• Tidak ada hasil yang ditemukan

Studi Perancangan Antena Mikrostrip Dipole Dual-Band Frekuensi 2,3 GHz dan 3,3 GHz Untuk Aplikasi Broadband Wireless Access

N/A
N/A
Protected

Academic year: 2017

Membagikan "Studi Perancangan Antena Mikrostrip Dipole Dual-Band Frekuensi 2,3 GHz dan 3,3 GHz Untuk Aplikasi Broadband Wireless Access"

Copied!
17
0
0

Teks penuh

(1)

5

BAB II

ANTENA MIKROSTRIP

2.1 Pengertian Antena

Antena merupakan elemen penting yang terdapat dalam sistem telekomunikasi tanpa kabel (wireless). Pemilihan antena yang tepat, perancangan yang baik dan pemasangan yang benar menjamin kinerja (performansi) sistem tersebut.

Antena adalah sebuah komponen yang dirancang untuk dapat memancarkan dan atau menerima gelombang elektromagnetik. Antena sebagai alat pemancar (transmitting antenna) adalah sebuah transduser (pengubah) elektromagnetis, yang digunakan untuk mengubah gelombang tertuntun di dalam saluran transmisi menjadi gelombang yang merambat di ruang bebas, dan sebagai alat penerima (receiving antenna) mengubah gelombang ruang bebas menjadi gelombang tertuntun, seperti diilustrasikan pada Gambar 2.1 [1].

Gambar 2.1 Peran Antena Dalam Sistem Komunikasi Wireless

gelombang ruang bebas

gelombang ruang bebas

gelombang tertuntun

gelombang tertuntun

(2)

6 2.2 Antena Mikrostrip

Salah satu jenis antena yang banyak digunakan saat ini adalah antena mikrostrip. Hal ini dikarenakan bentuk dan ukuran yang kecil serta massa yang ringan sehingga cocok dengan perangkat telekomunikasi khususnya pada perangkat mobile yang mempertimbangkan massa dan ukuran.

2.2.1 Pengertian Antena Mikrostrip

Berdasarkan asal katanya, mikrostrip terdiri dari dua kata, yaitu micro

(sangat tipis/kecil) dan strip (bilah/potongan). Antena mikrostrip dapat didefenisikan sebagai antena yang berbentuk potongan atau bilah dengan ukuran yang sangat kecil [2].

` Seperti terlihat pada Gambar 2.2 [3], secara umum antena mikrostrip terdiri dari tiga bagian dasar, yaitu :

a. Patch

Patch merupakan lapisan konduktor yang berfungsi untuk meradiasikan gelombang elektromagnetik.

b. Substrate

Sebagai bahan dielektrik yang membatasi elemen peradiasi (patch) dengan elemen pentanahan (ground plane).

c. Ground Plane

Ground plane berfungsi sebagai pembumian bagi sistem antena mikrostrip.

(3)

7

Gambar 2.2 Antena Mikrostrip

2.2.2 Jenis-jenis Antena Mikrostrip

Antena mikrostrip dikenal dalam beberapa bentuk sesuai dengan bentuk

patch-nya. Seperti terlihat pada Gambar 2.3 [3], bentuk-bentuk patch antena mikrostrip antara lain:

a. Antena mikrostrip patch persegi (square)

b. Antena mikrostrip patch persegi panjang (rectangular) c. Antena mikrostrip patchdipole

d. Antena mikrostrip patch lingkaran (circular) e. Antena mikrostrip patch elips (eliptical) f. Antena mikrostrip patch segitiga (triangular) g. Antena mikrostrip patchcircular ring

Gambar 2.3 Bentuk-bentuk Patch Antena Mikrostrip [3]

(4)

8

2.2.3 Kelebihan dan Kekurangan Antena Mikrostrip

Antena mikrostrip mengalami kenaikan popularitas dikarenakan memiliki beberapa keuntungan, diantaranya [4]:

a. Dimensi antena yang kecil. b. Massa yang ringan

c. Mudah dan murah dalam pembuatannya. d. Dapat bekerja dalam multi-frequency.

e. Dapat langsung diintegrasikan pada Microwave Integrated Circuit (MIC) . Namun demikian, antena mikrostrip juga memiliki kekurangan seperti [4]:

a. Gain yang rendah. b. Bandwidth yang sempit.

c. Kemampuan dalam menangani daya (power) yang rendah.

d. Terdapat efek radiasi tambahan dari pencatu yang dapat mengganggu.

