouta

changeinvegetation.Adv.WaterResour.23,153–163,http://dx.doi.org/10.1016/S0309-1708(99)00019-6.

Fu,G.,Chen,S.,Liu,C.M.,2004.Hydro-climatictrendsoftheYellowRiverbasinforthelast50years.Clim.Change65,149–178.

(15)

Hannaford,J.,Buys,G.,Stahl,K.,Tallaksen,L.M.,2013.Theinfluenceofdecadal-scalevariabilityontrendsinlongEuropeanstreamflowrecords.Hydrol. EarthSyst.Sci.17,2717–2733.

Hansen,M.,DeFries,R.,Townshend,J.R.G.,Sohlberg,R.,2000.Globallandcoverclassificationat1kmresolutionusingadecisiontreeclassifier.Int.J. RemoteSens.21,1331–1365.

Hu,Y.,Maskey,S.,Uhlenbrook,S.,Zhao,H.,2011.StreamflowtrendsandclimatelinkagesinthesourceregionoftheYellowRiver,China.Hydrol.Process. 25(22),3399–3411,http://dx.doi.org/10.1002/hyp.8069.

Hu,Y.,Maskey,S.,Uhlenbrook,S.,2012.TrendsintemperatureandrainfallextremesintheYellowRiversourceregion,China.Clim.Change110(1–2), 403–429,http://dx.doi.org/10.1007/s10584-011-0056-2.

Huo,Z.,Feng,S.,Kang,S.,Li,W.,Chen,S.,2008.Effectsofclimatechangesandwater-relatedhumanactivitiesonannualstreamflowsoftheShiyangRiver basininaridnorth-westChina.Hydrol.Process.22,3155–3167.

IPCCAR5,2013.Climatechange2013:Thephysicalsciencebasis,inContributionofWorkingGroupI(WGI)totheFifthAssessmentReport(AR5)ofthe IntergovernmentalPanelonClimateChange(IPCC).

Lan,Y.,Kang,E.,Ma,Q.,Yang,W.,Yao,Z.,1999.RunoffforecastmodelforinflowtothelongyangxiareservoirintheUpperYellowRiverbasinduring spring.J.Glaciol.Geocryol.21(4),391–395.

Lan,Y.,etal.,2010a.ResponseofrunoffintheheadwaterregionoftheYellowRivertoclimatechangeanditssensitivityanalysis.J.Geogr.Sci.20(6), 848–860,http://dx.doi.org/10.1007/s11442-010-0815-4.

Lan,Y.,etal.,2010b.ResponseofrunoffinthesourceregionoftheYellowRivertoclimatewarming.Quat.Int.226(1–2),60–65, http://dx.doi.org/10.1016/j.quaint.2010.03.006.

Li,L.,Shen,H.,Dai,S.,Xiao,J.,Shi,X.,2012.ResponseofrunofftoclimatechangeanditsfuturetendencyinthesourceregionofYellowRiver.J.Geogr.Sci. 22(3),431–440,http://dx.doi.org/10.1007/s11442-012-0937-y.

Li,Z.,Liu,X.,Ma,T.,Kejia,D.,Zhou,Q.,Yao,B.,Niu,T.,2013.Retrievalofthesurfaceevapotranspirationpatternsinthealpinegrassland–wetlandecosystem applyingSEBALmodelinthesourceregionoftheYellowRiver,China.Ecol.Modell.270,64–75,http://dx.doi.org/10.1016/j.ecolmodel.2013.09.004. Liang,X.,Lettenmaier,D.P.,Wood,E.F.,Burges,S.J.,1994.Asimplehydrologicallybasedmodeloflandsurfacewaterandenergyfluxesforgeneral

circulationmodels.J.Geophys.Res.99(D17),14415–14428.

Liang,X.,Wood,E.F.,Lettenmaier,D.P.,1996.SurfacesoilmoistureparameterizationoftheVIC-2Lmodel:evaluationandmodification.Glob.Planet. Change13,195–206.

Liu,X.,Liu,C.,Luo,Y.,Zhang,M.,Xia,J.,2012.DramaticdecreaseinstreamflowfromtheheadwatersourceinthecentralrouteofChina’swaterdiversion project:climaticvariationorhumaninfluence?J.Geophys.Res.D.Atmos.117(D6),http://dx.doi.org/10.1029/2011jd016879.

