ANALYSIS OF HETEROGENEOUS REACTORS CONTAINING MODERATING FUEL ELEMENTS
Thesis by
Andre
Jacques TesniereIn
Partial Fulfillment of the Requirements For the Degree ofMechanical Engineer
California Institute of Technology Pasadena, California
Ti . . thiriAg b oourae of ~ WJ'k. He 1a alllo 111debtell
to
the . . bent of h1a OOIIIDttee IU.\4 especiallynt.
Harold Lu.rle who apent oounUe•boura in
•••Unc
and. ooJnCiin& th4t Jll&1RI&ICI'ipt. l'atnok Jt&d.4 perto1'1184 the pl'O~ tor os.lJ:rlala.Ueaa on the ooaputer of the integrals ot aecUon IV. Pal.Mr L. Poul&Mm diiCRlW the pro~ of the OJ'iiioal·tty OOlldition or MOUe Y i.DclUIIIJDg
t:he
eolut:lollot
thedetemtnant.
Maria
e.
08~1'8. tJped the MI'Y"'O'ipt. Gftti'Wde ill dueto
all tbeM iUividual.s who helpu4 1D ~ aohiftwaent of this inveaUpt1Gii &11d &lao to the aemben or the Craph:io .&na MOtion ot ihe Jet Propulad.on Lab-onwrt
who 4rwtile fi&w:'n.
1'he PeiD~
•
aeiho4 for hetero8Gl*)\le reactors isfe1"alllate4 lfJ' usin& a ~ 110del inaiead of aa
nse
kernel. !hietnat&ent 1a ~ utentied
to
take into accouni aaccmdary effects suoh as taat fiuion aai ihenal.isa,ion ot neutrons ineicle a rod which 81aal..&Jlill approach allows OM to relate the source and r.ink: ab'ongth
or
thf. hel al-.nt tiO the thel'Ml flu onl.:;. By defillin€ a 8et of four coef!ioieate U i.e po.~aible to COAT*!i the etrengthe of thermal ana :taet
aalC\llati»c' illese tour coett'loients ex, •
f• , ()(
:t alld.(?
.f is presated..~ critieal tuel 11&0 ot a 1"1uicm electric cell reao10r is calcul&W b7 uag the four coefficient utbod.. A Y&l'l.ie of aiJPro.rlm.atel.T
o.
77 ~ ia obtail*i, compared to a critical u.aa ofl.J
;t0
estimated'
lll)- '.l:'ho Four Coe:f'ficient method
1/ The neutron balance equations
2) ~oluiion of the balance e<}Untiona. Criticality condition
13
1320 l V }- Calculation
ot
the four ooetfioiente 241) Traneaiasion probabilltiee
25
2) Expression
ot tbe tour
coefficients in terasot
the transaiasion probabilities:59
V)- Numerical example
47
l) Theoretical considerations 48
2) Deta
56
3) Transmission probabilities and the
tour
ooeftioienta 59 4) Construction and solution of the detol"''dDa.nt 61Vl)-
Conclusion69
Appendix A - 'l'he the:rmal constant in cylindrical poaetry Appendix B - The angular distribution of neutrons leaving
a cylindrical aoderator rod 88
Appendix C - Initial eotimate of the critical masa 92
J,ppendix D - The disadvftlltagt, factor lll
Symbols.
Reterenoea.
-1-
tU tlMor,y ot ~te~ J"tMM..ton , . . tiret U..lopei wd.q - . . . . _ ... II04el _.
aaloulatilc
the eri ttoal data of aa eq\1.1-..l•t ~Heotor.
!heactual r.aotor
1• 4i'ri.cle4 i.Jl'to o.lle whoae ah&pe 1e detend.Mcl19
"the fuel .,_ . . . nt di8tribut1a.UeU. th ii,...S.i ts ud
t
oell IIGd.el, each oell ie tben replaced bya
~o:l.roular oeU *"
properti . .are
the • .,...properU . .
.r
~ aotulnU.
Dift\saiwa theo17 ia thea llH4tro
ol>- tab or1t1oal1 ty.!he
haaoaeneou methH
hu HVeral. dieaclnntageeai) it doea
Misift
thetine
•tNcWI'eot
the tlu 1Da
tiait.eon,
whiob.U..a
1i clitticv.l ito
klaov the t'Uaion rak ia._thtl, .h,al. ...U) it 1a a.pleuly
1rreleT&ntfor a re.otor
vit:h a.-.ll
.uab-.r of eleaenta.:Lii)
theaU. -.1-.nta of the reaotor,
whue bflux
varies oonai.clv&bl7 acrou the cell, are poorl.7acOO\mted tor.
b·) tile actual diapoai Uon of ~ 1'0U 1D a fiJ:d te eon baa no 1ntlu.110e on the bollloseneoWJ oalcula-
tiona.
Theeaae ma'be.r of fUel
1'04la ina
aqwu'ttt!J.IT&7
or
ina
huagonal arrayaiv•
tiwaau ruul
tB.if t:t.
.,_.,1'7
ia d•tro,-.d by theM•iniular-
iti ...
~tly,
hiaberc
(l) and Gal.anin {2) cle'Yeloped a hAtter-oceneoua metllrxt applioalli to W1aite JRCderator Md.ia. 'l'hia •thGd
vaa estende4 to
finiM M4iaot
rec~ahape 'b7 x .. ta (5)
aD4 qlin4rieal 8ha,pe byJoueoa
(6).Fei.Akrl' ud O&lanha oouid.er each fUel or ooaW'ol 1'04 aa a
ainc'ul&r1 ey.
'L'beH a~ittea are oona14ered u
dt8raalto
the 1104erator and an V.W u looalisad aouro• uMa ainka. The pzoop-erti . . ot the l'OU are oon1:a.ine4 1n the tbermal oonat&nt
t
whichCOAneeta
tM thel'ltAlnet
OWTeDt to the trutmaltlu at
tbeMart'au
fh1a allow•
cme
terelate
batructh of
the ~aeuuoa
able at'he
al:taa te th4t tUnal l*aben tlus at 1ta
aurtaa.. !h4t•inc'ul&r1 t7 u
tMaoenaiclerecl u a
z1Wtof
thttza.l nwil'OIUt ancla
aoune or
t'~ Ut.&Vou• The•trenc'th
at the aouroe 1arelated
to ~•i1"encth
fit the .ale tbJ:'oug:h the ooet'fioieat "] , the averap llli&IDMrot
tiuiOB neutl'ou prod.uoed per nautroa absorbed in the rocl. fhia co-etrieieat
aay be titfel'Gtfor
eaohncl.