2.2.4 Teknik Pencatuan

Pada dasarnya saluran pencatu untuk antena mikrostrip dapat dibagi dua, yaitu pencatuan secara langsung (direct coupling) dan pencatuan secara tidak langsung (electromagnetic coupling). Teknik pencatuan langsung sering digunakan karena sangat sederhana dalam pencatuan. Tetapi disamping itu ada beberapa kekurangan yang terdapat pada teknik pencatuan ini, yaitu bandwidth

yang sempit dan rumit untuk diaplikasikan pada array mikrostrip [2].

Oleh karena kekurangan ini maka dalam perkembangan selanjutnya dikenal pencatuan tidak langsung (electromagnetic coupling). Keuntungannya adalah dapat memperlebar bandwidth dan dapat mengurangi efek buruk akibat penyolderan [2].

(5)

9

Beberapa teknik pencatuan pada antena mikrostrip yaitu: coaxial probe, microstip line, aperture coupled, dan proximity coupled seperti diperlihatkan pada Gambar 2.4 [3].

Gambar 2.4 Jenis-jenis Teknik Pencatuan Antena Mikrostrip

2.3 Antena Mikrostrip Dipole

Antena mikrostrip dipole adalah elemen planar yang terdiri dari sepasang bilah konduktor tipis yang terdapat pada permukaan dielektrik [5]. Mikrostrip

dipole memiliki bentuk yang menyerupai mikrostrip patch, hanya saja ada sedikit perbedaan pada rasio panjang dan lebarnya, seperti diperlihatkan pada Gambar 2.5 [4].

Antena mikrostrip persegi panjang dapat diklasifikasikan ke dalam dua kategori utama yang bergantung pada rasio panjang dan lebar masing-masing.

(a) Microstrip line feed (b) Probe feed

(c) Aperture-coupled feed (d) Proximity-coupled feed

(6)

10

Sebuah antenna persegi panjang dengan bidang yang sempit (lebar bidang biasanya kurang dari 0,05 λ0) dinamakan mikrostrip dipole, sedangkan antenna persegi panjang yang bidangnya lebih luas dinamakan mikrostrip patch [4].

Gambar 2.5 Antena Mikrostrip Dipole

Dibandingkan dengan mikrostrip patch, mikrostrip dipole memiliki beberapa kelebihan, yaitu ukurannya yang lebih kecil dan bandwidth yang lebih lebar [4].

2.4 Parameter Umum Antena Mikrostrip

Performansi dari suatu antena sangat ditntukan oleh parameter-parameternya. Terdapat banyak jenis parameter dari suatu antena. Berikut akan dijelaskan beberapa parameter tersebut.

2.4.1 Bandwidth

Bandwidth suatu antena didefenisikan sebagai besar rentang frekuensi kerja dari suatu antena yang berhubungan dengan beberapa karakteristik diantaranya impedansi input, pola radiasi, dan polarisasi yang memenuhi standar [2].

Nilai bandwidth dapat diketahui dari nilai frekuensi bawah dan frekuensi atas dari suatu antena telah diketahui sebelumnya. Frekuensi bawah adalah nilai frekuensi terendah dari frekuensi kerja antena, sedangkan frekuensi atas

(7)

11

merupakan nilai frekuensi tertinggi dari frekuensi kerja antena. Untuk mencari

bandwidth dari suatu antena dapat menggunakan persamaan (2.1) dan (2.2)

Bandwidth dalam persen disebut juga dengan Fractional Bandwidth

(FBW) yang mengukur seberapa lebar band yang dapat dicapai oleh antena. Nilai dari fractional bandwidth bervariasi antara 0 sampai 2 atau dalam persen antara 0% sampai 200%. Antena yang memiliki FBW sebesar 20% atau lebih disebut dengan antena wideband, sedangkan antena yang memiliki FBW lebih dari 50% disebut dengan antena ultra-wideband [6].