Lohmann,D.,Raschke,E.,Nijssen,B.,Lettenmaier,D.P.,1998.Regionalscalehydrology:I.FormulationoftheVIC-2Lmodelcoupledtoaroutingmodel. Hydrol.Sci.J.43(1),131–141,http://dx.doi.org/10.1080/02626669809492107.

Lu,A.,Jia,S.,Yan,H.,Yang,G.,2009.TemporalvariationsandtrendanalysisofthesnowmeltrunofftimingacrossthesourceregionsoftheYangtzeRiver, YellowRiverandLancangRiver.Resour.Sci.31(10),1704–1709(inChinesewithEnglishabstract).

Moriasi,D.N.,Arnold,J.G.,VanLiew,M.W.,Bingner,R.L.,Harmel,R.D.,Veith,T.L.,2007.Modelevaluationguidelinesforsystematicquantificationof accuracyinwatershedsimulations.Trans.ASABE50,885–900.

Morrow,E.,Mitrovica,J.X.,Fotopoulos,G.,2011.Waterstorage,netprecipitation,andevapotranspirationinthemackenzieriverbasinfromoctober2002 toseptember2009inferredfromGRACEsatellitegravitydata.J.Hydrometeorol.12(3),467–473,http://dx.doi.org/10.1175/2010jhm1278.1. Nash,J.E.,Sutcliffe,J.V.,1970.RiverflowforecastingthroughconceptualmodelspartI—adiscussionofprinciples.J.Hydrol.10(3),282–290.

Pervez,M.S.,Henebry,G.M.,2015.AssessingtheimpactsofclimateandlanduseandlandcoverchangeonthefreshwateravailabilityintheBrahmaputra Riverbasin.J.Hydrol.:Reg.Stud.3,285–311.

Qin,D.H.,Liu,S.Y.,Li,P.J.,2006.Snowcoverdistribution,variability,andresponsetoclimatechangeinwesternChina.J.Clim.19(9),1820–1833. Ramillien,G.,Frappart,F.,Güntner,A.,Ngo-Duc,T.,Cazenave,A.,Laval,K.,2006.TimevariationsoftheregionalevapotranspirationratefromGravity

RecoveryandClimateExperiment(GRACE)satellitegravimetry.WaterResour.Res.42(10),http://dx.doi.org/10.1029/2005wr004331,n/a–n/a. Refsgaard,J.C.,Madsen,H.,Andréassian,V.,Arnbjerg-Nielsen,K.,Davidson,T.A.,Drews,M.,Hamilton,D.,Jeppesen,E.,Kjellström,E.,Olesen,J.E.,

Sonnenborg,T.O.,Trolle,D.,Willems,P.,Christensen,J.H.,2014.Aframeworkfortestingtheabilityofmodelstoprojectclimatechangeandits impacts.Clim.Change122,271–282.

Rodell,M.,Famiglietti,J.S.,Chen,J.,Seneviratne,S.I.,Viterbo,P.,Holl,S.,Wilson,C.R.,2004.BasinscaleestimatesofevapotranspirationusingGRACEand otherobservations.Geophys.Res.Lett.31(20),http://dx.doi.org/10.1029/2004gl020873.

Sankarasubramanian,A.,Vogel,R.M.,Limbrunner,J.F.,2001.ClimateelasticityofstreamflowintheUnitedStates.WaterResour.Res.37(6),1771–1781, http://dx.doi.org/10.1029/2000WR900330.

Sato,Y.,Ma,X.,Xu,J.,Matsuoka,M.,Zheng,H.,Liu,C.,Fukushima,Y.,2008.Analysisoflong-termwaterbalanceinthesourceareaoftheYellowRiver basin.Hydrol.Process.22(11),1618–1629,http://dx.doi.org/10.1002/hyp.6730.

Schaake,J.C.,1990.In:Waggoner,P.E.(Ed.),FromClimatetoFlow,inClimateChangeandU.S.WaterResources.JohnWiley,NewYork,pp.177–206 (chapter8).

Stewart,I.T.,2009.Changesinsnowpackandsnowmeltrunoffforkeymountainregions.Hydrol.Process.23(1),78–94, http://dx.doi.org/10.1002/hyp.7128.

Storck,P.,Lettenmaier,D.P.,1999.Predictingtheeffectofaforestcanopyongroundsnowaccumulationandablationinmaritimeclimates.In:Troendle, C.(Ed.),67thWesternSnowConference.Colo.StateUniv,pp.1–12.

