02. Hukum I Termodinamika
Zulfiadi Zulhan
Teknik Metalurgi
Fakultas Teknik Pertambangan dan Perminyakan Institut Teknologi Bandung
INDONESIA
Termodinamika Metalurgi (MG-2112)
Jangan Mengunggah
Materi Kuliah ini di
INTERNET!
NO TALKING
NO SLEEPING
NO MOBILE PHONE
http://www.longestlife.com https://www.pinterest.com https://www.pinterest.se http://clipart-library.comHukum Pertama Termodinamika
Kekekalan Energi
Bentuk energi yang umum dijumpai:
▪ Energi panas
▪ Energi kerja atau energi mekanik
▪ Energi listrik
▪ Energi kimia
• Energi tidak dapat diciptakan dan tidak dapat dimusnahkan.
• Energi dapat ditransportasi atau dikonversi dari satu bentuk ke bentuk lainnya, tetapi energi tidak dapat diciptakan dan tidak dapat dimusnahkan.
• Perubahan kimia dan atau fisika selalu diikuti oleh perubahan energi.
Energi
Energi fosil (Batubara, minyak, gas alam) Pembangkit listrik termal
Pembangkit listrik tenaga air Pembangkit listrik panas bumi
http://www.broadstarwindsystems.com/fossil-fuels/
https://greentumble.com/why-do-we-use-fossil-fuels-instead-of-other-fuels/
https://internationalfinance.com/indonesia-replace-coal- power-plants-renewable-energy-sources/
https://www.thinkgeoenergy.com/video-overview-on-the-sarulla- geothermal-power-plants-in-indonesia/
Energi
http://kabar6.com/chef-michael-dibalik-lezatnya-aneka-menu-hotel-santika-ice-bsd/
https://www.99.co/blog/indonesia/informasi-lengkap-colokan-listrik/
https://www.idntimes.com/tech/gadget/izza-namira-1/cara-charging- hp-yang-cepat/10
https://news.ddtc.co.id/pemprov-dki-resmi-naikkan-tarif-bea-balik-nama-kendaraan-bermotor-17778
https://nextren.grid.id/read/01216080 2/5-tips-memilih-laptop-untuk- belajar-dan-bekerja-pemula-wajib- tahu-nih?page=all
ILUSTRASI menonton televisi.* /PIXABAY /
Energi
https://www.lenntech.com/greenhouse-effect/fossil-fuels.htm
https://biology-for-all.weebly.com/carbon-cycle.html
Eksotermik dan Endotermik
H < 0 → Reaksi eksotermik (menghasilkan panas)
H > 0 → Reaksi endotermik (membutuhkan panas)
https://teachsciencewithfergy.com
https://www.iea.org/reports/net-zero-by-2050
Balance between the amount of greenhouse gas produced and the amount removed from the atmosphere
The Sun
our main Source of Energy
http://igbiologyy.blogspot.com/2014/03/106-energy-flow-energy-loss.html
https://www.slideserve.com/nerice/the-sun-the-primary-source-of-energy-for-all-living-things
https://slideplayer.com/slide/14761278/
https://www.bitlanders.com/blogs/energy-flow-in-ecosystem/235900
https://www.sciencealert.com/this-awesome-periodic-table-shows-the-origins-of-every-atom-in-your-body
http://new-universe.org/zenphoto/albums/Chapter3/Illustrations/Abrams24.jpg
Mesin Uap (Sumber Energi = Panas + Kerja)
Panas dan Kerja
U Q
U
UU U
Q
W
U U
U
• If heat (
Q
) is supplied to the system, the internal energy of the system (U
) will increase.• If the surroundings does work (
W
) to the system, the internal energy (U
) of the system will increase.𝛅𝐐
𝐥𝐢𝐧𝐠𝐤𝐮𝐧𝐠𝐚𝐧≅ +𝐝U
𝐬𝐢𝐬𝐭𝐞𝐦𝛅𝐖
𝐥𝐢𝐧𝐠𝐤𝐮𝐧𝐠𝐚𝐧≅ +𝐝U
𝐬𝐢𝐬𝐭𝐞𝐦Panas, Kerja dan Energi Dalam
Panas (Q) mengalir karena ada perbedaan temperatur.