2.4.2 Voltage Standing Wave Ratio (VSWR)

(8)

12

yang direfleksikan dengan yang dikirimkan disebut sebagai koefisien refleksi tegangan (Γ) pada persamaan (2.3) [3]:

(2.3)

Dimana ZL adalah impedansi beban (load) dan Z0 adalah inpedansi saluran.

Sedangkan rumus untuk mencari nilai VSWR adalah persamaan (2.4) [3]:

(2.4)

Kondisi yang paling baik adalah ketika nilai VSWR sama dengan satu, yang berarti tidak ada refleksi atau saluran dalam keadaan matching sempurna, tetapi pada prakteknya sangat sulit untuk diperoleh. Oleh karena itu, nilai standar VSWR yang diizinkan dalam perancangan antena adalah maksimal 2.

2.4.3 Return Loss

Return loss adalah perbandingan antara amplitudo dari gelombang yang direfleksikan terhadap amplitudo gelombang yang dikirimkan. Return loss dapat terjadi karena adanya diskontinuitas (mismatched) di antara saluran transmisi dengan impedansi masukan beban (antena) [3]. Return loss dapat dihitung dengan menggunakan persamaan (2.5) [3]:

(9)

13

Frekuensi kerja dari antena yang baik adalah ketika return loss bernilai ≤ 10 dB sehingga dapat dikatakan nilai gelombang yang direfleksikan

tidak terlalu besar dibandingkan dengan gelombang yang ditransmisikan, atau dengan kata lain saluran transmisi sudah matching. Nilai parameter ini menjadi salah satu acuan dalam melihat apakah suatu antena sudah dapat bekerja pada frekuensi yang diharapkan atau tidak.

2.4.4 Pola Radiasi

Pola radiasi adalah fungsi matematika atau representasi grafik dari sifat radiasi antena sebagai fungsi koordinat ruang [3]. Sifat radiasi tersebut meliputi kerapatan fluks, intensitas radiasi, kuat medan, atau polarisasi. Biasanya sifat dari radius yang sangat dipentingkan adalah persebaran secara tiga dimensi atau dua dimensi dari energi yang diradiasikan antena. Berikut merupakan contoh dari pola radiasi:

a. Pola Isotropic, merupakan antena yang memiliki radiasi sama besar ke segala arah.

b. Pola Directional, merupakan antena yang memiliki pola radiasi yang lebih efektif pada arah-arah tertentu saja.

c. Pola Omnidirectional, merupakan antena yang memiliki pola radiasi yang sama hanya pada bidang tertentu.

(10)

14

Gambar 2.6 Pola Radiasi Antena

Gambar 2.6 [3] merupakan presentasi bagian-bagian dari pola radiasi yang ditunjukkan sebagai lobe-lobe. Lobe-lobe tersebut dapat diklasifikasikan menjadi

main (utama), side (samping), dan back (belakang).

a. Main lobe, adalah lobe yang merupakan arah radiasi maksium. b. Side lobe, adalah lobe-lobe selain main lobe.

c. Back lobe, adalah lobe yang arahnya berlawanan 180o dengan main lobe.

Side lobe dan back lobe merupakan minor lobe yang keberadaannya tidak diharapkan.