Swenson,S.,Yeh,P.J.F.,Wahr,J.,Famiglietti,J.,2006.AcomparisonofterrestrialwaterstoragevariationsfromGRACEwithinsitumeasurementsfrom Illinois.Geophys.Res.Lett.33(16),http://dx.doi.org/10.1029/2006gl026962.

Syed,T.H.,Famiglietti,J.S.,Rodell,M.,Chen,J.,Wilson,C.R.,2008.AnalysisofterrestrialwaterstoragechangesfromGRACEandGLDAS.WaterResour.Res. 44(2),http://dx.doi.org/10.1029/2006wr005779,n/a–n/a.

Tang,Y.,Tang,Q.,Tian,F.,Zhang,Z.,Liu,G.,2013.ResponsesofnaturalrunofftorecentclimaticvariationsintheYellowRiverbasin,China.Hydrol.Earth Syst.Sci.17(11),4471–4480,http://dx.doi.org/10.5194/hess-17-4471-2013.

Tapley,B.D.,Bettadpur,S.,Watkins,M.,Reigber,C.,2004.Thegravityrecoveryandclimateexperiment:missionoverviewandearlyresults.Geophys.Res. Lett.31(9),http://dx.doi.org/10.1029/2004gl019920,n/a–n/a.

Taye,M.T.,Willems,P.,2013.IdentifyingsourcesoftemporalvariabilityinhydrologicalextremesoftheupperBlueNilebasin.J.Hydrol.499,61–70. Taye,M.,Willems,P.,Block,P.,2015.ImplicationsofclimatechangeonhydrologicalextremesintheBlueNilebasin:areview.J.Hydrol.:Reg.Stud.4,

280–293.

VanSteenbergen,N.,Willems,P.,2012.Methodfortestingtheaccuracyofrainfall-runoffmodelsinpredictingpeakflowchangesduetorainfallchanges, inaclimatechangingcontext.J.Hydrol.414–415,425–434.

Wahr,J.,Swenson,S.,Zlotnicki,V.,Velicogna1,I.,2004.Time-variablegravityfromGRACE:firstresults.Geophys.Res.Lett.31(11), http://dx.doi.org/10.1029/2004gl019779.

Wang,G.,Shen,Y.,Cheng,G.,2000.Eco-environmentalchangesandcausalanalysisinthesourceregionsoftheYellowRiver.J.Glaciol.Geocryol.,2000–03 (inChinesewithEnglishabstract).

Wang,H.,Yang,Z.,Saito,Y.,Liu,J.P.,Sun,X.,2006.InterannualandseasonalvariationoftheHuanghe(YellowRiver)waterdischargeoverthepast50 years:connectionstoimpactsfromENSOeventsanddams.Glob.Planet.Change50(3-4),212–225,http://dx.doi.org/10.1016/j.gloplacha.2006.01.005. Wang,Y.,Wang,X.,Li,C.,Wu,F.,Yang,Z.,2014.SpatiotemporalanalysisoftemperaturetrendsunderclimatechangeinthesourceregionoftheYellow

River,China.Theor.Appl.Climatol.,http://dx.doi.org/10.1007/s00704-014-1112-4.

(16)

Willems,P.,2013b.Adjustmentofextremerainfallstatisticsaccountingformultidecadalclimateoscillations.J.Hydrol.490,126–133.

Wu,Q.,Dong,X.,Liu,Y.,Jin,H.,2007.Responsesofpermafrostontheqinghai-tibetplateau,China,toclimatechangeandengineeringconstruction.Arct. Antarct.Alp.Res.39(4),682–687,http://dx.doi.org/10.1657/1523-0430(07-508)[WU]2.0.CO;2.

Yang,H.,Yang,D.,2011.Derivationofclimateelasticityofrunofftoassesstheeffectsofclimatechangeonannualrunoff.WaterResour.Res.47(7), http://dx.doi.org/10.1029/2010wr009287,n/a–n/a.

Yang,D.,Li,C.,Hu,H.,Lei,Z.,Yang,S.,Kusuda,T.,Koike,T.,Musiake,K.,2004.AnalysisofwaterresourcesvariabilityintheYellowRiverofChinaduringthe lasthalfcenturyusinghistoricaldata.WaterResour.Res.40(6),http://dx.doi.org/10.1029/2003wr002763,n/a–n/a.