The J'eiaMl",..aelanin
Mthod.ie a b1a ilaproveawnt over the
homo~ ~~etbo4
tor reaoton
witha uall DUaber of
l'OWJ. But itia
110t OOJQleWy aatiafactory for INCh rea.oWI'a u the t'iaeion-eleotric oell_,_
Mac tor, or the 'II'Ortex tube haC tor which have heteroereneouu tu.el elementa containing a significant ~t of moderlitor. In other wordl8, in auch a reactor tu.i neutrons ca:n be produca<i in a fuel ele&ent ty fipion, but alow neutrons can &lao l'f> produced. by elovinB down inside a fuel element. lt&ith&r of the above two lllethode tre&te thie kind of r~,ctor propt<rl,ya the boaoi,".neeWI 11etbod does not localise the flit~i ty, and tile l'ein.ber.;-G.alanin metho<l n.eglecte thu ulc\>ing down inside tt.e sir~""Ula:ri ty.
In ord•r to introd.uoe thin effect in a hetero;;ent#ou.a reactor calculation, we reconatruct a Feinl:•rg-Gala.lli..n m.ett.od in .n two-group llOCiel (rtection II). '.l'hu
"*
intrvduoe the additional eouz·ce and sink et'r.te ill the t'aet and thermal &roupa. {section III).Hwoe with the latter Hthod of treaUtii; a i;.ete.roe;~a reactor we co.usicl.e:I' ~ fuel elernent ruu
- a eource of :ta.et neutrorw (fiat!ion).
- a ucu.rce of ther1llal neutrons ( thelWI.lization).
- a sink of
fastDeUtronz {radiative capture
and fast fiaaion).- a sink: of thernal llWtrone { u~ermal abeorption).
fh.Q eource u!Xl aink terms a.r<:: related to eac.h other by two e< .. netants: ttj, er.d '?~o
•
the &ftr&ge n'tWber of neutrone produced per fast a-lnt.. tl;ermal a.b8CJ%1:tion respectivelJ in the fuel element,&ndf
thoprobability that a. llwtron slowilli' down inside the :f\rol ele~~ent ~chea
the1'111al anergy.
alld f u i fluee at the aurfece of the rod. these relationships neceaa1 tate the eatabliahment of tour coe:fficienta which mwst be determinad. Section IV p~ an appro:dme.tiYe method of obtaini,.
these coefficiente to~ a aimple tuel element.
!n a numerioe.l e:.rample (aection V) we oonaider a di.ffarent type of fuel elem8flt aDd ~:~&lee the
neeesaary
oorreotio.ne to theprerlou method of obta.Wng the coefficiente.
We treat here the case
ot
tu.el reds ol'Jl.y; tl'le ez:ten.1onto
control ro4a 1s atraightfonrard. ln thcl latter caee the coe!ficienta ~are equal to zero.
ot finite leaath u4 parallel to each otMr f'oraill8' a co:re eebe44ed in the w.oderator. l"t ia aHWited.
that
either the diatance between tileee element• is larp capared. with tlleir tranaverae dimensions, or that the lattice ia wt:riciently QMetrloal eo tbat the flux neru- the elltiMI'ltafor the overall fluxes:
N
-J),
'V1¢,(p) +(~ R
+~ ~) cf>,(p)
=~ L SA
(p}&(Jf- A.,a) (2.1)
I A:al
-n~ v~¢ 1 rrJ
+2~ ~2 r-;;J = r :rf< fJ,r-pJ - L
N sAtt>J arx -x~) (2.2>
Ml= l
where
¢, (p)
a:aArf>trp)
referto
the faat and. thermalnux
real*Jti'ftly in the sodflrator • ~ R ia the l"W!Oval ~roee eeciion of the IIIIOderator'(I}
we ba-n i.Dt:rod.uced
2
cr a tut abaorption oroaa seotiOD. for the 110d.entor. '.ftl.ia MY be -.J..icible·. 1(u
the total maher ot £uelnftboa .wl'e . . ot the eystg. We ne tilat each ~l eltlllell't is c<m- . Bidered aa a liM e:lnk aapt\lrinc
5
~ therllal neutl"'Ol8 per uaitUu
and. lmit llrllflth.
SJ
4ependa oa the poeition alcm& the fuel el8111eft't(alons
the •an•)
whioh 1• the ~ foriatroaucinc
~(f) 1u the aboYe equationa.low
that the Dirac delta fUDCUcma WMid. 1n tile equ.atiou aH two diaeneio¥1. d.elta 1\mctiQU ao that the prod.act~
(f) 6
(~-IA)
1a the •i.ftk 4eaaU7 of the t'wtl e l . - tA.
at IJOintf .
!he poaaetry of the fuel •1-n ta 1NifB811t8 the uae of 07lindr1oal oool"\Umltea. We nperaw the YIU"ia'blee 1n the ditf'.:ren.- tial ~uatiOM. Let:
1>rp J = c?rxJ ~Cr:J
• Bet. ' • 8.157, P• 459.
-7-
B:z = __
TT _ _ _.2! + J.
fJz.where
11
z. ia the reflector aa~ Oil one aicle aloq the a a.xU, aloac which the refleotor neec1e not to be i!d'iiU.t.. 5-A (f) vhioh ie directl7 proporUoa.al 1io the flux can be nittell:v~n 5.-l ie MW a constant to be 4e~ tor each rod.. lfe aJ.'9
lett
vi th tbe two d.iaenaional ef4.t.U&tiousI
N
-r/- ¢, (i)
+i<,-2 ~(X) =
'J}I SA sex- x_J)
]), f4.,1
N
(2.6}
- 'il: ~(X}
+k/ t (X) = /' 'i: ~ ~(X}-_!_ L SA d"("A- fiA.) (2. 7)
]).f.. }).t ~:I
•
(2.8)
Sol'ri.Da the faet
nu
equation we look tor a eolution of thetom:
N
rA (X) = L A A X ( 1<, I X - ~ I)
h=
Ian infinite lDOdel'ator aeti• (nDiahi'D(J
nux at
ird'iniv).One can easily find. the ooefficiente
Aj,. b7
wakia« tM· tolloving
auu~~ption
( •) •'!he flus at a roct •placement ie the aua of a aJIIIlflrloal.
rapidly Ya1";J1ng f\mc tion due to the rod 1 taelf and an unayametrical
derivati•• about e. zod we will neclect the 4e.r1vative o! 'the alovl,y
varyinc
hnotion vben compared vi th tile deriva:\!Te of tbo other. 'fbelatter tunetion at
therod ~ tar
If$. = A~ K
0(*I I :r- ~" I)
ln order to evaluate the eoetfioienta
A-N.,
the finiteratio
b
of~
rM. --.t...AOil'be-.co.nai~
... - .. Tha.JWm~ ot
faat an- trona l.a'Ving ibe IIUrfac. of the rod per Dit 1~ andt11.ae ua
where SA 1a the naber of theraa.l ruN trona absorbed p9l' urd t length and
u.- at
thecenter of
rodJ.