2.4.5 Direktivitas

Direktivitas antena merupakan parameter yang menunjukkan kemampuan antena untuk memfokuskan energi pada arah tertentu dibandingkan ke arah yang lain. Direktivitas sebuah antena merupakan perbandingan intensitas radiasi sebuah antena pada arah tertentu dengan intensitas radiasi rata-rata pada semua arah. Intensitas radiasi rata-rata senilai dengan total daya yang diradiasikan oleh antena

Main lobe

Side lobe

(11)

15

dibagi dengan 4π. Secara metematis untuk mendapatkan nilai direktivitas sebuah

antena dapat ditentukan dengan persamaan (2.6) [3]:

(2.6)

2.4.6. Gain

Gain adalah rasio antara intensitas radiasi suatu antena pada arah tertentu dengan intensitas radiasi dari antena isotropik yang senilai dengan daya masukan yang sama dibagi 4π. Secara matematis, gain dapat dituliskan dengan

Persamaan (2.7) [3]:

(2.7)

Gain dari suatu antena terkait dengan direktivitas dan efisiensinya.

Hubungan antara gain dengan direktivitas adalah seperti pada persamaan (2.8) [7]: (2.8)

dimana k adalah efisiensi dan D adalah direktivitas. Terdapat dua jenis gain, yaitu:

a. Absolute gain

Didefenisikan sebagai perbandingan antara intensitas radiasi yang diterima antara suatu antena terhadap antena pembanding dengan input daya yang sama. Antena pembanding pada absolute gain berupa antena isotropik.

(12)

16 b. Relative gain

Didefenisikan sebagai perbandingan antara intensitas radiasi yang diterima antara suatu antena terhadap antena pembanding dengan input daya yang sama. Antena pembanding pada relativegain biasanya berupa antena dipole

½ λ.

2.4.7 Impedansi Masukan

Impedansi masukan adalah inpedansi yang direpresentasikan oleh antena pada terminalnya. Impedansi masukan biasanya dipengaruhi oleh antena lain atau objek yang ada di sekitarnya, tetapi pada umumnya sebuah antena diasumsikan sudah terisolasi. Impedansi masukan antena terdiri dari bagian riil dan imajiner, yang dapat dinyatakan dengan persamaan (2.9) [3]:

(2.9)

Resistansi input (RA) menyatakan tahanan disipasi. Reaktansi input (XA) menyatakan daya yang tersimpan pada medan dekat antena. Dari persamaan ZA, daya real (RA) yang menggambarkan banyaknya daya yang hilang melalui radiasi ataupun panas. Sedangkan komponen imajiner (XA) mewakili reaktansi dari antena dan daya yang tersimpan pada antena.

2.5 Dimensi Antena Mikrostrip Dipole

Dalam perancangan antena mikrostrip dipole, terlebih dahulu harus dihitung dimensi antena yang akan dibuat, khususnya panjang dari lengan dipole

tersebut. Untuk memperoleh dimensi antena mikrostrip dipole, harus diketahui

 

A A

A R jX

Z

(13)

17

parameter-parameter dari bahan yang akan digunakan, yaitu tebal dielektrik (h), dan konstanta dielektrik ( r).

Untuk menghitung panjang dari lengan mikrostrip dipole, terlebih dahulu harus dihitung konstanta dielektrik efektif ( eff) dari mikrostrip menggunakan persamaan (2.10) berikut [8]:

(2.10)

dimana:

r = konstanta dielektrik d = tebal dielektrik (mm)

W = lebar lengan dipole (mm)

Sehingga diperoleh panjang total dari lengan mikrostrip dipole menggunakan persamaan (2.11) dan (2.12) berikut [8]:

(2.11)

(2.12) dimana:

λ = panjang gelombang (m)

c = kecepatan cahaya

f = frekuensi resonansi (Hz)

(14)

18

Selain panjang lengan mikrostrip dipole, hal lain yang perlu dilakukan perhitungan adalah lebar saluran pencatu (Wf). Saluran pencatu yang digunakan dalam perancangan memiliki impedansi 50 Ω. Lebar saluran pencatu dapat

diperoleh dengan menggunakan Persamaan (2.13) dan (2.14)[9].

(2.13)

dimana :

(2.14)

2.6 Antena Mikrostrip Dual-band

Frekuensi ganda atau disebut juga dengan dual-band antena mikrostrip merupakan suatu jenis anrena mikrostrip yang dapat bekerja pada dua buah frekuensi yang berbeda satu dengan lainnya tanpa memerlukan dua buah antena yang berbeda secara fisik.

