• Tidak ada hasil yang ditemukan

Belajar tentang Medan Elektromagnetik

N/A
N/A
Alfonsius Johar Raditya

Academic year: 2024

Membagikan "Belajar tentang Medan Elektromagnetik"

Copied!
24
0
0

Teks penuh

(1)

Medan Elektromagnetik

Electronics

Institut Teknologi Bandung

23 pag.
(2)

SUWARNO SUWARNO

ELECTROMAGNETICS I ELECTROMAGNETICS I

EL 3001

Vector & Coordinate systems EL 3001

Vector & Coordinate systems

(3)
(4)

Vector and Scalar

• Scalar quantity : quantity that can be explained by only its magnitude

Ex: length, temperature, height, area, voltage, power

• Vector quantity : quantity can only

explained by its magnitude and direction.

Ex: velocity, acceleration, force, electric

field, magnetic field

(5)

Vektor Vektor

Vector quantity : expressed by its magnitude and direction.

a A

A A 

A

a A

A A 

A a A  A

Unit Vector

(6)

VECTOR AND VECTOR COMPONENTS VECTOR AND VECTOR COMPONENTS

CARTESIAN

2 2

2

z y

x a a

a A

a A

z y

x

z y

x

A A A A

A A

A

 

2 2

A A x 2 A y A z

A    

(7)

VEKTOR POSISI DAN VEKTOR JARAK VEKTOR POSISI DAN VEKTOR JARAK

-R 1

Position vector:

z 2 y

2 x

2 2

2

z 1 y

1 x

1 1

1

a a

a 0

R

a a

a 0

R

z y

x P

z y

x P

z 1 2

y 1 2

x 1 2

1 2

2 1 12

a ) (

a ) (

a ) (

R R

R

z z

y y

x x

P P

Distance Vector

 2 1 2  1 / 2

2 1 2 2

1 2 12

) (

) (

) (

R

z z y

y x

x d

Distance

(8)

VECTOR ADDITION VECTOR ADDITION

C= A + B=B+A

(9)

VECTOR SUBSTRACTION VECTOR SUBSTRACTION

C= A-B= A +(- B)

B

C=A-B A

-B

(10)

VECTOR MULTIPLICATION VECTOR MULTIPLICATION

Multiplication by a scalar constant k

Same direction if k positive and opposite direction if k negative

A

kA

Longer if the absolute value of k >1, and shorter if

the absolute value of k <1

(11)

VECTOR PRODUCT VECTOR PRODUCT

dot product: the product of magnitude of the two vectors and cosine of the angle between the them.

A.B=B.A=AB cos  AB

Projection A on B Length=A cos  AB

2

B B . B A

cos :

Vektor

B

A  AB B 

(12)

DOT PRODUCT DOT PRODUCT

 

 

 

B A

B . cos A

vectors o

between tw Angle

A A

. A

) C(

. A B

. A C)

.(B A

) A(

. B B

. A

1 AB

2 2

A

ve distributi

e

commutativ

(13)

CROSS PRODUCT CROSS PRODUCT

(14)

CROSS PRODUCT CROSS PRODUCT

z y

x

z y

x

z y

x

B B

B

A A

A

a a

a AxA

AxB

a xa

a

; a

xa a

; a

xa a

0

ive) (distribut

C Ax AxB

C) Ax(B

ative) anticommut

( A Bx

AxB

y x

z x

z y

z y

x

(15)

TRIPPLE PRODUCT TRIPPLE PRODUCT

z y

x

z y

x

z y

x

C C

C

B B

B

A A

A C

C C





) x .(B A

meaning no

Ax(B.C)

l meaningful

A.(BxC)

!

! important is

Sequence

C.(AxB) A)

x .(

B )

x .(B A

C(A.B) -

B(A.C)

xC (AxB) Ax(BxC)

(16)

Determine

a. Vector A, its magnitude and unit vector of A

b. Angle that A makes with Y axis c. Angle between A and B

d. Perpendicular distance from the

origin to vector B

(17)

22

a 3 a

3 a

a 2 A ctor Unit ve

22 3

3 2

A a.Length

z y

x A

2 2

2

 

2 o

, 22 50

cos 3 A

a . cos A

axis Y

dan A

between b.Angle

y 1 1

-  

 

 

 

 

  

1 o

, 27 145

22

3 15 cos 2

B A

B . cos A

B and A between c.Angle

1 1

-    

 

68 , 2 )

180 (

sin OP

B to

O from Distance

d.

3  A o   

(18)

COORDINATE SYSTEMS

• Cartesian (x,y,z)

• Cylindrical (z)

• Spherical (r,)

(19)

CARTESIAN

dy dl Z

dz

dx

X

Y

dS y =dx dz a y dS z =dx dy a z

dS x =dy dz a x

dv=dxdy dz

(20)

CYLINDRICAL CYLINDRICAL

(21)

CYLINDRICAL ELEMENTS CYLINDRICAL ELEMENTS

(22)

SPHERICAL SPHERICAL

(23)

SPHERICAL ELEMENT SPHERICAL ELEMENT

a d dR dS

a d dR sinθ

dS

a d dθ sinθ

dS R 2 R

R R R

Area elements

(24)

Base Unit Vector

obey right hand cyclic relation Base Unit Vector

obey right hand cyclic relation

a a

a a

a x a

a

a x a

a a

a a

a x a

a

a x a

a a

a a

a x a

a

a x a

r r

z z

z

y x

z x

z y

z y

x

r   

x

x

x

Referensi

Dokumen terkait