J theaAJ.
==15A
ilro D, -*1 K, C *·E)
(2.U)
• Ret. '·
p.740.
f = - irr b 1t (JL-A) cpt CX
1 )•
-9-
=
where
~(X;)
aJV1~(Jl.&} are the ~
tl1.01 aD4net CN~TGt
(2.12)
(Mkea . . poutive when directed outwar4) at b
ssrflst
of fUelel•at
A , we obtain tor
thetaet tlu:
"'
¢,CA}
= ~~2rrb]), 1<1 K. U<,b) L ~ (J;) K. (kl I X-~ I)
.6::1
lfhe ~l equation 1. 7 ie tilct
N
-
\]~
<P.t(Ji)
-t-ki. ~on
= t1'nI ~ C:X.t) Ko (-k,!Jl- JlAI)
A=l
(2.JA)
N
- ~ [ if:t (JiJ) 6(Ji- ~.;J
'J)t ,t:l
(2.15)
We aolve 'thie
~tioa 'b7
a Pour:l.er trlulatormteobl'd«<,\1e(•)
DO'tiBC tbat1I .
* :a..t. ,,
P• 7f17.(2.16)
00 i~.
Jt
'f'(h) • .t ~I! CfCS) e- JS
'fhe '\ru.aforrn
ot
eqution.2.
I~ 1eN i.s.~
(s.e+ ;(~) lfl.t
(5)= m I e ~ C:X.~z}
A..l
1</
+st
N is.~.._
- _!_
.L ~ ~C:lJJ e
. .t-rr D.r A: I
x..t d s
= ~ ds d e
-ll-
br
e de =
j
t:S~CCJ.9f
0 DO
s
]9
(s~Jds
-/;( .t
+ s
.t•
-_r_ Ko( -k.tflL -A.J I) J
lrr:D.t
~{X)= I
N~(Aj) H(lli-~J)
Ji:: I
'1'be flux at the wrfaoe of each rod is given b)-a
~C~)
:=:·L
N¢
1(XA) H{!X,.,.- X.~t;J
-'-='
(2.19)
(2.20)
!hi&
u
a a p t .ot N
linear holloptnBC)'U.S equations vhoae~are the ¢~)
's •
lol" a DOA-triYial aolution of 1C~),
the detendnant of the
ayste
IIWit V&llieh. This b 'the orltica.U.
tJcon41 tioa.
-1,_
We ocmaidw the_.. aaacbl7 aa the one det'iDecl i.Jl eeotioa 11, but the fuel el...-ta are allowecl ftOV to ba'ft ~ble al..,....
ina-down
propertiee. we replaceeacm
tu.l element ~·- a a1Dk of thtJl'U.l neutrona
- a sink or fast neutrolla due to a'baorptioa. and
- a IIOU'Ce of
taet
uuil'oml dueto
i'iaaion-a eource of
tbermalnwtrona due to
~liaaU.oniMide the rod.
!o vri
te
the balance eq,u.a.ticmawe
need to relate 'theaource tmd ailtk atrenctba vhich we do with the coetticicmte
1J
IUl4f .
lie ue
her.an overall r.acmanoe eaoape
probabili t1u a tint
app%'()8.ChJ it le the amae ~babill't7 as the one UMd iu baoptleOU8methode. \:fe will indicate b. the concluion bow this approxiaation aaa be illproved.
1)
%At lftb'On=I!
1•Mt isM\iW\ht write to. ... equaUou aa in aection II but where SA (I) rl)
and s~ the taet and thenal. neo.troa •ink terme appear now iluJtMd of one tbu.al sink temz
N N
(-:D,Vttl~t+2~) ~CrJ"" ''hI ~([
1rJJ 6(!-A~J +('?J,-'J I s;c.pJ ~(Ji:- Ji~) t~.1)
./4-:1 ~::I
N
(-])2
v
1+~:
1J ~ Cf) = f ~(( 1>,c-pJ- I: s~~irJ crc:r- r"J
A='
N
+
f I: s;JcfJ ACli- ~A)
~=I
(I)
where
SP.!
1a 'the JNal>er ofawt:rona
vhioh disappear from faataqua tiona s
croup per unit 1~ and time
at
thecenter of
ftd.A •
sla
(t} 1• ihe mabc of thei'IIIBl nwtrons abaorbed per ~ tl~..h and tllle at the center of rod ~ •
1,
1a the·~ maiberot
f'ut neutrons produced per fut abaorption in ~.fo. (Jri8Y
d.epelldw I< ) •
~t. ie ~ &"fel'fA6e lDIIIber of fut ReUt:roma procluced per thel"DW.l abeorption 1a rod -P< •
We DOte the extra Wl'llll 1R the rijht hand side of these
(1) account• for tut abeorp-
tion
arwt
faet fiasion in roclA •
(ii) f S,eOJ("'f)
b(Jl-~A)
acooun••tor
tL. .. :rsalieation in roc1~-
-15-
Ve ihen obtai.a
N
~V 1 + I'.J) ftCt)
=I' -z:" ¢,(Jt)- ~ L s: oCT -X~)
J)L D,t ""'
N
+
:t L sc'J 6(-x- fi.;J
])£ ~::/ ~
~) r..,J
•• witlh aow
to
aprue5
.fQ allGS j'
in tel"SSS of the :fluua at theINI't'Mt ot
each 1'04c{>,(J1.f)
ad¢
1 (::tA) • In orcler to 4o th.irl we define ~ coefficieabtlX 1 1 ))l'Oba'bil1't7 that a
taei
neu'U'Oil entering the fuelf• :
pnbebilitJ t:bat a rut neutron bo1"'t from tieaioa iua1de the hel. al..-t eaoapee tl'OII thetu.el
el-.nt aa a. taatc<
1 : proba'biliey ~t a thermal neuboa -~the twalelaent
eeoa.pee trom thetuel
el4lfllMlt.~ l : proba.'bili t;,y that a neutron thenaaliMtl iwside a tu.el eleaent eecapu
tram
th1a fuel elfUil4tllt.!Mn fCNr eoettioieta ct•pend on the nuclear and pOmetrical propertiea of the ntd. One vq
ot
getting a reuouhle app:ro:xiaUoator
them ie
Ci'Va
in thenext aeot1011.
Uai.Dc
theMcoet:tloieu
wecan
wr1te
clfbere . . uae
r
the overall l'HO!'llmM eeoape probabili Q' aa aa ~ppro»i&ati.On like at.a~e4 betore.