Panas mengalir hingga perbedaan temperatur tidak ada.
Pada saat panas mengalir, energi berpindah.
(+): dari Lingkungan ke Sistem
Kerja (W) adalah perpindahan energi akibat interaksi antara sistem dengan lingkungan.
(+): lingkungan melakukan kerja kepada sistem
https://www.qraved.com
Panas Kerja dan Energi Dalam
Internal Energy (
U
) is the energy contained in the system• If heat (Q) is supplied to the system, the internal energy of the system (U) will increase.
• If the surroundings does work (W) to the system, the internal energy (U) of the system will increase.
https://www.tokopedia.com/
https://www.qraved.com
Heat, Work and Internal Energy (First Low Energy:
Closed System)
The relationship between Heat, Work and Energy in a „closed system“:
U d W
Q + =
Notation
is used in front of Q and W Q and W are not state function (function of the path) Internal energyU
is a state function, its differential is indicated byd
To make it more complete, Kinetic and Potensial energies can be added to the system, so
„first law of thermodynamic for closed system“:
d(KE) d(PE)
U d W
Q + = + +
„Closed system“ : no matter enters or leaves the system. The boundaries of the system may expand or contract as work is done by or on the system, and the thermal energy may flow into or out the system as heat.
Panas dan Kerja: Konvensi Tanda
Positif (
+
) : Kerja dilakukan oleh lingkungan kepada sistem Negative (-
) : Sistem melakukan kerja ke lingkunganSISTEM Lingkungan
Lingkungan
Q
+
W+
Tanda positif untuk
Panas
danKeja
Energi sistem dalam bentukPanas
danKerja
bertambah (ber+
).Lingkungan Lingkungan
𝛅𝐐 + 𝛅𝐖 = 𝐝U
𝐁𝐞𝐛𝐞𝐫𝐚𝐩𝐚 𝐛𝐮𝐤𝐮 𝐦𝐞𝐧𝐮𝐥𝐢𝐬:
𝛅𝐐 − 𝛅𝐖 = 𝐝U
Case 1:
One kg mass will be raised from the ground level to a height of 10 m.
d(KE) d(PE)
U d W
Q + = + +
Solution:
Q = 0, because there was no heat transfer involved in the process.
dU = 0, there was no change in internal energy.
d(KE) = 0
h g m W
d(PE) W
=
=
Sifat-Sifat Intensif dan Ekstensif
Sifat Ekstensif bergantung
pada besar atau massa atau ukuran dari sistem Contoh Sifat Ekstensif: Volume
Sifat Intensif tidak bergantung
pada massa atau ukuran dari sistem.
Contoh Sifat Intensif: Tekanan, Temperatur, Densitas, Volume Spesifik (Volume per Satuan Massa), Volume Molar (Volume per Mol).
/kg m
dalam Spesifik
Volume V
m V V
=
3=
Densitas dari sebuah material adalah kebalikan
dari volume spesifik
Heat, Work and Internal Energy (First Low Energy:
Open System)
V d P work
flow
V
0
i
i
=
„i“ is designated for entering material, and„o“ for leaving material.
„ Open System“ :matter may enter or leave the system.
Consider:
• internal energy (U) of the materials entering and leaving of the system
• work (W) done on the system when the material is pushed into the system and the work (W) done by the system, when material is pushed out of the system. This work is called „flow work“.
System boundary
Flow work in an open system P
mi
V
i= V
im
ior dV = V
idm
iHukum I Termodinamika: Sistem Terbuka (OPEN SYSTEM)
V d P work
flow
V
0
i
i
=
„i“ is designated for entering material, and „o“ for leaving material.System boundary
Flow work in an open system P
mi
V
i= V
im
ior dV = V
idm
ihttp://www.bintang.com http://www.startribune.com
Heat, Work and Internal Energy (First Low Energy:
Open System) cont.
