• Tidak ada hasil yang ditemukan

Antena 2-Yuli-E460 antenna terbaru ppt

N/A
N/A
Muhammad Taqi Misbah Yazdi

Academic year: 2024

Membagikan " Antena 2-Yuli-E460 antenna terbaru ppt"

Copied!
14
0
0

Teks penuh

(1)

Arah x-y disebut sudut azimuth (Φ) - 0° s/d 360°

Arah x-z disebut sudut kutub (θ) - 0° s/d 180°

dA : luasan ananta kecil (infinitesimal)

Luasan ini akan dilalui daya (Pr) bila antena berada di titik asal koordinat

(2)

Di titik asal dapat dibayangkan berbagai bentuk antena (antena ideal).

Dari titik asal ke dA membentuk sudut ruang ananta kecil dΩ dengan satuan steradian (sr). dΩ=sinθ dθ dΦ.

Seluruh sudut ruang dalam permukaan bola = 4π sr.

Antena ideal memancarkan daya ke

segala arah = 4π sr.

(3)
(4)

Beam Area (Daerah Berkas)

Yaitu seluruh sudut ruang yang dilalui daya.

Pn : Pola radiasi daya ternormalisasi

Untuk menentukan besarnya sudut ruang dapat dipakai titik daya paro (half power point).

sr )

, θ (

2

0 0

A



  Pn d

2 2

2

2 2

2 2

derajat 41253

derajat 9

, 41252 )

derajat 3282,8064

( 4 sr 4

derajat 3282,8064

derajat rad 180

1 sr 1

(5)

HP HP

A

 θ 

(6)
(7)
(8)
(9)

Intensitas Radiasi

Daya yang diradiasikan antena per sudut ruang disebut intensitas radiasi, U (W/sr).

Pola daya ternormalisasi dapat dinyatakan sebagai rasio intensitas radiasi U(θ,Φ) sebagai fungsi sudut terhadap nilai maksimumnya :

S : vektor pointing (w/m2)

   

   

 

max

max

,

, ,

, ,

 

 

 

 

S S U

P

n

U

(10)

Efisiensi Berkas (Beam Efficiency)

Daerah berkas,Ω

A

/ sudut ruang berkas

terdiri dari daerah berkas utama, Ω

M

( main beam area ) dan daerah kuncup minor, Ω

m

( minor lobe area ), sehingga :

Ω

A

= Ω

M

+ Ω

m

Efisiensi berkas, ε

M

:

A M M

 

(11)

Stray factor, Ω

m

:

Dan ε

M

+ ε

m

=1

A m

m

 

(12)

Perarahan/ Directivity

Perarahan antena, D adalah perbandingan intensitas radiasi maksimum (daya per sudut ruang), U(θ,Φ)max dengan intensitas radiasi rata- rata Urata2.

Pada antena isotropis daya ke segala arah sama besar sehingga

Ω

A = 4π, karena itu untuk antena isotropis D=1.

Semakin kecil sudut ruang, semakin besar perarahan, D

Nilai perarahan, D ≥ 1

   

A rata

rata S

S U

D U

, , 4

2 max 2

max

(13)

Secara pendekatan D dapat dihitung :

Perarahan juga dapat dihitung secara eksak, yaitu bila persamaan pola radiasi U(θ,Φ) diketahui

o o

o o

41000 41253

4 4

HP HP

HP HP

HP HP

A

D  

 

 

 

(14)

Perolehan, Gain

Ada 2 definisi perolehan : 1.

Sebagai acuan biasanya antena dipole ½ λ

2.

Hubungannya dengan perarahan, D G = k D

k : faktor efisiensi antena 0 ≤ k ≤ 1

berhubungan dengan rugi-rugi ohmic pd antena yg akan membuat panas struktur antena

acuan antena

dari radiasi

Intensitas

antena subject

the of

maksimum radiasi

Intensitas

G

sama daya

dg masukan diberi

yg ideal antena

radiasi Intensitas

subyek antena

maksimum radiasi

Intensitas G

Referensi

Dokumen terkait