~- b the partial ouneut
coin«
inwar4. at the rod surface.b u
the ra41u of the ro4.-17-
TJ
r(-t- -)
U)u)( J
irr
o • :::::.2rr
bi - j
==J.t 5,& (?,
+SJQ "J,;J,-
tand from dit.fuaion
theot7
we pt::::
::
(3.ll)
I
¢'.,.
'where the
f
~ and. " 4eoote the partial ou.rrenta and fluxea atthe outa14e avtaoe of •
ella(l.Bote
tbatd.ue...-to..,th._,....p:tioo
Q! Qflfl!laUX.Oe at
tbe be-sinniDc
ot
MOtion II, the flu at the avt'aoe of a rod 1aiJIMpad•t
of the aaialtbal
ucl•·
With the eu lJ.aear nl&tionehi~ ,.6 through
,.ll,
OM cutiBd. the
s; s
in teru of . .¢
's 'r (t-oc,)(f+«.t) 01
=
TT"O.M
b, = -rrt 1t
(r-ll(-t){3{1JI-2-ot',(l,}M
a
1 =n-b
(1-l(.t)[t+''],(3(3,-1)+«,[1- -1J,(3,)
M ().14)
b~ = -rr'b r . (r-ot,J(3f3.t-.l- «.tt!t)
.M
1'1
=[I+ "J, ('~~.- t)
t«, (
t-"J,~J] (t +«.t)-f t£ (3fr 2-
cx:.t~t.){3 ~. -
i-Cf,(1,)
!baa, the 4itferaatial
equatioDa ' · '
and 3.4 ~'"
(-'ilt+-k,~¢,{Jt):: 1L L[
Q.t~(flA)+b.t~(~~ d (X-JtJJJ)
1),
~=·
-19-
N
(-V
2+~~~(X)= It
'21.~(A)- J. L[o.t ~(~)+ b.t ¢,(kA~ cf{;r-~)
n
:tI>.
:! b=' (,.1&)N
-+
~ I [
q,¢,(:X..aJ
+E, ~cx.v] d(:X -~_jJ
12 ~ ... •
:! \
01'
(-\1
2 +k,~ ~Cft) =
N .
~ {;, { ¢.~)[~ b~ +('J,-~•J + ~(;t,eJ[1,•.t +C-,,-l)hj} O{X -Jlj,) (,.17)
'i'heee can
be vr1ttmu
N
(-Vf.+ 1</) ¢, (Jt) = I (CP,~) ~{Jl- X ..a)
(:5.19)..11:::1
(-v~ + 1<:) fJ.£Cfi)
=.1!:. 2~ ¢,cc) + L
1/(¢.tl) 6(X- .r.,.) c,.20)
1?e
b:lFoJ' c btini:te ao4•raior a aolution of equatiOil ,.19
1••
I N
¢,("JL)
=I A.e. Ko(J<,j(- ~ J)
~='
fo 001\p\lte A~
, •
&f,1t.in nqleot in the derivaU.Ye of the :tluz at a roc!~
,th~t
dwivatitre or the J'l\l% due to the other ro4a vhea. ooapared.~ih
the dariutive of' the flux due to the rod.J .
'W•COIDpute th• CNJ"l"e'1t at the bcnmd.ary of the
/J.
element ill the 8&1181!l&tlJler ae iA MOtion II. "l'H ruult ias
-21-
F = - - - - -
.trr 'b -k, K. (1<,
b)N
cJ{ (Jt} = F L (¢,A) Ko ( /I,J X -"Ji;. /)
M: I
N
{-'iJ
1+-ki)¢£(X}
:=i
lp.FI [¢,JJ} Ko[-k,[}i-~1)
.D.t 8z-:: I
N
+ [ Crf>.tl) crcr -XAJ
,4:1
•
A.8 in MOtion II ve ue a Fourier tn~utorm prooedU!'e to • b • this equation. The two-41aensional Fourier tranatorm
ot
equation3.27
d.e.fille4 aa in 2.16 ia2N
st !f.tCs) + -~<l ifi[s}
= ..f. ~~f I
.Pt. ..t=l
MOtion ll:
N
¢2CX): .f:_ :i:~F L tAaJ[Ko(;t,JT-:fAV-}{.(I<.t(f- T~lJ]
.]),_ f.<:-
j{,f. 4: I#
+...!.. L {¢J.JJ.} Ko {#1./Jl- Jt~l}
.f-rr
b:l'l'o p t the orttioality condition, Ol.l.e eosap~Jtae from equaUcma
,.26
ac4 '·~ the t!umal. &:atfut nus ..
&1; theaurtace ot . .
1"041N
1:cr,.,) ~ : ~ { 1\(~)r 1t ~ +{,,-1)0~
+t ( ~)[ ~. 0~
+(~'
-•)b']}
XX
Ko (
j(, (J[I'IH-rAJ l)
N
¢:,_
c~ = .n t ~
R F _!_I{~ ct .. J[~.~ b, +&J,-Ual
+~ (.it~r 1 .~ q~
.,.m,-,J bJ} x
L l __ JJJ. 1) lz:l )
l J
17 7\,i ]/(/ I
N • {
K.(J<,/li,.-T.&o- x.rl(,,~- ~ .. u J -r
(,.~)--.t~ ~ f { 4l et,) [ f
o, -b, J
+~ (l".aJ[f< b, - ql]} K. (
?<,I 7i.;.. - I'" .a 1)
-~
vhwe
N
1e the mBiMret
l"'da.- P ia def'1nad.
b7
3.25- ~b
1
a2
'b2
are4efu.t
by 3.14RClO& we a4 up With a 8711'-
ot
2 N linear homG~equaUou vhoae 2 N Unkr.lmma ue ihe 9'?{ij) and ~(X~)
•
lfcm.•'triYial eoluUoumat
only U .1 • O, ihe deterainant of the •111t.u
Ml'O.the critioali'Q' cond.ition
1e
that the 2N order detei'Il11:lault Ll ~~UetYaJUah.
Prac:Uoally, ••
can
takeinw account s.r-etriea eo
that aeveral. fuel el-..nte have the &Uie surfacenux
<trx~J en4 the maber of \IDlalOvn8 oe be oon.id«rabl7 l"fiduoed. Moat of the time the order of the deterainant ia amal.ler th6ln 2N.!he
tou:r
coetfioienta «,~, tiJ.. ~i. 1at.Jooclue84 in aectton III4Aipead oo. the ~~MClea1' properti.. and aeometrioal oon!'f..&'ur*t.ioa of the
tu..l
el~t. liacb.1\tel eMiment
i fd.itterea.t
fl'Oil tbeothGre oan han
a ctifferet• t
of theft eoeffioienta. We oonaid.e.r here a ~e raodel of fuel elemeat and give an e.pprox:i.mate aethDd of obtai.ni.Qg theaetov
The fuel eleunt ia oompoHd of two co:noeutrio qlindrical reatou. 'l'he imler l"e(C1on ooataina
moderet~
material ( 2 a L<~
s )&114 the ou:iher qllnder con'tai.rle tuel ( 'l q rv
L
5 ) • '-'be OX'OH aeoUoa ot the fuelel•ent ia shown. below.