V d P work
flow
V
0
i
i
=
„i“ is designated for entering material, and„o“ for leaving material.
Omitting kinetic and potential energy, first law of thermdynamic for „ Open System“:
i i
i i
i
V m or dV V dm
V = =
i i m
0
i i
i
P V d m P V m
work
flow = =
m V
P work)
flow
(
i=
i
iIn differential form:
dU W
Q work)
flow (
work) flow
( m
U - m
U
i
i o
o+
i−
o+ + =
( U
i+ P
iV
i) m
i- ( U
o+ P
oV
o) m
o+ Q + W = dU
Heat, Work and Internal Energy (First Low Energy:
Open System) cont.
Ui mi and Uo mo represent the internal energy carried into and out of the system by the matter entering and leaving of the system.
Pi Vi mi and Po Vo mo are the flow work into and out of the system by the matter entering and leaving of the system
U
i+ P
iV
iδm
i− U
o+ P
oV
oδm
o+ δQ + δW = dU
( U P V ) m - ( U P V ) m Q W dU
o
i m
o o o o
m
i i i
i
+ + + + =
For all streams entering or leaving the system:
Entalpi
U + PV didefinisikan sebagai Entalpi (H)
PV U
H +
https://webmuda.files.wordpress.com https://webmuda.files.wordpress.com
𝐔
𝐢+ P
𝐢𝐕
𝐢δm
i− 𝐔
𝐨+ P
𝐨𝐕
𝐨δm
o+ δQ + δW = dU
Enthalpy
U + PV is defined as Enthalpy (H)
PV U
H +
Specific enthalpy is enthalpy per unit mass
V P U
H = +
(
H KE PE)
m -(
H KE PE)
m Q W d(U PE KE)o
i m
o o o
o m
i i i
i + +
+ + + + = + +
Consider potential and kinetic energy, First Law of Thermodynamic for open system:
For closed system: mi and mo = 0
Enthalpy is a measure of the total energy of a thermodynamic system. It includes the internal energy, which is the energy required to create a system, and the amount of energy required to make room for it by displacing its environment and establishing its volume and pressure. wikipedia
Steady State
(„Bahasa Indonesia = Keadaan Tunak)
Steady State is defined as one in which the system does not change with time.
▪ Every quantity or property of the system is time invariant.
▪ Material may enter and leave the system, but the system itself remains unchanged.
Steady State principle can be used to analyse processing apparatus, such as chemical reaction vessel, smelters, blast furnace, pumps, turbines, etc.
In these apparatus, once steady operations have been achieved, material enters and material leaves, but the system itself remains basically unchanged with time.
First law of thermodynamic (steady state):
dU = 0
(
H KE PE)
m -(
H KE PE)
m Q W 0o
i m
o o
o o
m
i i
i
i + +
+ + + + =
Steady State, cont.
First law of thermodynamic:
(
H KE PE)
m -(
H KE PE)
m Q W 0o
i m
o o
o o
m
i i
i
i + +
+ + + =
For a finite process, it can be expressed as follows:
(
H KE PE)
m -(
H KE PE)
mW Q
i
o m
i i i
i m
o o o
o
+ + += +
When no changes in kinetic or potential energy:
m H -
m H W
Q
i
o m
i i m
o o
= +
Heat Capacity at Constant Volume
Heat capacity of a material is the amount of thermal energy required to change the temperature of the material.
For a closed system at constant volume (dV=0) no mechanical work is done (W=0), First Law Thermodynamics:
𝛅𝐐 + 𝜹𝐖 = 𝐝𝐔 dU dT
C m
Q = =
U m d
dT dU
C = =
where C is the Heat capacity
Heat capacity at constant volume is given by notation Cv:
v v
v
T
Q T
C U
=
=
Cv: is a function of temperature and of the specific volume of the material
dT C
m
dU =
vd U = C
vdT
Heat Capacity at Constant Pressure
A material heated at constant pressure usually expands.
The internal energy added to the material is accounted for by the increase in the internal energy of the material plus the work done by the material as it expands against the constant pressure imposed on it.
