• Tidak ada hasil yang ditemukan

Kinetic modelling of methanol conversion to light olefins process over silicoaluminophosphate (SAPO-34) catalyst

N/A
N/A
Farhan Adisa

Academic year: 2023

Membagikan " Kinetic modelling of methanol conversion to light olefins process over silicoaluminophosphate (SAPO-34) catalyst"

Copied!
9
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Chemical Engineering Research and Design

jo u r n al ho m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c h e r d

Kinetic modelling of methanol conversion to light olefins process over silicoaluminophosphate

(SAPO-34) catalyst

Reza Bagherian Rostami

, Alireza Samadi Lemraski, Mohammad Ghavipour, Reza Mosayyebi Behbahani, Bahram Hashemi Shahraki, Tuba Hamule

CatalystResearchGroup,GasResearchCenter,GasEngineeringDepartment,PetroleumUniversityofTechnology, Ahwaz63431,Iran

a r t i c l e i n f o

Articlehistory:

Received8July2015

Receivedinrevisedform8October 2015

Accepted13October2015 Availableonline21October2015

Keywords:

MTO SAPO34

Kineticmodelling Lightolefins PSOoptimization

a bs t r a c t

TheMTOprocessoverSAPO34catalystwasmodelledwiththeconsiderationoffunctional- ityagainstcokedepositionforproductsdistribution,consistingof11reactionsinvolving13 reactionspeciesandusedintheassessmentofexperimentaldataacquiredinafixedbed reactorinatemperaturerangefrom400to460Cusingweighthourspacevelocity(WHSV) of1,2and4gMeOHgcatalyst−1h−1andatatmosphericpressure.Theresultsshowedthat olefinscarbonselectivityincreaseswithspacevelocity,suggestingthatthesecondaryreac- tionswhichtakepartintheMTOreactionfortheparaffiniccomponentsproductionare reducedbydecreasingcontacttime.Calculationofthekineticmodelparametersofbestfit wasperformedbyparticleswarmoptimizationalgorithmthroughsolvingthemasscon- servationequationsofthereactionproductsofthekineticscheme.Pre-exponentialfactors andapparentactivationenergieswerethencalculatedbasedontheArrheniusequation usingtheoptimizedrateconstants.ThekineticmodelgaveagoodrepresentationofMTO experimentaldataatconditionsclosetoindustrialpractice.

©2015TheInstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

1. Introduction

Todays,theshortageofoilresourceshasattractedtheatten- tionofthescientiststodevelopatechnologyforlightolefins productionfromtheabundantandrelativelycheapresources ofnaturalgas,coalandbiomass(Sunetal.,2014).Amongthe alternativeroutes,thezeolitecatalysedmethanoltoolefins (MTO)hasshowntobeapromisingprocess,becausemethanol canbeefficientlyproducedfromsyngasobtainedthroughnat- uralgasreformingorcarbongasification(Álvaro-Mu ˜nozetal., 2014).AmongmolecularsievecatalystsappliedinMTOreac- tion(Bhaweetal.,2012;Castroetal.,2009;Leeetal.,2010;

Parketal.,2008;Svelleetal.,2007;Teketeletal.,2011;Wang etal.,2011),thesmallporesilicoalomonophosphatemolecular

Correspondingauthor.Tel.:+989119508688;fax:+986115550868.

E-mailaddress:[email protected](R.B.Rostami).

sieveSAPO34,withmildacidstrengthhasshowntohavethe bestcatalyticperformance(Chenetal.,2005;Wangetal.,2015;

Yang etal., 2013). Thesuccessfuldevelopmentofcommer- ciallyapplicableMTOtechnologyhasbeenprovidedinChina usingtheDMTOtechnologydevelopedbytheDalianInstitute ofChemicalPhysics(DICP)(Tianetal.,2015).

Althoughthecommercializationandtechnologicaldevel- opment of this process has been considerable, kinetic modeling ofthis complex reaction networkwith heteroge- neous reactionstepshasyetneededtobemoredeveloped (Gayuboetal.,2005).Kineticstudiesareimportantmeansto gainabetterinsightoftheoverallprocesssothatitcanbe modifiedforoptimumoperatingconditionsandbetteryields.

For reactordesign,simulationofprocessesthatare carried

http://dx.doi.org/10.1016/j.cherd.2015.10.019

0263-8762/©2015TheInstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

(2)

mixtureistoapplylumping,inreactionnetworkandspecies.