-25-
1) TrePa!yipn Pnl!abAi\iu
We oal.calat• f1nt a fw pt"Obabill tiea which will be WMtul in obtahainc tbue ao~ticient.
:Let
ue daf"inaeP, •
prolNtbiliv
'tba't auutron coa:11tc t:roa
the 11Uler ll04antor C0U ~the :tual eb.ell Without Ntd-Dg arq oolliaioa.~ 1 probabil1Q' that a autron eecapea fl'OII thfl ru.l el . . . t after a ecattw!D& colUd.oa in the fUel.
~ s pre'bald.Uv t.bat a uutrGn
atere
the inner I\OdenWl"af'WJ' a aoattal"ina eolluion in the tu.l.
rr, t probability that a nctron cOld~ tl'Gil outaide goea
el...at without a oolliaiom.
TTl ' proba})ill
v
that a neutron COidnc froa outai4• nachMthe 1lmer 1104erator without a collision 1B the tuel.
rr3 s pro'babil1Q' that a fast nwt:ron enterilll' '\be iAHr IIOd..._tor 4oM aoi tbe:nlalil:e iMide the JJtOdfml.tor •
.oderator.
ThMe probabU1 Uee ( u.cept rr' an4
rr
4)
- . t
be det1ae4. tor both f'Ut aad t.fterul 1\WUOU. A pnen.l upreaaion will ~ d.ariYed for each of th• iA wll1Gb. the appropriate orou aectiou (.faat or thenaal) lluat be ...- the acatterilla is iaotzoopio iD the leboratoq Q"at.i•
- the &D&Ul&r 41eb'ibu.tion ot neutrona impiD£1n& en
~ oute14e surface of the f\ull el--.t ia 1aot'l'Opio.
- th~ colliaion de:ui t7 ~
'/>
in. 4I&Chrec1o11 ot
the fV.el element ia apace independent for both ther~~al and. t . .t
1\wl ehell vi tbout
!llald.n«
8lf3 colli8ioa.We will UB11H u a firat approrlsaaUon 'that the ~ clla- tri\Ntion
ot
the Jlfttro:Uaob&
into the moderator is wdfom. 'lbia 1a reuonable i t dittwlioa theory applies becaUH the net 0\ll"rent 1.8 sero at tu boundU7 of the Mdmatorit
there are no abeorptio.u iMide.It ia abowJl 1n Appendis B ~t, aubjeot
te
MJ"tain GOB41tiou, the enplar cliatrlbutiOD. ~ the llliUUoU which leave the ilmer aode:ra\or iahouopic
providet t.hat theancular
d.Utribution of the1nceaiDc
nwtreu ie alao botropio.The probability tbat a nwtron C0J1inc out of dA(fi#l. 4.1) throU&h a aolid
anal.e d
n about 8 aJadtp ao.. throush
the tuel ahell- I'F So
without collidin& 1a
e
where ~F' 1a the 'Mtal 01'088 uoticm. of\
1•
~
probflb111tJtha~
a JMUtroncoin« ~ dA
1•u
solid S»gle-l"FSo
d.D..
abou'\e
&11d'f •
'!be producte j/dn.
11J ia tho probab1ll~that a neubotl
eoir:IB
thro'QSb dA 1• in aollci qglecl..n
andsoe•
~ the fuel ahell wi tho•t a oolUaion.P,
ia the Wll of tAeee ele1!181lt&r7probabilitiea over~ aolic! QS:lea
1!: J:.
P. ,= rr 4- /J.t
Cb.18~1fe I -~FSo dcr d e
0 0
1 -J (If - ~ !s (VI-
xi.,Wy,1Cf -x
WJ<f) (4.,)
Z(x,d,2)= J CDdt&UKJCfe
dffde0 0
.-capo tl'Oal the fuel eletaerlt after a ecatterinc oolliaion 1l'1 the 1\utl.. tie ucn.ame eoatteri.Dc ie iaotropio in the fuel, and euppoee the flux oau be considered u a constant ineid.e the fuel.
W1Wn theM
rubi.ct1one,
each YOlume el811GtdAr
1a oouid.enct u • Uldt
eouroe. !be probe.bill ty 11hat a neutronooaJ.nc
froa d& reachee an area
dA
oa the wteide aurtace o! the tuel el . . t-%FS ·
u
the prodlwt ot e and of the tr.oUcm of solid anclethrotl.Bh
whiohdA a ...
hoade-
where s ia the dietance Htweerl
d A
8Ad. rJ .o- •to aet
~w intecrate
tbiapro4uot over
th4t '901\llle and divideb7
the aelll'Oe av.,th which b P" 1~=~1/JJ
ASf}<f
•• DOte thai then are two kir14e of l:l.ai
ta
of intqration, 4epccl1Jaa on( ) J:~-·~
whether
'f
1elarpr or ...Uer
than o<tis.
4. 2where
o<= ,...,.. R .
Fi J 4 2
-31-
'!'he••
'two limite an:{j 'J: rirSL -~FS
+("1(71i(
S3-~FS
}~
=~!: J J t.<Junrre
dsdtfd11j J J ""''B<~>'fe dsdr<ls
oo<o o o o
A= irrRR.
(4.6)
(4.7}
(4.8)
e) !'he
Pftb&billtJ1§ :
probabWQ- tbata uutna
enten the 1zmer JIOd.emtar .~ ..a .
..aoat.~.-, ....
oollliicm. ia the fuel.
We eonaidv aow a -.1.1 'fOlume el81Nnt
ciu
in the fUel uda
aallana
dA on
theavtaoe ot
theiuer ltOderawJ>
adappl7
tbe.... .reaaorWac
u for ~ • !beliait
of ia~UOD(n.. 4.,}
ia aevaf; :::
,f .12.)(
'2F
1T(
'R't_ ~.t)li z J (
_'EF..li. (J~- tf ~~ lf - ~
CD(}<f)
)t cod1
ecti:Jr /- e ""
0cl'f
rl f)0 0
Z (X,#, L)
1adatine4 by
equation4.'.
Ou au confirm that the ao!'llitl1atioa ia colT8Ct
b7
cal- ou.latin,r11
tp
3 which 1e equal 'to 1 without fUrther oolltaiODIU(4.10)
(4.11)
). R {!rf lit ""'l ""'IJ""'f d 'f d tH rf fd9 ""'f _B_( ""'f - if~ - ..W r) rJ Cfd e]·
1f ( Rl-
Jtlj j ...