Considering only mechanical work:
dU W
Q + =
At constant pressure (dP =0),P dV = d(PV), so:
dU dV
P -
Q =
dV P
dU
Q = +
( U P V ) dH
d
Q = + =
dT C
m dH =
pdT C
H
d =
pP P
p
T
Q T
C H
=
=
d(PV) = PdV + VdP
Heat Capacity at Constant Pressure
Heat capacity are usually tabulated at constant pressure heat capacities, because most heating or cooling of materials takes place at constant pressure ambient conditions.
Cp is a function of temperature and pressure.
The Cp values tabulated in the following slides are at one atmosphere (1 atm) pressure.
J/mol.K cT
T b a
C
p= + +
-2Buku yang berisi data-data termodinamika
Kubaschewski, Alcock, Spencer, Materials Thermochemistry edisi 6, 1993
Heat Capacity at Constant Pressure
Kubaschewski, Alcock, Spencer, Materials Thermochemistry edisi 6, 1993
Heat Capacity at Constant Pressure
Kubaschewski, Alcock, Spencer, Materials Thermochemistry edisi 6, 1993
Heat Capacity at Constant Pressure
Kubaschewski, Alcock, Spencer, Materials Thermochemistry edisi 6, 1993
Heat Capacity at Constant Pressure
Kubaschewski, Alcock, Spencer, Materials Thermochemistry edisi 6, 1993
Panas Kerja dan Energi Dalam
Kubaschewski, Evans, Metallurgical
Kubaschewski, Evans, Metallurgical Thermochemistry, edisi 2, 1956
Cara membaca konstanta di Tabel, misal untuk MgO: a = 42,59 b = 7,28 x 10-3 c = -6,19 x 105
Cp
FACTSAGE
FACTSAGE
https://www.factsage.com/
Differential Scanning Calorimetry (DSC)
Differential Scanning Calorimetry (DSC)
https://www.mt.com/id/en/home/applications/Application_Browse_Laboratory_Analytics/Application_Browse_thermal_analysis/specific-heat-capacity-measurement.html
Example of the use of heat capacities
Calculate the energy required and the cost of heating a slab of aluminium of mass one metric ton (1000 kg) from 300 K to 800 K, a temperature that might be used to reduce the thickness of the aluminium through rolling.
The aluminium will be heated by passing it though a furnace that uses electricity as its source of energy. The cost of electrical energy is assumed to be Rp. 1000 per kWh (kilowatt-hour).
Assume that there are no extraneous heat losses from the furnace, all the electrical energy entering the furnace is used to heat the aluminium.
Select the furnace as a system. Note that it is an open system. Assume, that it is at steady state.
U W
Q m
H - m
H
i i o o+ + =
Example of the use of heat capacities, cont.
Note that the heat flow term is zero because the energy did not flow into the system because of a temperature difference. Energy entered the system as work, because of an electrical difference.
U W
Q m
H - m
H
i i o o+ + =
( H - H )
m
W =
Al o i( ) = =
800 ( + )
300
3 - 800
300 p i
o
- H C dT 20.67 12.38 x 10 T dT H
( ) ( 800 300 )
2
10 x 12.38 300)
- 20.67(800 H
-
H
2 2-3 i
o
= + −
Material a b x 103 c x 10-5 Range (K)
Al(s) 20.67 12.38 298 – 933
Al (l) 29.3 933 - 1273
𝐇𝐓 − 𝐇T1 = න T1
𝐓
(a + bT + cT−2 + dT𝟐) dT
𝐇𝐓 − 𝐇T1 = a (T−T1) + 𝐛
𝟐(𝑻𝟐 − 𝑻𝟏𝟐) − 𝒄 𝟏
𝑻 − 𝟏
𝑻𝟏 +𝐝
𝟑(𝐓𝟑−T1𝟑)
𝑪𝒑 = a + bT + cT−2 + dT𝟐
Melting temperature Al = 660 C = 933 K
Example of the use of heat capacities, cont.