Intheseglobalkineticmodels,themechanisticaspectsare considered inageneric way,and astheyare simpler, they benefitfromlesscomplicatedkineticparametersestimation andsimpleuseinreactordesign(Olsbyeetal.,2012).Several kineticmodelingeffortshavebeenreportedintheliterature forMTO.

Mihail et al. (1983) proposed a kinetic model based on carbenoidintermediates,involving27reactionsand18molec- ularspecies.Accordingtotheproposedmechanism,dimethyl ether(DME)generatesacarbenespecieswhichreacts with oxygenatesto form the first C C bond, that subsequently furtherreactstoformhigherolefins.Bosetal.(1995)devel- opeda modelwith6 lumpsplus cokereacting through12 reactions. The Bos et al. (1995) reaction network was fur- ther simplified by eliminating slower steps, and a kinetic modelwasdevelopedonSAPO34,whichtakesintoaccount fourindividualstepsfortheproductionofethene,propene, butenes,and remaininghydrocarbons (pentenes+paraffins) (Gayuboetal.,2000).Singleeventkinetic modelingofMTO onSAPO 34wasdevelopedbasedonthesurface-bondedoxo- niummethylidemechanismbyAlwahabiandFroment(2004).

Chenetal.(2007)havedistinguishedthetypeofproduct(stable or unstable,primaryor secondary) and thetype ofdeacti- vation(selectiveornonselective)usingtheyield-conversion plot.Basedontheobtainedresults,thekineticofMTOreac- tionwasmodelledwith7reactionsinvolving7lumps[ethene, propene,butenes(C4),C5,C6,oxygenates,ethane+propane].

Langmuir–HinshelwoodmechanismwasalsoappliedinMTO kinetic modeling and methanol, DME, ethylene, propylene andparaffinweretakenintoaccountasthereactionspecies (Fatourehchietal.,2011).

Althoughconsiderable studies have been performed on MTOreactionoverSAPO34,thereisnouserfriendlykinetic modelintermsofreactionmechanism,takingintoaccount theeffectsofcokedepositiononproductsdistributionaswell astheinitialreactionconditions(i.e.temperature,WHSV...).

Inthe present work,alumped (in terms ofreaction steps) kineticmodelwasestablishedbasedonthesimpleandreli- ablereactionnetworkwiththeconsiderationoffunctionality againstcokedepositionforproductsdistribution,consisting of11reactionsinvolving13reactionspecies.

2. Experimental

Thedetailsofexperimentalreactionsetupandthecatalystare identicaltothosedescribedinourpreviousworks(Behbahani et al., 2014; Rostami et al., 2014). The experimental data wascarriedoutinastainlesssteeltubular,fixed-bedreactor (12mmI.D.,20cmlength).2gofSAPO-34catalystinpowder

3. Product distribution analysis

Theevolutionofdifferenthydrocarbonsmolefractionswith the timeon streamatdifferent industrialoperating condi- tions (different temperatureand contacttime)is shownin Figs. 1–4. The results clearly show that the ethylene and methanemoleratioincreaseinthewholetimeduringreac- tionasTOSincreases.Asitcanbeseenin,highertemperature favoursethyleneandmethaneproduction.Propylenemolar fractionhasnoconsiderablechangebyTOS,butaccordingto Fig.1decreasingtemperatureresultsinmorepropylenefor- mation.Thepropanemoleratiowashighatthebeginning,but itcamedownwithintensiveslope.Ethanealsohadasimilar trendwithlessintensity. Thisshowsthathydridetransfer- ringreactioninMTOleadingethaneandpropaneformation fromethyleneandpropylene,respectively,decreasesbycoke deposition.Thiscouldbeduetothefactthatacidsitesare responsibleforhydridetransferringreactionandincreasing cokecontentresultsinlowercontributionoftheseacidsites

Fig.1–Effectsoftemperatureonethylene(A)and propylene(B)molepercentatWHSV=2h−1.

(3)

Fig.2–EffectsoftemperatureonMTOproductsdistribution atWHSV=2h−1.

tothisreaction(Aguayoetal.,1994;Gayuboetal.,2011;Guisnet etal.,2009;GuisnetandMagnoux,2001).

