ON SOME PROPERTIES OF KANTOROVICH BIVARIATE
OPERATORS
by
Lucia A. C
ă
bulea and Mihaela Aldea
Abstract. In this paper we continue our earlier investigations concerning the use of probabilistic methods for constructing linear positive operators useful in approximation theory of functions. The main result of this paper consists in introducing and investigating the approximation properties of Kantorovich bivariate operator, which is an integral linear positive operator reproducing the linear functions.
Keywords:
bivariate operator
1. THE OPERATORS OF KANTOROVICH
Let m∈Nbe fixed. The operators Km:L1([0,1])→C([0,1]), defined by
(
)
∑
∫
=
+ +
+ −
− +
= m
k
m k
m k k m k
m x x f t dt
k m m
x f K
0
1 1
1
) ( )
1 ( )
1 ( )
( (1.1)
are the operators of Kantorovich.
If we noticed χm the characteristic function of
+1 1 , 0
m then the operators
(1.1) can be define
(
)
∑
∫
=
+ − +
= m
k
m k
m
m dt
m k t t f x p m
x f K
0
1 0 ,
1 )
( ) ( )
1 ( )
( χ , (1.2)
where mk xk x m k
k m
p − −
= (1 )
, , k =0,m , x∈[0,1] are the Bernstein polynomials.
Lemma[1]. The operators of Kantorovich satisfy the relations
ii)
(
)
) 1 ( 2
1 1
) (
1
+ + + =
m x m
m x e
Km ,
iii)
(
)
2 2
2 2 2
) 1 ( 3
1 )
1 (
2 )
1 (
) 1 ( ) (
+ + + + +− =
m x m
m x
m m m x e
Km .
iv) For all f∈L1
( )
[ ]
0,1 ,(
)
( )(
B 1F)
(x)dx d x f
Km = m+ , where F x =
∫
xf t dt0 ( )
)
( and
( )
∑
=
−
−
= m
k
k m k
m
m k f x x k m x
f B
0
) 1 ( )
( , x∈
[ ]
0,1 are the operators of Bernstein.Theorem [8]. The operators of Kantorovich have the properties
i) Kmf f
mlim→∞ = , uniformly on [0,1], (∀)f ∈C
[ ]
0,1 . ii) Kmf fmlim→∞ = , (∀)f ∈Lp
[ ]
0,1 , p≥1.2. THE OPERATORS OF STANCU-KANTOROVICH
The Stancu polynomials [7] defined by
( )
∑
( )
=
= n
k k n n
n k f x w x
f S
0 ,
; α
α , x∈I=
[ ]
0,1 , α ≥0where
( )
( ) ( )
( α) α α
α
− − − − −
= , , ,
,
1 ) 1 (
n k n k
k n
x x
k n x
w , x(k,−α) =x(x+α)...(x+(k−1)α) , can be used for constructing the operators of Stancu-Kantorovich[5]
( ) ( )
∑
( )
∫
( )
=
++
+
+
=
nk
n k
n k k n
n
f
x
n
w
x
f
t
dt
K
0
1 1
1 ,
1
;
αα . (2.1)
It is clear that the operators defined by (2.1) are linear and positive too. In the particular case
α
=0, the operator reduces obviously to then
th classical Kantorovich operator defined by (1.1).i) Knα
( )
1;x =1 ,ii)
(
)
) 1 ( 2
2 1 ;
+ − = −
n x x
x t
Knα ,
iii)
(
( )
)
( ) ( )
( )
2 22
1 3
1 1
1 1
1 1
;
+ + +
− ++ −
= −
n n
n n x x x x t
Kn α
α
α ,
iv) If
n C ≤ ≤α
0 , with C a positive constant, it follows
( )
(
)
( )
( ) ( )
+− + + ≤
− x
n x x n
C x x t
Knα ψn
1 1 1
1 ;
2 2 2 2
where
( )
∈∈ =
n n n
E I x
E x x
\ ,
0 , 1
ψ , with
−
=
n A n A
En ,1 and A > 0 fixed.
Theorem. Let
( )
K
n( )α n≥1 be defined by (2.1) and( ) ( ) ( )
(
1/)
( )
2 11 3
1 1
1 ,
+ +
+ +
+
= −
n p
n n p n
p
α
β .
If r≥3 is an integer number and
( )
r p n
r
2 1 ,
/
1 ≤
β , n∈N, the for every
function f ∈Lp
[ ]
0,1 we have( )
(
( )
(
( )
)
)
p r
r p r
p
n f f C n p f r n p f
K α − ≤ , β , +ω 2 β1/ , ,
with Cp,r a positive constant independent of f and n.