( ) ( 800 300 )
2
10 x 12.38 300)
- 20.67(800 H
-
H
2 2-3 i
o
= + −
( H
o- H
i) = 1 3,730 J/mol
( ) 508,560 J/kg
27 x 1000 3,730
1 H
-
H
o i= =
kWh 141.4
kg 1000 x
J/kg 508,560
W = =
- 141,400.
Rp.
kWh /
1000 Rp.
x kWh 141.4
Cost = =
1 J = 1 W.s
1 J = 1/3600 Wh
1 J = 1/(3600*1000) kWh
Ho − Hi = න 298
Tm
Cp,s dT + Hm + න
Tm
T
Cp,l dT + …
Perhitungan Menggunakan FACTSAGE
141.1 kWh
Example of the use of heat capacities, cont.
Another way to approach the same problem is to select an aluminium slab as a system (closed system).
1 2
- U U
U W
Q + = =
The work term is not zero, because aluminium expands upon heating.
) V V
( P U
- U
Q =
2 1+
2−
1) H H
( m H
- H
Q =
2 1=
2−
1T. Rosenqvist, Principles of Extractive Metallurgy, 2004
Dihitung dengan FACTSAGE Ho − Hi = න
298
Tm
Cp,s dT + Hm + න
Tm
T
Cp,l dT + …
Enthalpies of Formation
The same as internal energy, the enthalpy change of a material between states 1 and 2 is given as:
Neither internal energy nor enthalpy can be defined in absolute terms.
Even at a temperature of absolute zero, a material may posses energy.
For convenience in tabulation, it is useful to define a reference state for a material and to assign a value of zero to enthalpy for certain materials in that reference state.
H H
H =
2−
1
Reference conditions: the elements in their equilibrium states at 298 K and one atmosphere pressure.
Example: enthalpy of diatomic oxygen at 298K and 1 atm pressure = 0.
Enthalpy of monoatomic oxygen is not zero, because the monoatomic form is not the equilibrium form at 298 K and one atmosphere.
https://www.idntimes.com/travel
A
Enthalpies of Formation (cont.)
Another example: the enthalpy of carbon as graphite (not diamond) at 298K and one atmosphere is taken as zero.
If the elements are assumed to have zero enthalpy when in their reference states, then compounds must have some other value of enthalpy at the reference conditions.
System boundary
C
O2 CO2
Q = -393.5 kJ/mol
P = 1 atm, T =298 K P = 1 atm, T =298 K
To illustrate, consider a system in which carbon (as graphite) and oxygen are introduced into a steady state system to form carbon dioxide at 298 K and 1 atm.
Enthalpies of Formation (cont.)
Because no work is done:
m H
m H W
Q
i
o m
i i m
o
o
−= +
m H
m H Q
i
o m
i i m
o
o
−=
For the reaction: C + O2 = CO2
n H
- n H n
H
Q =
CO2 CO2−
C C O2 O2In such an experiment, the heat transfered from the system would be 393.5 kJ per mole of carbon introduced or mole of CO2 leaving the system
H - H H
kJ 5 . 393
Q = − =
CO2−
C O2HC = 0 and HO2 = 0, because these elements are in their reference state, therefore:
atm) 1
K, 298 (at
kJ 5 . 393 HCO2 = −
This is called the heat formation of carbon dioxide (Hf).
Enthalpy change is negative, the heat is evolved = exothermic
Enthalpy change is positive, heat must be added to the process, endothermic
n is the stoichiometric coefficient of the reaction
Enthalpy Changes in Chemical Reaction
Enthalpy change for a chemical reaction can be calculated from the heats of formation of the compounds and element involved in the reaction.