It is also observed that heavier fraction (C4= and C5+) decreaseswithTOS.Thistrendcanbeexplainedbyconsider- ationofcokeshapeselectivityeffects,favouringtheformation ofsmallermoleculeswhenthevoidvolumeinthecavitiesis

Fig.3–Shortchainolefinscarbonselectivityat WHSV=2h1anddifferenttemperature.

Fig.4–Effectsofspacetimeonshortchainolefinscarbon selectivityatT=730K.

reducedbycokeandtheproductdiffusionlimitationoutofthe catalystcrystalsresultingfromthecokemoleculesformation.

85% selectivityto lightolefins (C2=, C3=) and about 92%

selectivitytoolefins(C2=,C3=,C4=)wereobservedunderMTO conditionsstudiedinthepresentwork,asitreportedinUOP MTOprocess(Chenetal.,2005).Itisalsofoundthat,olefins carbon selectivitynot changed significantly by rising tem- peratureinaconstantWHSV(Fig.3);whileincreasingspace velocityleadstheolefinsselectivitytobeincreased(Fig.4), suggestingthatsecondaryreactionwhichtakepartinMTO reactionforparaffiniccomponentsproductionarereducedby decreasingcontacttime.

Generally large crystal sizeleads todiffusion limitation inwhich the reactionsare controlledbylimitation ofboth methanol (MeOH)and dimethyl ether (DME).On too small crystalsizearelativelylargequantityofMeOHandDMEscape theSAPO34poresbeforebeingtransformed,henceresulting inlowerolefinsselectivity.Thepresenceoflightolefinswith longresidencetimeinsidetheSAPO34poresandcagesleads toanacceleratedformationofoligomerizationandhydrogen transferreactionproducts(Rostamietal.,2015).Besides,com- paringabsoluteself-diffusivitiesofC2= andC3= hasshown asignificanthigherself-diffusivity valuesforethylenethan forpropylenewhicheffectsolefinsdistributionduringMTO reaction(Daietal.,2012).Moreover,increasingspacevelocity leadstofastercokedepositiononSAPO34catalyst.Ithasbeen well-establishedthatstrongacidsiteshavesignificanteffects oncyclizationandhydrogentransferreactionsandpreferen- tiallythesesitesaredeactivatedbycokemolecules(Chenetal., 2012).AccordingtotheDensityFunctionalTheory(DFT)calcu- lation,thecyclizationandthesubsequenthydridetransferare calculatedtobetherate-determiningstepfortheformation ofthepolymethylcyclopentenylandpolymethylcyclohexenyl cations,whichserveasbridgesconnectingthetwopartsof thedual-cyclereactionmechanism(Daietal.,2014).

4. Methanol to olefins kinetic modelling

4.1. MTOreactionnetwork

In thepresent Vera-Castaneda(1985) proposed mechanism formethanoltoolefinhasbeenused.Thereactionnetwork issummarizedinTable1.

Themainfeaturesoftheappliedmechanismareasfollows, 1. Thefirststepintheoverallsequenceoftheconversionof methanoltohydrocarbonsistheconversionofmethanol

(4)

C3H6+H2⇒C3H8

toDME(Experimentalstudiesshowthatdimethyletheris formedintheinitialstagesofthereactionpriortothepro- ductionofanyhydrocarbonproducts).Dimethyletherand methanolrapidlyreachequilibriumoverthecatalystsur- face,andsoeithercancontributeasafeedstocktoproduce hydrocarbonproducts.

2. Ethyleneisprimaryproductformedfrom methanoland dimethylether.Basedonthemostacceptedmechanism, thereactantsmethanolandDMEasthemethylationagents arerepeatedlyaddedtotheorganicreactioncenters(poly- methylbenzenesandmethylbenzene-derivedcations)for theassemblyoflightolefins.Theseorganicspeciesactas catalytichosts(co-catalyst)inMTOreaction.

3. Thesignificantlyhigher13CcontentintheC3–C6 alkenes thanethyleneand aromaticsinisotopiccompositionsof theeffluentcompounds(Bjørgenetal.,2007)suggestsadif- ferentoradditionalrouteformethanolincorporationinto C3–C6alkenes.Higher alkeneareformedfromthelower alkenesthroughsequentialmethylation. Theconversion ofthelightolefinsintohighermolecularweightproducts throughsequential methylation byreactive C1 interme- diate.Propylene would beformed in this manner from ethylene,butenefrompropylene,etc.byachainmecha- nism.