Terdapat tiga jenis teknik untuk mendapatkan antena dengan dua frekuensi resonansi yang berbeda, yaitu [10]:

a. Orthogonal mode dual-frequency patch antennas

b. Multi-patch dual-frequency antennas

c. Reactively-loaded dual-frequency patch antennas

Orthogonal mode dual frequency patch antennas adalah satu jenis antena mikrostrip yang dicatu oleh dua mode dominan yang orthogonal satu dengan lainnya. Sedangkan multi patch dual frequency antennas adalah satu jenis antena mikrostrip yang mempergunakan lebih dari satu elemen antena dimana masing-masing elemen mempunyai frekuensi resonansi yang berbeda. Adapun jenis yang

(15)

19

ketiga adalah reactively loaded dual frequency patch antenna, yaitu satu jenis antena mikrostrip yang diberi beban reaktif (reactive load) tambahan sehingga secara keseluruhan antena tersebut akan beresonansi pada dua frekuensi yang berbeda. Gambar 2.7 menunjukkan metode-metode untuk memperoleh antena mikrostrip dual-band.

Gambar 2.7 Teknik Mendapatkan Antena Mikrostrip Dual-band

2.7 Regulasi Mengenai Broadband Wireless Access (BWA)

Secara umum, Broadband Wireless Access (BWA) / Wireless Broadband

dideskripsikan sebagai komunikasi data yang memiliki kecepatan tinggi, kapasitas tinggi dengan media wireless. Definisi rentang kecepatan layanan broadband

bervariasi dari 200 Kbps s/d 100 Mbps. Mengacu pada Peraturan Menkominfo Nomor: 07/PER/M.KOMINFO/01/2009 tentang Penataan Pita Frekuensi Radio Untuk Keperluan Layanan Pita Lebar Nirkabel (Wireless Broadband), layanan pita lebar nirkabel (wireless broadband) adalah layanan telekomunikasi nirkabel yang kecepatan transmisi datanya sekurangkurangnya 256 kbps [11].

Mengingat frekuensi wireless broadband merupakan frekuensi yang strategis dan fundamental, maka diperlukan penataan dalam hal penggunaannya

Single-point

Dual-point

Stacked

Co-planar

Stubs

Notches

Pins and capacitor

Slot probe slot

slots EMC

probe slot

dipoles cross-subarray

coaxial microstrip

inset spur-line

pins capacitors

Slots and pins slots

(16)

20

yang diatur dalam Peraturan Menkominfo Nomor:

07/PER/M.KOMINFO/01/2009 tentang Penataan Pita Frekuensi Radio Untuk Keperluan Layanan Pita Lebar Nirkabel (Wireless Broadband). Dalam Peraturan Menteri tersebut, penataan Pita Frekuensi Radio Untuk Keperluan Layanan Pita Lebar Nirkabel (Wireless Broadband) telah ditetapkan pita frekuensi 300 MHz, 1.5 GHz, 2 GHz, 2.3 GHz, 3.3 GHz dan 10.5 GHz. Izin penggunaan frekuensi tersebut berdasarkan izin pita frekuensi radio. Sedangkan untuk pita frekuensi 2.4 GHz dan 5.8 GHz, izin penggunaan frekuensinya berdasarkan izin kelas [11].

Berdasarkan White Paper“Penataan Frekuensi Radio Layanan Akses Pita Lebar Berbasis Nirkabel” yang dikeluarkan oleh Ditjen Postel pada tahun 2006,

rentang pita frekuensi radio untuk keperluan layanan BWA adalah sebagai berikut:

a. Pita frekuensi radio 300 MHz memiliki rentang frekuensi 287 - 294 MHz dan 310 - 324 MHz.

b. Pita frekuensi radio 1.5 GHz memiliki rentang frekuensi 1428 - 1452 MHz dan 1498 - 1522 MHz.

