MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
(STRESS)
MKG-0301 | GEOLOGI STRUKTUR
Dosen pengampu: Efrina Chandra Agusti Putri, S.T., M.Sc.
Vector and coordinate system
• Scalars mass, volume, density, temperature
• Vectors velocity, displacement force, acceleration, poles to planes, azimuth
• Tensors stress, strain, thermal conductivity, magnetic suscepbility,
permeability
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
• Force is any action which alters, or tends to alter
• Newton II law of motion : F = M a
• Unit force : kgm/s2 = newton (N) or dyne = gram cm/s2; N = 105 dynes
(a). Force: vector quantity with magnitude and direction (b). Resolving by the parallelogram of forces
Modified Price and Cosgrove (1990)
Two Types of Force
•
Body Forces (i.e. gravitational force)
•
Contact Forces (i.e. loading)
Forces and Vectors
(A)
Balance
(B)
Torque
(C)
Static Equilibrium
(D)
Dynamic Equilibrium
(Davis and Reynolds, 1996)
Force
equilibrium
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Dynamic analysis
deals with the physics of deformation. It involves interpreting the force,
traction, stress, and mechanics (terms we will soon define) that give
rise to structures, taking into consideration the rheology (strength and
behavior) of the materials at the time they were deforming.
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Stress defined as force per unit area:
σ = F/A
A = area,
Stress units:
Psi, Newton (N), Pascal (Pa) or bar (10
5Pa)
(Davis and Reynolds, 1996) (Twiss and Moores, 1992)
Stress
Exercise
Diketahui:
Massa jenis batuan (balok granite) 2.7kg/m
3percepatan gravitasi g=9.8m/s
2Berapa besar stress/traksi yang diberikan
balok granit pada kolom marmer?
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Type of stress
Stress at a point in 2D
Stress (σ)
Norma l S
tre ss (σn)
Shear St
ress ( σs)
(+)
Compressive
(-) Tensile
(+) (-)
Stress
Normal stress (σN)
Shear stress (σS) Type of stress
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Stress on plane
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Stress ellipsoid
(Modified from Means, 1976)
(a) Triaxial stress (b) principal planes on the ellipsoid
Principal Stress: σ
1> σ
3Σ
x, Σ
z– Surface Stress
The state of 2-D
stress at point
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Image of Stress – Mohr diagram 2-D
Mohr 2-D diagram
Physical diagram Mohr diagram
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Planes of maximum shear stress ( ! s )
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Maximum shear stress
3-D geometry stress on a
Mohr diagram
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
• Mohr diagram is a graphical representative of state of stress
• Mean stress is hydrostatic component which tends to produce dilation
• Deviatoric stress – non-hydrostatic which tends to produce distortion
• Differential stress, if greater is potential for distortion
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Body force works from distance and depends on the amount of materials affected (i.e.
gravitational force).
Surface force are classes as compressive or tensile according to the distortion they produce.
Stress is defined as force per unit area.
Stress at the point can be divided as normal and shear component depending they direction relative to the plane.
Structural geology assumed that force at point are isotropic and homogenous
Stress vector around a point in 3-D as stress ellipsoid which have three orthogonal principal directions of stress and three principal planes.
Principal stress σ1>σ2>σ3
The inequant shape of the ellipsoid has to do with forces in rock and has nothing directly to do with distortions.
Mohr diagram is a graphical representative of state of stress of rock
STR ESS
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Stress vs.
Strain
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
• Evaluate Using Experiment of Rock Deformation
• Rheology of The Rocks
• Using Triaxial Deformation Apparatus
• Measuring Shortening
• Measuring Strain Rate
• Strength and Ductility
Relationship between stress and strain
Stress – Strain
Diagram
A. Onset plastic deformation B. Removal axial load
C. Permanently strained D. Plastic deformation E. Rupture
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Effects of temperature and differential stress
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
(Modified from Park, 1989)
A. Elastic strain B. Viscous strain
C. Viscoelastic strain D. Elastoviscous
E. Plastic strain
Hooke’s Law: e = σ/E, E = Modulus Young or elasticity Newtonian : σ = ηε, η = viscosity, ε = strain-rate
Deformation and materials
(Modified from Park, 1989)
Increasing stress effect to strain rate
MKG-0301 | GEOLOGI STRUKTUR
PROGRAM STUDI TEKNIK GEOLOGI STT MIGAS BALIKPAPAN
Stress Strain
• No quantitative relationship between stress and permanent strain
• Paleostress determination contain errors
• No implication equation relating stress to strain rate that causes the deformation
Limitation of stress concept in structural
geology