4. Methaneisabyproductofmethanoldecomposition.

5. Hydrogentransferreactionofolefinstoproduceparaffins.

6. Decomposition of methanol to carbon monoxide and hydrogen.

Thereactionofcarbonmonoxideandwatervapourtoform carbondioxideandhydrogen.(Watergasshiftreaction).Itpro- videsasourceofhydrogenattheexpenseofcarbonmonoxide.

Itisnecessarytobementioned that, Table1showsthe global pathway for methanol to olefins reaction while in molecularscaleMTOreactioninvolveshundredsofelemen- tarysteps.

4.2. Developingrateequations

An11elementaryreactionrateequationwasdevelopedbased onreactionnetworkpresentedinTable2.Allrateconstants areassumedtodependonthecatalystcokecontent,whichis takenintoaccountbythedeactivationfunctions,ϕi.

Forthereaction 2CH3OH⇔k1CH3OCH3+H2O

Theequilibriumconstant(kE)hasbeenreportedasafunc- tionoftemperaturethroughthefollowingequationbyMoffatt

andHayashi(Spivey,1991):

RlnkE= G

T =−6836

T +3.32lnT−0.475×103T

−0.11×10−6T2−10.92 (1)

Inordertodescribethechangeinreactionrateswithcoke contentdifferentdeactivationfunctions(Table3)havebeen tried.Thelinearfunctionhasshownthebestfittotheexper- imentaldata.

C is the weight percent of coke on the catalyst (gcokegcatalyst−1). Note that ˛i (empirical constants) are obtainedfromexperimentaldata,showingthereactionssen- sitivitytodepositionofcokeduringMTOreaction.Thelarger thevaluefor˛ishowsthestrongereffectofincreasingcoke contentonreactioni.

4.3. Reactormodel

Aone-dimensional,idealplugflowreactormodelisusedto simulatetheexperimentaldataacquiredontheSAPO34cat- alyst.Accordingly,thetheoreticalresponses,yj,forcomponent jofgasphasearecalculatedbaseduponthefollowingconti- nuityequations

dyj

d

W/F0MeOH

=rj (2)

Thenetrateofformationofevery speciesrj isobtained by summationof the rateof thereactions participating in theproductionorconsumptionofspeciej.Amassbalance, resultinginasetofdifferentialequations,isconstructedfor allspecies,whichconsistofmethane,ethylene,ethane,pro- pylene,propane,butyleneandC5+aswellasDME,methanol, carbonmonoxide,carbondioxide,hydrogenandwater.

rCH4=k8ϕ8PCH3OHPH2 (3)

rC2H4 = 1

2k2ϕ2P2CH3OCH3+1

2k3ϕ3P2CH3OH−k4ϕ4PC2H4PCH3OCH3

−k10ϕ10PC2H4PH2 (4)

Table3–Deactivationfunctions.

i=(1−˛iC) i=(1/(1−˛iC)) i=e˛iC

(5)

Fig.5–FlowchartdiagramofbestparametersestimationprocedurebyPSOoptimization.

Fig.6–Arrheniusplotforreactions1to3rateconstants.

Fig.7–Arrheniusplotforreactions4to6rateconstants.

Fig.8–Arrheniusplotforreactions7to9rateconstants.

Fig.9–Arrheniusplotforreactions10and11rate constants.

(6)

rCH3OCH3=k1ϕ1P2CH3OH−k1

kEPCH3OH3PH2O−k2ϕ2P2CHO3OCH3

−k4ϕ4PC2H4PCH2OCH3−k5ϕ5PC3H6PCH3OCH3

−k6ϕ6PC4H8PCH3OCH3

(10)

rCH3OH=−k1ϕ1P2CH3OH+k1

kEPCH3OH3PH2O−k2ϕ2P2CH3OCH3−k3ϕ3P2CH3OH +k4ϕ4PC2H4PCH3OCH3+k5ϕ5PC3H6PCH3OCH3+k6ϕ6PC4H8PCH3OCH3

−k7ϕ7PCH3OH−k8ϕ8PCH3OHPH2

(11)

Fig.10–Parityplotforcomparisonofexperimentalandcalculatedmolefractionofethylene,propylene,butaneandC5+at differenttemperature.

Thecontinuityequationsarenumericallyintegratedupto thespacevelocity

WHSV−1

foreachexperimentbyMATLAB ODEsolver.