Yang,J.,Ding,Y.,Liu,S.,Liu,J.,2007.VariationsofsnowcoverinthesourceregionoftheYangtzeandYellowRiverinChinabetween1960and1999.J. Glaciol.53(182),420–426.

Zhang,S.,Jia,S.,Liu,C.M.,2004a.StudyonthechangesofwatercycleanditsimpactsinthesourceregionoftheYellowRiver.SciChina(SerE)34(Suppl. 1),117–125,http://dx.doi.org/10.1360//04ez0012.

Zhang,Y.,Li,T.,Wang,B.,2004b.DecadalchangeofthespringsnowdepthovertheTibetanPlateau:theassociatedcirculationandinfluenceontheeast summermonsoon.J.Clim.17,2780–2793.

Zhang,J.,Li,G.,Liang,S.,2012.TheresponseofriverdischargetoclimatefluctuationsinthesourceregionoftheYellowRiver.Environ.lEarthSci.66(5), 1505–1512,http://dx.doi.org/10.1007/s12665-011-1390-4.

Zhang,L.,Su,F.,Yang,D.,Hao,Z.,Tong,K.,2013.DischargeregimeandsimulationfortheupstreamofmajorriversoverTibetanPlateau.J.Geophys.Res. Atmos.118,8500–8518,http://dx.doi.org/10.1002/jgrd.50665.

Zhang,A.,Zheng,C.,Wang,S.,Yao,Y.,2015.AnalysisofstreamflowvariationsintheHeiheRiverBasinnorthwestChina:trends,abruptchanges,driving factorsandecologicalinfluences.J.Hydrol.:Reg.Stud.3,106–124.

Zhao,F.,Xu,Z.,Huang,J.,2007.Long-termtrendandabruptchangeformajorclimatevariablesintheupperyellowriverbasin.ActaMeteorol.Sin.21(2), 204–214.

Zhao,F.,Xu,Z.,Zhang,L.,Zuo,D.,2009.StreamflowresponsetoclimatevariabilityandhumanactivitiesintheuppercatchmentoftheYellowRiverBasin. Sci.ChinaSer.E:Technol.Sci.52(11),3249–3256,http://dx.doi.org/10.1007/s11431-009-0354-3.

Zheng,H.,Zhang,L.,Liu,C.,Shao,Q.,Fukushima,Y.,2007.ChangesinstreamflowregimeinheadwatercatchmentsoftheYellowRiverbasinsincethe 1950.Hydrol.Process.21(7),886–893,http://dx.doi.org/10.1002/hyp.6280.

Zheng,H.,Zhang,L.,Zhu,R.,Liu,C.,Sato,Y.,Fukushima,Y.,2009.Responsesofstreamflowtoclimateandlandsurfacechangeintheheadwatersofthe YellowRiverBasin.WaterResour.Res.45,http://dx.doi.org/10.1029/2007wr006665.

Referensi

Dokumen terkait

Hubungan antara Power Otot Lengan dan Otot Tungkai dengan Hasil Spike Semi pada Cabang Olahraga Bola Voli.. Universitas Pendidikan Indonesia | repository.upi.edu |

Benda-benda atau harta yang termasuk kepemilikan negara adalah harta yang tidak termasuk milik umumn namun milik individu/perseorangan (karena harta

Perubahan meliputi revisi diagnosis &amp; memodifikasi tujuan yg dihrpkan.. Jika diperlukan,

Secara umum metode penelitian yang digunakan dalam memprediksi besar sedimen di badan air sungai Lesti yaitu untuk mengetahui bahwa metode perhitungan sedimen simulasi sesuai

Prof. Soetandyo  W  Univ. Erlangga  Memberi Pengayaan  Penelitian  1 bulan  17,500  Metode Penelitian  DR. Muslan Abdurrahman  UMM 

POKJA 15 BIRO LAYANAN PENGADAAN BARANG/JASA PROVINSI PAPUA TAHUN ANGGARAN 2017 Sehubungan dengan evaluasi penawaran Paket Pekerjaan Pemeliharaan Jalan Menawi - Sumberbaba (122), 40

Memperhatikan ketentuan-ketentuan dalam Perpres Nomor : 04 Tahun 2015 dan Petunjuk Teknisnya dalam Perka LKPP Nomor : 06 Tahun 2012, bersama ini kami sampaikan sesuai dengan

NIP : 197912222005012003 Email :franxa22_2@yahoo.co.id Unit Kerja :Fakultas Bahasa dan Seni Status :Dosen. Keahlian