"{lY.J 8j j -
C«Je
R0 ~ 0 0
•
4) '!'he p:ro'bab1Uty TT1 a probabili'\7 that a M\l'b'oa coa1:tta fxw. cmtaide
acea il:lrouP
the fuel shella oollid.on •
Yeloci t1u of
theneutrons eomina
intothe tuel element
'fhe pl"'babilit;J tbat a neutron traveling in solid ~le d.n. about B
-~,..s~
and
'f eacapu b
eprovided if>
o<(see fi&. 4. 2). Hence a
lT, =
TT,
=
••
.
•.
(4.14)
when
I {.xI 1 ( L) u defined
by (4. 7)
e)
'lhe pi'ObalJW'\7 TT.t l probability tbata
ncUollOOIIIIiDc hom outei4.e reaches the ilwtr moderate~
wi thw t a colliaion in the tue.l •...
UaiJ.tc
tbe Nll8 pn>eedure u for TT, weset
R (
v
JJ.t . .t )53 = ca> 9 CbO
'f - R.t. -
4-cM~
(4.15)
_,,_
where
W(
'll~I ~) s..
de!'1ne4b7 (4.8).
t) 'lh4t prebabll1
t7
-rr 3 ' probabUiv
thata taat
Jlfttron &ftterin& the inner raode.ntor ctoee not
Let \&8 diatinpiah ftO OUMI
1) The aeutrona bom iu:We the
•lac
:f'l"'Ol tinioaJ(4.16)
tb . . . Dft'b'oM M'Ye a wl.l laWwn averap letharcr aDd
one can
haft u.idea of
tileanrase
~barot
theral.
x.v1ng the proba~
v
ibat a neutron escapee at eaoh acat- terin& oolliaion, oae can uWmine ihe probabilit,y that arut nwtrou
eecapee without beooaiBg themal.
We ue the notaUou and reB\llte of ApperuU.s Aa
A a
probab1l1i7 that a nau.tron go~ thl:'ou.8h the liOClerator 4oea Mt Mllide/tl,-.t.
... +(1-it](t-~) 'S
'11"3 =A+ (t-i.)'S
1-(t-~}N,-1- A +(1-A)[I- (1-~/J/-IJ
1-{t-~)
(4.17)
11) 'lbe fast nwtrons which enter the slug troll
wtei4e.
their letbarQ' is not well defined and is spread be- tween thenal and minimum leiluu-cies.
II& tl1 .. context of the 'two p-oup model, otte can say that at each .oatterin& CMJUisioa the aYe~ probability tha:t a f'ast neutron hcoriM theriH.l ia 2'11 , aeglecting tast abeoJ;"ptiona in \he moderator.
~
Therefore,
uaiJ:la
the reeul ttlot
AppeDdix A:rr3 = A+ (t-..\)( 1.:.
~~)__ :5:;,__ _ _
:i"~
/-(I-?J(l- ~:)
In theae oxprea&icut
A =
.!!:._I ( '}
/112.-m J
TT
(4.18)
~ = .t,; { -.t + (.te +))I, a) II, (t}
+I.(P) K,(e)- I,(e) K.(P) dt I. (f) Ko(P)}
where
e = L
h'l'l lL_,9-
aeutron escapee
theinner moderator.
fb1a probability acoo\ID.te tor 'the thumal a'baorption vhicb takea place in the modera'WP. Mottt of the time it ie Yory close to 1.
Tr4- is equi'lllent
to
the tranalliaaion coefficient of 'Ule mod- erator al~. HQJlCe aocorc.\ia,; to the rewlta of Appe~Hii% Aa~re :2,
of
theaod.erator
1a \l.Md."2t-
2) "Rn!!!&5m if
tbt J'gwSUWs!1entt ;&a Ttn1!J! Rf
'£rapaJ p1enJDb-
pt}Uia 1
a) !he coettioi•t o<1 a probabU1q that a tut neutron entering the fuel elell.le,Ut eecapea aa a fast neutron.
W= ~s
~t; in the fuel
5
futuumna •ter
the fuel e l . - t per UAit U.. u4 perunt•
1~. Xot
theMneutrou att.r
en~the
tuer
JD04en.'tol' le&'ft lt apJ.nu fut uutnma
per un1 t luath Ulll Ume. HeDOea(S(I-17j
-Tr.v
+X(/-'Pt)]
w D4Rtirona rakeat
leutone eoatter!Jsc
oollldoa in the fUel.l5G-TT,-7ll)+ x(I-'P,J]w(l-~ -1''3)w Mlca .. t;wL.ua~.QA}JJJI1.QJ38J
tn the
fbe total . . . -
ot 110atter1Dc oollisiou
theseneutrou
aake ill the
tul
las {llf 8UIIIBt&Uon)[s(t-~-~) +x(r-P.)]w
I - ( 1-
-p,. -
P3 ) w[
5(1-7T,-Tr~)
-t X (1-P,J]
wp
'S1f
1+
i + Xf,
l-(1--:fi-~)w
Srr1 -r [
'S(t-TT,-7T,~)-t
X(r-:P,)]w T3
{- (1-'PJ.- 'Pg)w
' {
S(t-1Tj-rr.t.)+ x{t-P,) -o }X = 1T 3
s
1T.z.+
w L~1- (1-~- ~)w
&Del
aol"fUc
tvx ,
X
= 5
lT~
7T".t. -(t- P.t -I; )
w Trt+ {
1-11", - TT.t.)w P,
t- ( t-
P.t - P,)
w - {!-P, J
w :P~rr3
8\lMtitu\Ua equtton
4.22
islu equation4.20
wept ~ nuabtw ofaeutrou eeoapbacc
5 S
S(t-71",-~)w.P.LQ(• =
rr, + - - - ' - - -
1-(J-F_t-~)w
(4.22)
rr.,-(1-Pl-l'a)w7T.t.
+(I-7T,-7T~)w'P, [(t-F,)c..uP.t 'P.]
I-(!-PJ.-J3}w -(I-P,}wP3
7T~ !-(t-f'.t-'P~Jw ..,..
11»)
!he coeff1o1entr.
a pi'Obabili'Q' tba'l a faa't JleV.bea bom hem tU.ion inaide the fUel eleent eeoapu5 nwtroaa are
bon holatiaaion
b. the tu.l el.at per UDitJ.enath
and tiN. X of then atter en'hl'ing the 1Ju1e1" 1104wator leave 1 • apiA aa fut nautroaa.[ s ( r- P.t - P
3 ) + x( 1-P,) J w ate at leut one eoatterinc oolllaion in
·~he fuel.