4.4. Kineticmodel’sparametersestimationand validation

ThekineticmodelParametersofbestfithavebeendetermined separatelyatdifferenttemperaturesbyparticleswarmopti- mizationusingMATLAB(2014a,theMathWorks).Optimization hasbeencarriedoutbyminimizinganobjectivefunction,˚,

(7)

Fig.11–Parityplotforcomparisonofexperimentalandcalculatedmolefractionofmethane,ethane,propane,methanolat differenttemperature.

whichisknownastheRootMeanSquareError(RMSE)which isdefinedin

RMSE=

1

N−1

N

i=1

yexpi −ycali

2

(16)

FlowchartdescriptionofparametersestimationofthePSO optimizationalgorithmispresentedFig.5.

In order to estimate the activation energy and pre- exponential factor for each reaction, natural logarithm of theratesconstantswereplottedagainst1/T.Figs.6–9show anArrheniusplotofthekinetic ratesconstants.Thefigure

Table4–Activationenergiesandpre-exponential factorsofMTOreactions.

Reaction no.

k0i

molgCatalyst−1atm−1h−1

Ei

kJmol−1

1 17.322 52.51

2 14.076 50.977

3 11.837 32.13

4 13.068 23.36

5 15.622 44.05

6 15.427 40.25

7 6.161 14.45

8 15.349 40.41

9 23.389 87.91

10 12.737 27.42

11 10.684 12.53

demonstrates that the rate constants fitted Arrhenius law well.

The estimated apparent activation energies and pre- exponential factorsare presentedin Table4, theempirical constants of deactivation functions are also presented in Table5.

ThegoodnessofthefitisshowninFigs.10and11,where theexperimentalresultsarecomparedwiththosecalculated using thekinetic modelfordifferentinitialreactioncondi- tions.Eachgraphcorrespondstoadifferentcomponents.As showninthesefigures,almostsymmetricaldistributionofthe data pointsonbothsides oftheparityplot’s diagonal was obtained.InsomecasessuchasethaneandC5+olefinsmole

Table5–Estimatedconstantsofdeactivationfunctions.

Temperature

T=673K T=703K T=733K

˛1 3.180021 2.94084 2.637843

˛2 2.464574 1.835211 1.802814

˛3 0.731919 0.895742 2.050251

˛4 1.622352 2.907193 3.001011

˛5 2.997174 2.24347 1.646499

˛6 0.228976 1.926216 2.300051

˛7 3.161159 2.653282 2.33734

˛8 1.860715 0.745094 1.266358

˛9 3.12245 1.684573 1.805259

˛10 2.488949 2.047843 2.003289

˛11 2.553945 2.063543 0.978486

(8)

whichconsistsof11 reactionsinvolving13 species.Kinetic modelparametersofbestfitwerecalculatedbyparticleswarm optimizationalgorithmthroughsolvingthemassconserva- tionequationsofthereactionproductsofthekineticscheme.

ThecalculatedrateconstantsfollowtheArrheniusequation againsttemperaturewell.Pre-exponentialfactorsandappar- ent activation energies were then calculated based on the Arrheniusequationusingtheoptimizedrateconstants.

Olefinscarbonselectivitywasnotchangedsignificantlyby risingtemperatureinaconstantWHSV,whileincreasingspace velocityleadstheolefinsselectivitytobeincreased,suggest- ingthatthesecondaryreactionswhichtakepartintheMTO reactionforparaffiniccomponentsproductionarereducedby decreasingcontacttime.

Acknowledgements

TheauthorsaregratefultoDr.YaoWangandDr.ZuoxingDi forquantitativeanalysisofcokedcatalystsamplesinBeijing KeyLaboratoryofGreenChemicalReactionEngineeringand TechnologyatTsinghuaUniversity.

References

Aguayo,A.,Benito,P.,Gayubo,A.,Olazar,M.,Bilbao,J.,1994.

AciditydeteriorationandcokedepositioninaHZSM5zeolite intheMTGprocess.Stud.Surf.Sci.Catal.88,567–572.

Álvaro-Mu ˜noz,T.,Sastre,E.,Marquez-Alvarez,C.,2014.

Microwave-assistedsynthesisofplate-likeSAPO-34 nanocrystalswithincreasedcatalystlifetimeinthe methanol-to-olefinreaction.Catal.Sci.Technol.

