• Tidak ada hasil yang ditemukan

6. SOLVED PROBLEMS - statically indeterminate structures

N/A
N/A
Hildan Wahyu

Academic year: 2025

Membagikan "6. SOLVED PROBLEMS - statically indeterminate structures"

Copied!
3
0
0

Teks penuh

(1)

SOLVED PROBLEMS

1. The assembly consists of an aluminum tube AB

having a cross-sectional area of 400 mm2. A steel rod having a diameter of 10 mm is attached to a rigid collar and passes through the tube. If a tensile load of 80 kN is applied to the rod, determine the displacement of the end C of the rod. Take Est = 200 GPa, Eal = 70 GPa.

Penyelesaian: Pipa aluminium: l0-Al = 400 (mm), A0-Al = 400 mm2, EAl = 70 GPa Baut baja: l0-St = 600 mm, dSt = 10 mm, ESt = 200 GPa

F = 80 kN, CC’ = ?

Pada gambar di atas terlihat jelas bahwa baut akan mengalami tegangan tarik dan pipa aluminium akan mengalami tegangan tekan. Menghitung perpanjangan baut akibat beban tarik:

Luas penampang batang baut: ASt = /4 d2 = /4102 = 78,5 mm2

Besar tegangan yang terjadi pada baut: St = F / ASt = 801000 / 78,5 = 1019,1 MPa Besar regangan yang terjadi pada baut; St = St / ESt = 1019,1 / (2001000)

= 0,005096 mm/mm

Perpindahan titik C akibat perpanjangan baut: lSt = Stl0-St = 0,005096600

= 3,057 mm.

Menghitung perpendekan pipa akibat beban tekan:

Tegangan tekan yang terjadi pada pipa: Al = F / AAl = 801000 / 400 = 200 MPa Regangan tekan pada pipa: Al = Al / EAl = 200 / 701000 = 0,002857 mm/mm Perpendekan pipa = pergeseran titik B ke kanan: lAl = All0-Al = 0,002857400

= 1,143 (mm) Pergeseran titik C: CC’ = lSt + lAl = 3,057 + 1,143 = 4,200 (mm).

2. F = 10 kN, L = 4 m, RA, RB, MA = ?

Dengan prinsip superposisi pembebanan dibagi dua seperti pada gambar (a) dan (b).

Gambar (a): l = x = L/2 = 2 (m), F = 10 kN

y2 = BC = 20/EI2 = 40/EI Gambar (b): l = x = L = 4 m, F = RB

y

1

F

y

2

.

A B

C’

(a)

y

3

R

B

A B’

(b)

mm 3

) 80 2 2 3 6 (

2 ) 10 3

6 (

2 2

1 l x EI EI

EI x

yF      

rad 20 ) 2 2 2 2 (

2 ) 10 2

2 ( l x EI EI

EI x

F      

 

(2)

Karena titik B tetap, maka: y1 + y2y3 = 0  80/3EI + 40/EI  64 RB/3EI = 0 Sehingga: RB = (80 + 120) / 64 = 3,125 kN

Fv = 0  RA = FRB = 10 – 3,125 = 6,875 kN MA = RB LF L/2 = 3,1254  102 = 7,5 kNm

3. w = 3 kN/m, L = 5 m. RA, RB, MA = ?

x = 2 m dan y +3 cm  max, 1 , 2 =?

Balok prismatis homogen: b h = 6  10 cm.

Dengan prinsip superposisi pembebanan dibagi dua seperti pada gambar (a) dan (b).

Gambar (a): l = x = L = 5 (m), w = 3 kN/m

Gambar (b): l = x = L = 5 m, F = RB

Karena titik B tetap, maka: y1y2 = 0  1875/8EI  250 RB/6EI = 0 Sehingga: RB = 18756 / (2508) = 5,625 kN

Fv = 0  RA = wLRB = 35 – 5,625 = 9,375 kN

MA = RB Lw L2/2 = 5,6255  352/2 = 9,375 kNm Menghitung besar tegangan normal yang terjadi di x:

Besar momen di x = 2 m: Mx = RB (Lx) – w (Lx)2/2 = 5,625 (5 – 2) – 3 (5 – 2)2/2

= 3,375 kNm

Inersia linear penampang: Ix = 1/12 b h3 = 1/12601003 = 5 000 000 mm4

Besar tegangan normal yang terjadi: xx = Mb y / Ix = 3,375106 30 / 5000 000 = 20,25 MPa Menghitung besar tegangan geser yang terjadi di x:

Besar gaya lintang Fy di x = 2 m: Fy = RBw (Lx) = 5,625 – 3 (5 – 2)

= 3,375 kN

Besar tegangan geser yang terjadi: = 0,54 MPa

y

1

w

A

B (a)

y

2

R

B

A B’

(b)

mm 3

) 64 4 4 3 6 (

) 4 3 6 (

2 B 2 B

3 EI

R EI

x R EI l

x

y F    

 

x y

mm 8

) 1875 5 5 5 4 5 6 24 (

5 3

) 4

6 24 (

2 2 2

2 2 2

1

EI EI

x lx EI l

x y w

 

 

mm 6

) 250 5 5 3 6 ( ) 5 3 6 (

2 B 2 B

2 EI

R EI

x R EI l

x

y F

 

 

 





y 2 12 2 2

yx 1002 30

000 000 5 2

1000 375 , 3 h2

2 y

I

F

(3)

Menghitung tegangan geser maksimum dan tegangan utama:

1 = 20,26 MPa

2 = 0,0136 MPa

 

4 21

20,25 0

4 0,54 10,139 M Pa

2

1 2 2 2

xy 2

yy xx min

max,

139 , 2 10

0 25 , 20 2 max,min

yy 2 xx

,

1

Referensi

Dokumen terkait

(A) Compression strength and hardness properties of the composites at different weight fraction of the particle (inset figure presents Stress-Displacement curve

Effect of TMD on fundamental period of the building TMD is attached in to the top story of the building with a mass of 30 kN-sec2/m, 5% of the structure mass.. It has a length of 0.12

The results of the pushover analyses for the 0.3X + Y + eccX load combination using the Significant Damage SD limit state for the retrofitted building resulted in a target

Primarily, experiments were carried out to investigate the feasibility of electromagnetic crimping EM crimping of aluminum tube with steel rod using a single rectangular groove which

A rigid concrete vertical retaining wall of height 6 m is supporting cohesionless dry backfill soil with unit weight of 18 kN/m3 and soil friction angle of 350.. The backfill soil slope

Refresh Cathode-Ray Tube CRT 3 of 28 • A beam of electrons cathode rays emitted by an electron gun, • passes through focusing and deflection systems • that direct the beam

The tube of Sphenothallns - demonstrated by its lack of segmentation in its en- closed soft parts not to be an annelid - although not quite so rigid was sufficiently strong to be a

Lecture Machine Design • It is required to design a knuckle • joint to connect two circular rods subjected to an • axial tensile force of 50 kN.. The rods are co-axial • and a