The total JWiaber of Hat~ colllaiclu thHe nwiZ'OIUI aake :1Jl the fuel 1a I
[ S( 1-
P:- .P.,) +
X{I- P,)] w
I - (1-P.t -
P
3 )w
s.P.f + [sCt-l'.t-1',) +X [/-PI)]w P.t +X P, (4.25)
I - ( 1-
P
1 - :P3 ) w51; + ( 5(/-l'J- :P,)
+X(!-P,)]
w~
/-(!-Pi.
-.E;Jw
{s
-o[sCt-P.t-I'aJ+ x(t-~)]wT?J}
X =
TTa .1:3+
=----=-~---~I - ( 1-
P,_-
~) wand eol '9"1ag tor X •
X:::
1- (!-~- ~)w-
(t- P,)
w'P
3rr
3o)
!beCCtefttcieat
ol..tr
pJ"ObablliV tbata theraal aeut:roA enteriD&
the fueleleMllt ucapea t:w
tbet\leleU..t.
OM cea ua here
tb4t NMproced.un aa for
o< 1vbtn
1r~treplacea
1T'~
'+
E.:[F., .,.P,Pa -P,)w + P,
I - ( 1- P.t. -P
3 )w
e.!= 7Ttr
TTt-(/-~-'&}w1r.t +
(I-7Tt-Tft) wp3
1-
(f - pf- p3)
w - { J-P,) w 13
7r4-
(4.29)
4) The coettio1•t ~J. 1 probability ~.t a.~.
aeutzoa
~ill the tuel. eleaeateeoapee
hM . . fuel el...at.S
uutzoou are theruliaecl 1D. thealuc
perlai' leoctb
aac1tiae. x
fit i.heHattw beiJ.w
ia the fuel return into the 1Jmel' 1204- eator u.d then le&ft apiA.(S+x)(l- f,) W
uutrou. a
at leut OMaeattel'1.q coll.Uioa. 1a the ~1.
the total maw ef
M&'terinc
eolUtdomt tMM awtrona make irl the tu.l 18&(Stx)(i-
'P,)
w ' 1- ( 1-1'1 - P~J w(Stx)f, + (Stx)(l-P,)w P,e
l - (I -
:P,t -
1?3) wneutrona eecape
trOll tileeluc
rs+x)(t-P,}w -o
l
r,
X = TTt,.
eolnnc tor
X t(S+X )(!-P,)w P3 1-(1-Pt
-P~JwX = S __
(_1-_P._,)_w_P~~-v_'l-.:..,_ __
fl = {'
+(t-P,)
wP
'3 rrlf ] {P, + _(,_- :P._,}_w_~_~._J
l-{t-1?r-1'~)w -(1-P,)wJ; 11"1f /- ( 1-
P.f-
:P~JwP,
+ w (1!.# + 1'.
:f'~ -P,)
fL= ---
1- ( 1-'fl-
1'3 ) w -(1- 1:;) w l'a
1ft,.... 7-
'beryllbul ql1ntar of 4.0 • 41alletw COYend with a tbiJl l..qer of
tul.l7
&ricbed vu1• ( " · " 'P).
Between 'th1e l.qer ud the nt-au .• ot
~elemut
there 1aa vuuua
capof 0.5 em. Fie· 5.1
abowaan
1d..UH4cell 00Dti&Vat1cm.
elen.o1•t lattice is ellOWll in (fig. 5.4). 'i'he wLole cort~ is surrounded by an infinite reflector !!W.d.e of the B8l!1e G".aterial &Iii t, e (.'Ore aoderator.
Being guided by Appendix C result~, we select eevt:rHl fuel londingsand find out r..tt l'<hat loading tlle detemincnt of equetiona ;.31 tt."ld 3.32 b zero. fie bive the 1"-..:eulta here for th'J following values
or
t.te total iWUla of uraniuuu
c.20,
\,.4(;,o.6u, v.70, c.75, o.t.lC, 1.00,
and1.34) ;., •
Firat, we notice that our fuel ele.~tmt is differE:mt fl"''OIl the I
one con~r.id<:r6(i Ui eect.ion IV. 'r'hic will briuc a amall correction to the trru<smietlion probabilitie8. 'l'hen WCJ construct our dete:rmit1flllt ta.kin::; into 6-Coou.nt the ~p:~etry siflplificatione. t;ot.t of this work is dor.e on a cornpu ter auci a brief outline is prosen ted Lelow.
• 'n·e prnasmce of a wouura b"HJ' brinf;B E.t c;mall correction to tf£t>
of the velocity of tl,e mtutrone ~t the outer boundary of the v'R(.Lillm gap ia isotro; ic. \I: a consider tl;e V&C\JUI2 eap ns ~ part of tl~e fuel element.
neutron[( at tbff outer bountiary of the fuel la.:rc-r if! not i:::;otro.~,Ic, "'n'.l we derive now a.n eXiJreasion for this distrHution.
At tbe outer boundary of the vucuua gal' the dit~trlr.utiorJ iv:
-49-
where the uclee are
detill.- aooo~ to(fia. 5.2) aDd.(fi&. 5.,).
Ia
ClJ"d.el'te - .
the ruulu
del"i.ftel in aeoU.oa IV .1 weawtt
upz • • tbia cU.etl'ibu.tion iA terMot
1:heucl•• e
au4'f •
Fi_g. 5.2
Be
-51-
If we ht&U tM &a~N~ption maG.e in MOtion IV.l,
.:11'
h probabillUea iDYolvi.D& MU.VoU OtlldQCJ from ouuide the tu.el el.•ent are affected.r.s,
the oh•np 1n the diatrlbution dueto
the ~ P.P•lieDce,
P,
1?.2
&l'.llllP
~ ftM1n\Ulo.bazlced
aeloee • • • · In ..,_ to ~~aft
.on
IUIClll'aC7 1a oalnla~ /-P, we Wine
tlwt...-tttJ"a
Sbd.l.ar117
~+ P
3u ....,
~to w i7, au
the quanti'Q'1-
1?
1 -1?
3u .,_., ... u. eo ..
Idet1ae wo
<t\1Ailt1 iiN•- 13
0 •JRM\UIV
tilat a aw.t.roa wbtoh 1fftlA haft_ _ , . the fUel
el••• atter a
Mat~ooUtdtla
ill thetMl,
raakM aao'CbR oollild.ea__ C., ....
.JfiCl}IPUltJ..tbat
A ~ .~ wwld bawaoae into
the1mMtr
moclC'&tlor atW a . .*-....
U. oeU1eioa
ill11M tuel, MkM aaotber oelltal•
_,,..