Alwahabi,S.M.,Froment,G.F.,2004.Singleeventkineticmodeling ofthemethanol-to-olefinsprocessonSAPO-34.Ind.Eng.

Chem.Res.43,5098–5111.

Behbahani,R.M.,Rostami,R.B.,Lemraski,A.S.,2014.

Methanol/dimethylethertolightolefinsoverSAPO-34:

comprehensivecomparisonoftheproductsdistributionand catalystperformance.J.Nat.GasSci.Eng.21,532–539.

Bhawe,Y.,Moliner-Marin,M.,Lunn,J.D.,Liu,Y.,Malek,A.,Davis, M.,2012.Effectofcagesizeontheselectiveconversionof methanoltolightolefins.ACSCatal.2,2490–2495.

Bjørgen,M.,Svelle,S.,Joensen,F.,Nerlov,J.,Kolboe,S.,Bonino,F., Palumbo,L.,Bordiga,S.,Olsbye,U.,2007.Conversionof methanoltohydrocarbonsoverzeoliteH-ZSM-5:ontheorigin oftheolefinicspecies.J.Catal.249,195–207.

Bos,A.R.,Tromp,P.J.,Akse,H.N.,1995.Conversionofmethanolto lowerolefins.Kineticmodeling,reactorsimulation,and selection.Ind.Eng.Chem.Res.34,3808–3816.

Castro,M.,Warrender,S.J.,Wright,P.A.,Apperley,D.C., Belmabkhout,Y.,Pirngruber,G.,Min,H.-K.,Park,M.B.,Hong, S.B.,2009.SilicoaluminophosphatemolecularsievesSTA-7 andSTA-14andtheirstructure-dependentcatalytic

performanceintheconversionofmethanoltoolefins.J.Phys.

Chem.C113,15731–15741.

103–107.

Dai,W.,Scheibe,M.,Li,L.,Guan,N.,Hunger,M.,2012.Effectofthe methanol-to-olefinconversiononthePFGNMR

self-diffusivitiesofethaneandetheneinlarge-crystalline SAPO-34.J.Phys.Chem.C116,2469–2476.

Dai,W.,Wang,C.,Dyballa,M.,Wu,G.,Guan,N.,Li,L.,Xie,Z., Hunger,M.,2014.Understandingtheearlystagesofthe methanol-to-olefinconversiononH-SAPO-34.ACSCatal.5, 317–326.

Fatourehchi,N.,Sohrabi,M.,Royaee,S.J.,Mirarefin,S.M.,2011.

PreparationofSAPO-34catalystandpresentationofakinetic modelformethanoltoolefinprocess(MTO).Chem.Eng.Res.

Des.89,811–816.

Gayubo,A.,Aguayo,A.,Alonso,A.,Atutxa,A.,Bilbao,J.,2005.

ReactionschemeandkineticmodellingfortheMTOprocess overaSAPO-18catalyst.Catal.Today106,112–117.

Gayubo,A.G.,Aguayo,A.T.,SánchezdelCampo,A.E.,Tarrío,A.M., Bilbao,J.,2000.Kineticmodelingofmethanoltransformation intoolefinsonaSAPO-34catalyst.Ind.Eng.Chem.Res.39, 292–300.

Gayubo,A.G.,Alonso,A.,Valle,B.,Aguayo,A.T.,Olazar,M.,Bilbao, J.,2011.Kineticmodellingforthetransformationof

bioethanolintoolefinsonahydrothermallystableNi–HZSM-5 catalystconsideringthedeactivationbycoke.Chem.Eng.J.

167,262–277.

Guisnet,M.,Costa,L.,Ribeiro,F.R.,2009.Preventionofzeolite deactivationbycoking.J.Mol.Catal.A:Chem.305,69–83.

Guisnet,M.,Magnoux,P.,2001.Organicchemistryofcoke formation.Appl.Catal.,A:Gen.212,83–96.

Lee,J.H.,Park,M.B.,Lee,J.K.,Min,H.-K.,Song,M.K.,Hong,S.B., 2010.SynthesisandcharacterizationofERI-typeUZM-12 zeolitesandtheirmethanol-to-olefinperformance.J.Am.

Chem.Soc.132,12971–12982.

Mihail,R.,Straja,S.,Maria,G.,Musca,G.,Pop,G.,1983.Kinetic modelformethanolconversiontoolefins.Ind.Eng.Chem.

