• Tidak ada hasil yang ditemukan

Borel Matchings and Analogs of Hall's Theorem

N/A
N/A
Protected

Academic year: 2023

Membagikan "Borel Matchings and Analogs of Hall's Theorem"

Copied!
28
0
0

Teks penuh

(1)

Borel Matchings and Analogs of Hallโ€™s Theorem

Thesis by

Allison Yiyun Wang

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Mathematics

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

2020

Defended May 21, 2020

(2)

ยฉ2020 AllisonYiyunWang

All rights reserved

(3)

ACKNOWLEDGEMENTS

I would like to thank my mentor, Dr. Alexander Kechris, for his guidance and support throughout this project. I would also like to thank Dr. Matthias Flach, Dr.

Aristotelis Panagiotopoulos, and Dr. Omer Tamuz for their time and patience as members of my committee.

(4)

ABSTRACT

In classical graph theory, Hallโ€™s theorem gives a necessary and sufficient condition for a bipartite graph to have a perfect matching. The analogous statement for Borel perfect matchings is false. If we instead consider Borel perfect matchings almost everywhere or Borel perfect matchings generically, results similar to Hallโ€™s theorem hold. We present Marksโ€™ proof that Kรถnigโ€™s theorem, a special case of Hallโ€™s theorem, fails in the context of Borel perfect matchings. We then discuss positive results about the existence of Borel matchings that are close to perfect in the measure theory and Baire category settings.

(5)

TABLE OF CONTENTS

Acknowledgements . . . iii

Abstract . . . iv

Table of Contents . . . v

Chapter I: Introduction . . . 1

Chapter II: Borel Perfect Matchings . . . 3

2.1 Laczkovichโ€™s Example . . . 3

2.2 Kรถnigโ€™s Theorem in Higher Degree . . . 5

Chapter III: Borel Matchings and Measure Theory . . . 11

3.1 Bipartite Graphs . . . 11

3.2 A Shift Action . . . 16

Chapter IV: Borel Matchings and Baire Category . . . 19

Bibliography . . . 23

(6)

C h a p t e r 1

INTRODUCTION

Given a standard Borel space ๐‘‹, a(Borel) graph on ๐‘‹ is some ๐‘ฎ = (๐‘‹ , ๐บ) such that๐บ โІ ๐‘‹2is a symmetric, irreflexive, (Borel) set. The elements of ๐‘‹ are called the vertices of ๐‘ฎ, and we think of the relation ๐บ as defining the edges of ๐‘ฎ. If ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘‹ satisfy(๐‘ฅ , ๐‘ฆ) โˆˆ๐บ, we say that๐‘ฅand๐‘ฆ are adjacent and that these vertices are incident to the edge{๐‘ฅ , ๐‘ฆ}. For๐‘ฅ โˆˆ ๐‘‹, we denote the set of vertices adjacent to ๐‘ฅby ๐‘๐บ(๐‘ฅ) :={๐‘ฆ โˆˆ ๐‘‹ | (๐‘ฅ , ๐‘ฆ) โˆˆ๐บ}. For ๐ด โІ ๐‘‹, we define๐‘๐บ(๐ด) :=โˆช๐‘ฅโˆˆ๐ด๐‘๐บ(๐‘ฅ). A set ๐ดโІ ๐‘‹ is anindependent setif no two vertices in ๐ดare adjacent. Thedegree of a vertex๐‘ฅ โˆˆ ๐‘‹is the cardinality of๐‘๐บ(๐‘ฅ). A graph๐‘ฎis๐‘‘-regularif every vertex has degree ๐‘‘. We say that ๐‘ฎ hasbounded degreeif there is some๐‘› โˆˆNsuch that every vertex has degree at most๐‘›. We call๐‘ฎ locally finiteif every vertex has finite degree, and we call๐‘ฎlocally countableif the degree of every vertex is countable.