3.THE BIVARIATE OPERATORS OF KANTOROVICH
(
)( ) (
)( )
∑∑
( )
( )
∫ ∫
( )
= =+ +
+ + +
+ −
− −
− +
+
= m
k n
h
m k
m k n
h
n h h n h k m k
mnf x y m n x x y y f u v dudv
K
0 0
1 1
1 1 1
1
, 1
1 1
1
,
where f belongs to the spaces L1
(
[ ] [ ]
0,1× 0,1)
.The operators defined by (3.1) are the bivariate operators of Kantorovich. Lemma . The bivariate operators of Kntorovich satisfy the relations:
i)
(
Kmne00)( )
x,y =1,ii)
(
)( )
) 1 ( 2
1 1
,
10 = + + +
m x m
m y x e
Kmn ,
iii)
(
)
) 1 ( 2
1 1
) , (
01 = + + +
n y n
n y x e
Kmn ,
iv)
(
)( )
+ + +
+ + + =
) 1 ( 2
1 1
) 1 ( 2
1 1
,
11
n y n
n m
x m
m y
x e
Kmn ,
v)
(
)( )
2 2
2 2 20
) 1 ( 3
1 )
1 (
2 )
1 (
) 1 ( ,
+ + + + +− =
m x m
m x
m m m y x e
Kmn ,
vi)
(
02)( )
2 2 2 2) 1 ( 3
1 )
1 (
2 )
1 (
) 1 ( ,
+ + + + +
− =
n y n
n y
n n n y x e
Kmn .
Theorem . The bivariate operators of Kantorovich have the properties
i) Kmnf f
nlim→∞ = , uniformly on
[ ] [ ]
0,1× 0,1 ,( )
∀ f ∈C(
[ ] [ ]
0,1× 0,1)
, ii) Kmnf fn→∞ =
lim ,
( )
∀ f ∈Lp(
[ ] [ ]
0,1 × 0,1)
, p≥1.4.THE BIVARIATE OPERATORS OF STANCU–KANTOROVICH
(
) ( )(
)
∑∑
( ) ( )
∫ ∫
++( )
+ + + + = = + + = 1 1 1 1 1 1 0 0 , , , 1 1 , ; n k n k m h m h n k m h k m k nnm f x y n m w x w y f u v dudv
Kα α α (4.1)
where
( )
( ) ( ) ( α) α α α − − − − − = , , , , 1 ) 1 ( n k n k k n x x k n x
w , x(k,−α) =x(x+α)...(x+(k−1)α) and
( )
( ) ( α)( ) α α α − − − − − = , , , , 1 ) 1 ( m h m h h m y y h m xw , y(h,−α) = y(y+α)...(y+(h−1)α) .
The operators defined by (4.1) are the bivariate operators of Stancu-Kantorovich.
Lemma . The operators defined by (4.1) satisfy the relations
i) Knmα
(
1;x,y)
=1,ii)
(
) ( )
1 2 2 1 , ; + − = − n x y x x u
Knmα ,
iii)
(
)
) 1 ( 2 2 1 , ; + − = − m y y x y v
Knmα ,
iv)
(
(
)(
)
)
) 1 ( 2 2 1 ) 1 ( 2 2 1 , ; + − ⋅ + − = − − m y n x y x y v x u Knmα
v)
(
(
)
)
( ) ( )
2 2 2 ) 1 ( 3 1 1 1 1 1 1 , ; + + + − ++ − = − n n n n x x y x x u
Knm α
α
α ,
vi)
(
(
)
)
( ) ( )
2 2 2 ) 1 ( 3 1 1 1 1 1 1 , ; + + + − ++ − = − m m m m y y y x y v
Knm α
α
α .
REFERENCES
[1]. Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, 2000. [2]. Căbulea, L., Aldea, M., Generalizations of Kantorovich type, Analele Universităţii „Aurel Vlaicu” Arad, Seria Matematica, Arad 2002, 27-32.
D. Stancu, Studia Univ. Babeş-Bolyai, Math. XXXVII (1992), 3-36.
[4]. Della Vechia, B., Mache, D. H., On approximation properties of Stancu-Kantorovich operators, Rev. D'Analyse Num. Et de Théorie de L'Approx., 27(1998), no. 1-2, 1-10. [5]. Kantorovich, L. V., Surcertains dévelopments suivant Ies polynômes de la forme de S. Bemstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.
[6]. Razi, Q., Approximation of a function by Kantorovich type operators, Mat. Veşnic. 41(1989), 183-192.
[7]. Sendov, B., Popov, V. A., The Averaged Moduli of Smoothness, Pure and Applied Mathematics, John Wiley & Soons, 1988.
[8]. Stancu D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 8(1969), 1173-1194.
[9]. Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numericăşi teoria aproximării, voi. l, Presa Universitară Clujeană, 2001.
Authors:
Lucia A. Căbulea,"1 Decembrie 1918" University of Alba lulia, România. Departament of Mathematics, e-mail: [email protected]