• Tidak ada hasil yang ditemukan

7_Lucia Cabulea, Mihaela Aldea. 163KB Jun 04 2011 12:08:17 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "7_Lucia Cabulea, Mihaela Aldea. 163KB Jun 04 2011 12:08:17 AM"

Copied!
6
0
0

Teks penuh

(1)

ON SOME PROPERTIES OF KANTOROVICH BIVARIATE

OPERATORS

by

Lucia A. C

ă

bulea and Mihaela Aldea

Abstract. In this paper we continue our earlier investigations concerning the use of probabilistic methods for constructing linear positive operators useful in approximation theory of functions. The main result of this paper consists in introducing and investigating the approximation properties of Kantorovich bivariate operator, which is an integral linear positive operator reproducing the linear functions.

Keywords:

bivariate operator

1. THE OPERATORS OF KANTOROVICH

Let mNbe fixed. The operators Km:L1([0,1])→C([0,1]), defined by

(

)

=

+ +

+ −

−     +

= m

k

m k

m k k m k

m x x f t dt

k m m

x f K

0

1 1

1

) ( )

1 ( )

1 ( )

( (1.1)

are the operators of Kantorovich.

If we noticed χm the characteristic function of

  

 

+1 1 , 0

m then the operators

(1.1) can be define

(

)

= 

 

 

+ − +

= m

k

m k

m

m dt

m k t t f x p m

x f K

0

1 0 ,

1 )

( ) ( )

1 ( )

( χ , (1.2)

where mk xk x m k

k m

p − −

   

= (1 )

, , k =0,m , x∈[0,1] are the Bernstein polynomials.

Lemma[1]. The operators of Kantorovich satisfy the relations

(2)

ii)

(

)

) 1 ( 2

1 1

) (

1

+ + + =

m x m

m x e

Km ,

iii)

(

)

2 2

2 2 2

) 1 ( 3

1 )

1 (

2 )

1 (

) 1 ( ) (

+ + + + +− =

m x m

m x

m m m x e

Km .

iv) For all fL1

( )

[ ]

0,1 ,

(

)

( )

(

B 1F

)

(x)

dx d x f

Km = m+ , where F x =

xf t dt

0 ( )

)

( and

( )

=

     −

    = m

k

k m k

m

m k f x x k m x

f B

0

) 1 ( )

( , x

[ ]

0,1 are the operators of Bernstein.

Theorem [8]. The operators of Kantorovich have the properties

i) Kmf f

mlim→∞ = , uniformly on [0,1], (∀)fC

[ ]

0,1 . ii) Kmf f

mlim→∞ = , (∀)fLp

[ ]

0,1 , p≥1.

2. THE OPERATORS OF STANCU-KANTOROVICH

The Stancu polynomials [7] defined by

( )

( )

= 

    = n

k k n n

n k f x w x

f S

0 ,

; α

α , xI=

[ ]

0,1 , α 0

where

( )

( ) ( )

( α) α α

α

− − − −

   

= , , ,

,

1 ) 1 (

n k n k

k n

x x

k n x

w , x(k,−α) =x(x+α)...(x+(k−1)α) , can be used for constructing the operators of Stancu-Kantorovich[5]

( ) ( )

( )

( )

=

++

+

+

=

n

k

n k

n k k n

n

f

x

n

w

x

f

t

dt

K

0

1 1

1 ,

1

;

α

α . (2.1)

It is clear that the operators defined by (2.1) are linear and positive too. In the particular case

α

=0, the operator reduces obviously to the

n

th classical Kantorovich operator defined by (1.1).
(3)

i) Knα

( )

1;x =1 ,

ii)

(

)

) 1 ( 2

2 1 ;

+ − = −

n x x

x t

Knα ,

iii)

(

( )

)

( ) ( )

( )

2 2

2

1 3

1 1

1 1

1 1

;

+ + +

− ++ −

= −

n n

n n x x x x t

Kn α

α

α ,

iv) If

n C ≤ ≤α

0 , with C a positive constant, it follows

( )

(

)

( )

( ) ( )



 

+− + + ≤

x

n x x n

C x x t

Knα ψn

1 1 1

1 ;

2 2 2 2

where

( )

  

∈∈ =

n n n

E I x

E x x

\ ,

0 , 1

ψ , with

  

=

n A n A

En ,1 and A > 0 fixed.

Theorem. Let

( )

K

n( )α n1 be defined by (2.1) and

( ) ( ) ( )

(

1/

)

( )

2 1

1 3

1 1

1 ,

+ +

+ +

+

= −

n p

n n p n

p

α

β .

If r≥3 is an integer number and

( )

r p n

r

2 1 ,

/

1

β , nN, the for every

function fLp

[ ]

0,1 we have

( )

(

( )

(

( )

)

)

p r

r p r

p

n f f C n p f r n p f

K α − ≤ , β , +ω 2 β1/ , ,

with Cp,r a positive constant independent of f and n.

3.THE BIVARIATE OPERATORS OF KANTOROVICH

(4)

(

)( ) (

)( )

∑∑

( )

( )

∫ ∫

( )

= =

+ +

+ + +

+ −

− +

+

= m

k n

h

m k

m k n

h

n h h n h k m k

mnf x y m n x x y y f u v dudv

K

0 0

1 1

1 1 1

1

, 1

1 1

1

,

where f belongs to the spaces L1

(

[ ] [ ]

0,1× 0,1

)

.