c. Pita frekuensi radio 2 GHz memiliki rentang frekuensi 2053 - 2083 MHz. d. Pita frekuensi radio 2.3 GHz memiliki rentang frekuensi 2300 – 2390 MHz. e. Pita frekuensi radio 3.3 GHz memiliki rentang frekuensi 3300 - 3400 MHz. f. Pita frekuensi radio 5.8 GHz memiliki rentang frekuensi 5725 - 5825 MHz. g. Pita frekuensi radio 10.5 GHz memiliki rentang frekuensi 10150 -

10300 MHz berpasangan dengan 10500 - 10650 MHz.

(17)

21

2.8 Software Simulator Strutur Frekuensi Tinggi

Simulator Strutur Frekuensi Tinggi adalah suatu simulator medan elektromagnetika untuk pemodelan tiga dimensi perangkat pasif berstruktur frekuensi tinggi yang memiliki kelebihan sangat mudah dan interaktif digunakan pada sistem operasi microsoft windows grafical user interface. Dalam simulatornya terintegrasi visualisasi, pemodelan volumetrik dan kemudahan dalam interaktif dimana solusi permasalahan pemodelan tiga dimensi diperoleh dengan cepat dan akurat. Simulator Strutur Frekuensi Tinggi dapat digunakan untuk mengkalkulasi beberapa parameter diantaranya parameter S, frekuensi resonan dan medan elektromagnetika.

Simulator Strutur Frekuensi Tinggi menggunakan Finite Element Methode

(FEM) untuk simulator gelombang elektromagnetik. Untuk aplikasi antena secara umum, FEM bisa memodelkan problem yang memiliki dielektrika yang beraneka-ragam. FEM mendiskritisasikan volume yang dimilikinya ke dalam volume yang kecil-kecil, biasanya digunakan tetrahedral. Setiap tetrahedral yang kecil ini dapat terdiri dari material yang berbeda-beda, tanpa memperkompleks problema yang harus disolusikan. Matriks yang terbentuk dengan FEM biasanya juga hanya terisi sedikit (disebut juga sparse matrix), yang relatif lebih efisien untuk diinversikan.

FEM adalah metode yang bekerja pada problem tertutup. Sehingga untuk aplikasi antena, haruslah digunakan batasan fiktif, yang berfungsi untuk menutup ruangan yang akan diamati dan didiskritisasi. Permukaan penutup wilayah ini adalah bidang yang berbentuk lapisan-lapisan yang mampu menyerap gelombang.

Gambar

Gambar 2.1 Peran Antena Dalam Sistem Komunikasi Wireless
Gambar 2.2 Antena Mikrostrip
Gambar 2.4 Jenis-jenis Teknik Pencatuan Antena Mikrostrip
Gambar 2.5 Antena Mikrostrip Dipole
+3

Referensi

Dokumen terkait

Kemudian model antena ini disimulasikan dengan AWR2004. Gambar 4.6 Nilai VSWR Rancangan Awal Antena Susun Mikrostrip Dual-Band.. Oleh karena nilai VSWR yang diharapkan belum

Penulisan Tugas Akhir ini dilakukan dalam rangka memenuhi salah satu syarat untuk mencapai gelar Sarjana Teknik Departemen Teknik Elektro Fakultas Teknik

Teknik Elektro Universitas Sumatera Utara.. Hoboken,

[r]

Antena mikrostrip circular array dual elemen yang dirancang menghasilkan kinerja yang diharapkan, yaitu pada saat bekerja pada frekuensi 1575 MHz antena memiliki 4,54 dBi dengan

Pada tugas akhir ini akan dirancang sebuah antena mikrostrip susunan linier 6 elemen dengan polarisasi sirkular yang beroperasi pada dual-frekuensi yaitu pada frekuensi 2,4

Maka, pada tugas akhir ini dirancang dan direalisasikan antena mikrostrip fractal-bowtie yang bekerja pada frekuensi dual band yaitu pada frekuensi 900MHz dan 1800MHz

Fabrikasi dan pengukuran yang telah dilakukan memberikan hasil bahwa untuk antena mikrostrip dipol ganda untuk omnidirectional yang bekerja pada frekuensi 2.4 GHz