Example: calculate the enthalpy change (at 298K) for the oxidation of methane (CH4). The chemical equation:
CH4 (g) + 2 O2 (g) = CO2 (g) + 2 H2O (g)
The equation above can be written as the sum of three equations:
1. C + O2 = CO2 H = Hf (CO2)
2. 2H2 + O2 = 2 H2O H = 2Hf (H2O)
3. C + 2 H2 = CH4 H = Hf (CH4)
Hreaction = Hf (CO2) + 2 Hf (H2O) - Hf (CH4)
= -393.5 + 2(-241.8) – (-62.3) = -814.8 kJ at 298 K
Eksotermik dan Endotermik
H < 0 → Reaksi eksotermik (menghasilkan panas)
H > 0 → Reaksi endotermik (membutuhkan panas)
https://teachsciencewithfergy.com
Adiabatic Temperature Calculation
Nitrogen and carbon dioxide do not react.
Combustion reaction for the carbon monoxide:
CO + ½ O2 = CO2
Gas Moles in Moles out Exit gas
composition (%)
CO 0.20 0
CO2 0.30 0.5 36
O2 0.10 0
N2 0.50 + (79/21)*0.1 0.88 64
Total moles in exit gas 1.38 100
Gas contains 20% CO, 30% CO2 and 50% N2. Caculate adibatic temperature from gas burning!
Adiabatic Temperature Calculation
For a steady state burner, ther first law n
H -
n H W
Q
i
o m
i i m
o
o
= +
W = 0 (no work is done on or by the burner.
Assume, no heat losses to the surroundings (adiabatic), aim to find the highest temperature that can be reached.
n H n
H
o
i m
o o m
i
i
=H 88 . 0 H
5 . 0 n
H
mo o o CO2,T N2,T
= +H
88 . 0 H
0.1 H
3 . 0 H
2 . 0 n
H O2,298 N2,298
m i i CO,298 CO2,298
i
+ +
+
=Adiabatic Temperature Calculation
state) (reference
0 H
and 0
H
N2,298=
O2,298=
HN2,
T = න
298
T
Cp,N2 dT HCO2,
T = ΔHf,CO2,
298 + න 298
T
Cp,CO2 dT
HCO2,
298 = ΔHf,CO2,
298
HCO,
298 = ΔHf,CO,
298
T flame = 1368K
= 1095 C
mo
Ho no = 0.5 HCO2,
T + 0.88 HN2,
T
n H n
H
o
i m
o o m
i i
=
mi
Hi ni = 0.2 HCO,298 + 0.3 HCO2,
298
Perhitungan Menggunakan FACTSAGE
Perhitungan Menggunakan FACTSAGE
Flame Temperature
https://www.messergroup.com/ironandsteel/foundries/electricarcfurnace
Latihan
Gas metana (CH4) dibakar pada temperatur kamar (298 K dan 1 atm) dengan:
a. Oksigen (100% O2)
b. Udara (21% O2 dan 71% N2)
Hitung temperatur nyala api pada kondisi adiabatik!
Gas Masuk (mol) Keluar (mol)
CH4 1 0
O2 2 0
CO2 0 1
H2O 0 2
Total mol gas keluar 3
Kasus a: Reaksi: CH4 + 2O2 = CO2 + 2H2O
1. Pendahuluan, istilah-istilah dan notasi 2. Hukum I Termodinamika
3. Hukum II Termodinamika
4. Hubungan Besaran-Besaran Termodinamika 5. Kesetimbangan
6. Kesetimbangan Kimia dan Diagram Ellingham
7. Proses Elektrokimia dan Diagram Potensial - pH (Pourbaix) 8. Ujian Tengah Semester
9. Aktivitas Ion
10. Termodinamika Larutan
11. Penggunaan Persamaan Gibbs - Duhem
12. Penggunaan Metoda Elektrokimia untuk menentukan Sifat-Sifat / Besaran-Besaran Termodinamika
13. Keadaan Standar Alternatif
14. Koefisien Aktivitas dalam Larutan Encer Multi-Komponen 15. Diagram Fasa
16. Ujian Akhir Semester
Materi Perkuliahan
Terima kasih!
Zulfiadi Zulhan
Program Studi Teknik Metalurgi
Fakultas Teknik Pertambangan dan Perminyakan Institut Teknologi Bandung
Jl. Ganesa No. 10 Bandung 40132 INDONESIA
www.metallurgy.itb.ac.id [email protected]