The operators defined by (3.1) are the bivariate operators of Kantorovich. Lemma . The bivariate operators of Kntorovich satisfy the relations:

i)

(

Kmne00

)( )

x,y =1,

ii)

(

)( )

) 1 ( 2

1 1

,

10 = + + +

m x m

m y x e

Kmn ,

iii)

(

)

) 1 ( 2

1 1

) , (

01 = + + +

n y n

n y x e

Kmn ,

iv)

(

)( )

  

+ + +   

+ + + =

) 1 ( 2

1 1

) 1 ( 2

1 1

,

11

n y n

n m

x m

m y

x e

Kmn ,

v)

(

)( )

2 2

2 2 20

) 1 ( 3

1 )

1 (

2 )

1 (

) 1 ( ,

+ + + + +− =

m x m

m x

m m m y x e

Kmn ,

vi)

(

02

)( )

2 2 2 2

) 1 ( 3

1 )

1 (

2 )

1 (

) 1 ( ,

+ + + + +

− =

n y n

n y

n n n y x e

Kmn .

Theorem . The bivariate operators of Kantorovich have the properties

i) Kmnf f

nlim→∞ = , uniformly on

[ ] [ ]

0,1× 0,1 ,

( )

fC

(

[ ] [ ]

0,1× 0,1

)

, ii) Kmnf f

n→∞ =

lim ,

( )

fLp

(

[ ] [ ]

0,1 × 0,1

)

, p≥1.

4.THE BIVARIATE OPERATORS OF STANCU–KANTOROVICH

(5)

(

) ( )(

)

∑∑

( ) ( )

∫ ∫

++

( )

+ + + + = = + + = 1 1 1 1 1 1 0 0 , , , 1 1 , ; n k n k m h m h n k m h k m k n

nm f x y n m w x w y f u v dudv

Kα α α (4.1)

where

( )

( ) ( ) ( α) α α α − − − −     = , , , , 1 ) 1 ( n k n k k n x x k n x

w , x(k,−α) =x(x+α)...(x+(k−1)α) and

( )

( ) ( α)( ) α α α − − − −     = , , , , 1 ) 1 ( m h m h h m y y h m x

w , y(h,−α) = y(y+α)...(y+(h−1)α) .

The operators defined by (4.1) are the bivariate operators of Stancu-Kantorovich.

Lemma . The operators defined by (4.1) satisfy the relations

i) Knmα

(

1;x,y

)

=1,

ii)

(

) ( )

1 2 2 1 , ; + − = − n x y x x u

Knmα ,

iii)

(

)

) 1 ( 2 2 1 , ; + − = − m y y x y v

Knmα ,

iv)

(

(

)(

)

)

) 1 ( 2 2 1 ) 1 ( 2 2 1 , ; + − ⋅ + − = − − m y n x y x y v x u Knmα

v)

(

(

)

)

( ) ( )

2 2 2 ) 1 ( 3 1 1 1 1 1 1 , ; + + + − ++ − = − n n n n x x y x x u

Knm α

α

α ,

vi)

(

(

)

)

( ) ( )

2 2 2 ) 1 ( 3 1 1 1 1 1 1 , ; + + + − ++ − = − m m m m y y y x y v

Knm α

α

α .

REFERENCES

[1]. Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, 2000. [2]. Căbulea, L., Aldea, M., Generalizations of Kantorovich type, Analele Universităţii „Aurel Vlaicu” Arad, Seria Matematica, Arad 2002, 27-32.

(6)

D. Stancu, Studia Univ. Babeş-Bolyai, Math. XXXVII (1992), 3-36.

[4]. Della Vechia, B., Mache, D. H., On approximation properties of Stancu-Kantorovich operators, Rev. D'Analyse Num. Et de Théorie de L'Approx., 27(1998), no. 1-2, 1-10. [5]. Kantorovich, L. V., Surcertains dévelopments suivant Ies polynômes de la forme de S. Bemstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.

[6]. Razi, Q., Approximation of a function by Kantorovich type operators, Mat. Veşnic. 41(1989), 183-192.

[7]. Sendov, B., Popov, V. A., The Averaged Moduli of Smoothness, Pure and Applied Mathematics, John Wiley & Soons, 1988.

[8]. Stancu D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 8(1969), 1173-1194.

[9]. Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numericăşi teoria aproximării, voi. l, Presa Universitară Clujeană, 2001.

Authors:

Lucia A. Căbulea,"1 Decembrie 1918" University of Alba lulia, România. Departament of Mathematics, e-mail: [email protected]

Referensi

Dokumen terkait

[r]

Pengajuan keberatan/sanggahan disampaikan secara tertulis pada Kelompok Kerja Unit Layanan Pengadaan Jasa Konstruksi pada Satuan Kerja Perhubungan Darat Provinsi Daerah

[r]

[r]

tembusan secara offline yang ditujukan kepada Pejabat Pembuat Komitmen, Kuasa Pengguna Anggaran Satuan Kerja Perhubungan Darat Provinsi Daerah Istimewa Yogyakarta

Berdasarkan Perpres 54 Tahun 2010 beserta perubahannya dan aturan turunannya serta memperhatikan hasil evaluasi/penilaian dokumen penawaran dan kualifikasi untuk

Namun, setelah ditelusuri melalui Public Budgeting Expenditure Track- ing Systems (PBETS) dan wawancara berdasarkan syarat-syarat agar anggaran mempunyai keberpihakan

Priok pada Satker Balai Teknologi Keselamatan Pelayaran (BTKP) Ditjen Perhubungan Laut Kementerian Perhubungan Tahun Anggaran 2017 akan melaksanakan Pemilihan