ProcessDes.Dev.22,532–538.

Olsbye,U.,Svelle,S.,Bjørgen,M.,Beato,P.,Janssens,T.V.,Joensen, F.,Bordiga,S.,Lillerud,K.P.,2012.Conversionofmethanolto hydrocarbons:howzeolitecavityandporesizecontrols productselectivity.Angew.Chem.Int.Ed.51,5810–5831.

Park,J.W.,Kim,S.J.,Seo,M.,Kim,S.Y.,Sugi,Y.,Seo,G.,2008.

ProductselectivityandcatalyticdeactivationofMORzeolites withdifferentacidsitedensitiesinmethanol-to-olefin(MTO) reactions.Appl.Catal.,A:Gen.349,76–85.

Rostami,R.B.,Ghavipour,M.,Behbahani,R.M.,Aghajafari,A., 2014.ImprovementofSAPO-34performanceinMTOreaction byutilizingmixed-templatecatalystsynthesismethod.J.Nat.

GasSci.Eng.20,312–318.

Rostami,R.B.,Ghavipour,M.,Di,Z.,Wang,Y.,Behbahani,R.M., 2015.StudyofcokedepositionphenomenaontheSAPO34 catalystanditseffectsonlightolefinselectivityduringthe methanoltoolefinreaction.RSCAdv.5,81965–81980.

Spivey,J.J.,1991.Review:dehydrationcatalystsforthe

methanol/dimethyletherreaction.Chem.Eng.Commun.110, 123–142.

Sun,Q.,Ma,Y.,Wang,N.,Li,X.,Xi,D.,Xu,J.,Deng,F.,Yoon,K.B., Oleynikov,P.,Terasaki,O.,2014.Highperformance

nanosheet-likesilicoaluminophosphatemolecularsieves:

(9)

synthesis,3DEDTstructuralanalysisandMTOcatalytic studies.J.Mater.Chem.A2,17828–17839.

Svelle,S.,Olsbye,U.,Joensen,F.,Bjørgen,M.,2007.Conversionof methanoltoalkenesovermedium-andlarge-poreacidic zeolites:stericmanipulationofthereactionintermediates governstheethene/propeneproductselectivity.J.Phys.Chem.

C111,17981–17984.

Teketel,S.,Skistad,W.,Benard,S.,Olsbye,U.,Lillerud,K.P.,Beato, P.,Svelle,S.,2011.Shapeselectivityintheconversionof methanoltohydrocarbons:thecatalyticperformanceof one-dimensional10-ringzeolites:ZSM-22,ZSM-23,ZSM-48, andEU-1.ACSCatal.2,26–37.

Tian,P.,Wei,Y.,Ye,M.,Liu,Z.M.,2015.Methanoltoolefins(MTO):

fromfundamentalstocommercialization.ACSCatal.5, 1922–1938.

VanSpeybroeck,V.,DeWispelaere,K.,VanderMynsbrugge,J., Vandichel,M.,Hemelsoet,K.,Waroquier,M.,2014.First

principlechemicalkineticsinzeolites:themethanol-to-olefin processasacasestudy.Chem.Soc.Rev.43,7326–7357.

Vera-Castaneda,E.,1985.TheStudyoftheMethanolConversion toEthyleneandPropyleneUsingSmallPoreSizeZeolites.

TexasA&MUniversity,TX,USA.

Wang,C.,Yang,M.,Tian,P.,Xu,S.,Yang,Y.,Wang,D.,Yuan,Y., Liu,Z.,2015.Dualtemplate-directedsynthesisofSAPO-34 nanosheetassemblieswithimprovedstabilityinthe methanoltoolefinsreaction.J.Mater.Chem.A,5608–5616.

Wang,Q.,Cui,Z.-M.,Cao,C.-Y.,Song,W.-G.,2011.0.3 ˚Amakesthe difference:dramaticchangesinmethanol-to-olefinactivities betweenH-ZSM-12andH-ZSM-22zeolites.J.Phys.Chem.C 115,24987–24992.

Yang,G.,Wei,Y.,Xu,S.,Chen,J.,Li,J.,Liu,Z.,Yu,J.,Xu,R.,2013.

Nanosize-enhancedlifetimeofSAPO-34catalystsin methanol-to-olefinreactions.J.Phys.Chem.C117, 8214–8222.

Referensi

Dokumen terkait