(5.10)
JleDo•:
the 1naer aocltftotor, - - .
a prior oollildou
1n'he fuel.
Fo • JII'Ot.t.Wv
tt.t a uuUcm., which ooainctroa
ouWde 1IOUlA havecoae ihl"ouch
the fuel abeU an4 et.refl th4t1Der 1104erator, - - . a pri.or ooUt.ia
iA thefuel.
We . . .
•••Uauq
fla aectiouIV
.l.cl u4 I f .1-e tbat, Mk111C btoaoeow:tt
the 4daaap f.ntiatr.ftNtioa
aenUDlle4 abow, D. andF'o a:re:
~ 1Tbeee ..,..., . .
(5.8)
~(5.14}
lfith UJII' ...lou
(5.,) tbroU&h
(5~7)we
ou cled.uce iuadiateJ.7 the relat1cmtb1pu_,,.
f3
=
J. Ri. (~ ~K' +
ll( - IL.tI!:) - Co
rr (
R ~--1.tj ft.
1- R.t'+
rr.t = -
E-G
£
I
-F..
(5.17)
(5.18)
(5.19)
(5.20)
(5.21)
GeOIIIAt t.rical ••
ta:
A. - 2.0-
R •
fl_-t-Tr .. tbio.Jmue of the fuel ~r (8ee ':able
5.
2)p • 2.5
caE. • eeale tactGr equal n-.rioa.U;r to the ciia'tanM between
M
rods 1n aa (aee eeotionV.4} • 2.9954
b - f • 2.5
OilOther
data:
All ~ .auclear con£tants are obtained t1'0il ret'- ' erenoea iftdicated in AppencU .. s C(section
11)~~ • 0.91017 OD-l
,(() -l
£...F•
:n.389a.
w;-~)- -1
£..._ - 0.0012Y7
am
~R
•_i ~~ •
0.0087tJ58 ca-l"'t;/,
·57·
~ R sa: 0.0102
~(1)
"'
~<l) -1 ... • 0.8662 Cll
D, ...
~~rc-A•
0.852 oa D.t .. 0.4156 om13~ ~
=
0.0004567em-
2AJ.e ~"L 'i:.~)
Bt -1 2
• ~+ ~·
(0.0586 em ) D.t
• 0.526 1·a.at values in the fuel
!i. 18 0.01434 thermal values in the fuel
crt: ,,,
1'1] , .. J.J ~ F
V
F depends on fuel load.tnc VFI! +
VM2:"
M
.A~
/Y),0.20 .006289
0.40 .0125:5
0.60
.018740.70
.021820.75
.02336o.ao
.024901.00
.0,1021.30 .04011
{1-
~)<< I
lleooe
. . . eq\lation
4.17
~
+ (r-A)
~~l:
F •
.irr f,
-#, K, ( 1<, b)
f •
0.97 . . . Appeadbc, eeotton '
3) .raz~ssion Probabilities and the Four Cogfficients
:Fl:"OIIl calculnt.iona progra.t;lllled on 6ll !Et1 70C$J computer, we ob- tain the following nuzerical values for the integrals defined by equa- tione 5.8 through 5.12. 'l'able 5.2 givtts tho values for the fast group, and Table 5.3 tbe corresponding values for tho thormal group.
~\tt3
microns 1:"Ao j3o Co Do Fo
0.2C 0.336396 .OUJ06ll77
.<XX>l31035 .00010:5630 .CXXJ036230 .000107305
0.40
0.672791 .000122333 .000167924 .()(X)ll5178 • c:xrrt72170 .000210011 0.60 1.009179 • 0001834 3t3 .OC0224196 .000144812 .000107906 .<XJ0310018 0.70 1.177371 .<XX>2l393ti
.000252276.000161450
.000125695.000359246 ''·75 1.2b146o
.000~29le3.OC0265575 .000170636 .000134576 .000383683
o.oo
1.345~61.000244425 .000282829 .000180428 .000143447
.0004080251.00 1.681934 .0003()5412 .000343486 .000216471 .000178880 .C.00504569 1.30 2.186487 .000396771
.000436000.ooonns3 .000231771
• CXX>64fX!B7Table 5.2
M~~
A .. .Bo c .. Do Po £" G
0.20 .0022.,79 .00210019 .00151551 .00096529
.003c;,()ll1.276337
.003478730.40 .0044621 .00411905 .00296710 .00172416 .0075763 1.276325 .00492067
0.60.0066724 .00591796 .00436780
.002~600.0111069 1.276313 .00602691 0.70
.0077713.00678134 -00505059 .00269122 .0128287 1.276307 .00650947 0.75 .0063195 .00720505 .00538789
.00~83861.0136796 1.276304
.00673779o.oo .0008670 .00762426 .00572272
.00298265.0145249 1.276301 .00695863 1.00
.0110506.0()926055 .00703921 .00353250 .0178545
1.276~89.00778019 1.30 .0143020 .01160;04
.00894695 .00420039 .02~6998 1.276627 .00087030Table 5.3
M;.d c:\ (31
CXR.f3.e
0.20 .96646') 1.0
.9frnf71
-9970070.40
.966203
1.0 .981372·995609
0.60 .966037
1.0
.975144.99:5426
0.'70
.965961 1.0
.972110.992341
0.75 .965947 1.0 .970611 .991801
o.oo .965933
1.0.969122 .991261
1.00 .965846
0.999945.963260 .989107 1.30
.965703 0.999752 .954730 .985899Table 5.4
'l""hese can be transformed into tho four coefficients a,,
b,,
a:and
b
t defined by &qWttiona 3.14.M.G.3 a( f,/
0..2bf.
0.20
.13394 -0.0016998 .04792'7
-C.OC050440.40
.13499-0.0026397
.0738SO -0.0006452 0.60.13566 -0.0035509 .098857
-O.W07t>920.70
.13596-0.0039994 .111096
-O.OOC'82650.75 .13601 -0.0042192 .117158
-0.0008536 o.t-'0.1'3607
-0.0044Ja).123185
-0.(X)00801
1.00.13641
-0.0052925.147014
-0. ()(X)9iX)91.30 .13698 -0.0065043
.182026 -0.0011168Table 5.5
4) Y2P•pu.oti'l g §olHl''D d b 11ttm1111t
of19MUW '·»
. . l·l2
I
Ve write " - " equ.Uou ben 1a ~ tollOW'iJtc vqs
• N
(5.26)
~(~)
=~ ~~F
_!_I[¢,(~A~ +~ ~)8:1Jx.(*', £/:t.,-~J]-Ko(l!tEI:r,11,-"~l)}
.n.. *f-*~ :o, ... , J r
(5.27)
Co
t• -fta,-
V.t T~ ie a Mal• tao1i01'. In