A (Borel) matching of ๐‘ฎ is a symmetric, irreflexive, (Borel) subset ๐‘€ โІ ๐บ such that if (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€ and (๐‘ฅ , ๐‘ง) โˆˆ ๐‘€ for some๐‘ฅ , ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, then ๐‘ฆ = ๐‘ง. Then ๐‘€ is a subset of the edges of ๐‘ฎ such that no vertex is incident to more than one edge in ๐‘€. Let ๐‘‹๐‘€ denote the set of vertices that are incident to edges in ๐‘€. A (Borel) matching๐‘€ is a(Borel) perfect matchingif๐‘‹๐‘€ = ๐‘‹. A matching๐‘€ is๐บ-invariant if๐‘ฅ โˆˆ ๐‘‹๐‘€ implies๐‘๐บ(๐‘ฅ) โІ ๐‘‹๐‘€.

Thechromatic numberof a graph๐‘ฎ = (๐‘‹ , ๐บ), written๐œ’(๐‘ฎ), is the least cardinality of a set๐‘Œfor which there is a map๐‘: ๐‘‹ โ†’๐‘Œ such that๐‘(๐‘ฅ) โ‰ ๐‘(๐‘ฆ)if(๐‘ฅ , ๐‘ฆ) โˆˆ๐บ. A graph๐‘ฎis calledbipartiteif๐œ’(๐‘ฎ) =2. TheBorel chromatic numberof๐‘ฎ = (๐‘‹ , ๐บ), denoted ๐œ’๐ต(๐‘ฎ), is the least cardinality of a standard Borel space๐‘Œ for which there is a Borel map๐‘: ๐‘‹ โ†’๐‘Œ such that๐‘(๐‘ฅ) โ‰ ๐‘(๐‘ฆ)if(๐‘ฅ , ๐‘ฆ) โˆˆ๐บ.

In classical graph theory, Hallโ€™s theorem gives the following necessary and sufficient condition for a bipartite graph to have a perfect matching.

Theorem 1.0.1(Hallโ€™s theorem). Let๐‘ฎ be a finite bipartite graph with bipartition {๐ด, ๐ต}. Then ๐‘ฎ has a perfect matching if and only if |๐‘๐บ(๐น) | โ‰ฅ |๐น| for every ๐น โІ ๐ดand every๐น โІ ๐ต.

In the case where๐‘ฎis๐‘‘-regular, Hallโ€™s theorem specializes to Kรถnigโ€™s theorem.

(7)

Theorem 1.0.2(Kรถnigโ€™s theorem). For all ๐‘‘ โ‰ฅ 2, every finite bipartite ๐‘‘-regular graph has a perfect matching.

We are interested in similar results about Borel matchings. However, the direct analog of Kรถnigโ€™s theorem in a Borel setting does not hold.

Theorem 1.0.3. [Mar16, Theorem 1.5] For all ๐‘‘ โ‰ฅ 2, there is a๐‘‘-regular acyclic Borel graph ๐‘ฎ on a standard Borel space ๐‘‹ such that ๐œ’๐ต(๐‘ฎ) = 2 and ๐‘ฎ has no Borel perfect matching.

We present Marksโ€™s proof of Theorem 1.0.3 in Section 2.

Instead of Borel perfect matchings, we may consider Borel matchings that are almost perfect. In Section 3, we discuss such matchings in the context of measure theory.

Suppose ๐‘‹ is a standard Borel space with a Borel probability measure ๐œ‡, and suppose๐‘ฎ = (๐‘‹ , ๐บ) is a locally countable Borel graph. We call a Borel matching ๐‘€ of ๐‘ฎ aBorel perfect matching ๐œ‡-almost everywhere(a.e.) if ๐‘‹๐‘€ is๐บ-invariant and ๐œ‡(๐‘‹๐‘€) =1. We say that ๐‘ฎ is ๐œ‡-measure preservingif for every partial Borel bijection ๐‘“ :๐‘Œ โ†’ ๐‘ between Borel subsets๐‘Œ , ๐‘ โІ ๐‘‹ satisfying Graph(๐‘“) โІ ๐บ, we have๐œ‡(๐ด) =๐œ‡(๐‘“(๐ด))for all Borel๐ด โІ๐‘Œ. In this setting, the following theorem by Lyons and Nazarov provides a sufficient condition similar to Hallโ€™s theorem.

Theorem 1.0.4. [LN11, Remark 2.6] Let ๐‘ฎ = (๐‘‹ , ๐บ) be a Borel graph on (๐‘‹ , ๐œ‡) that is locally finite, ๐œ‡-measure preserving, and bipartite. Suppose there is some constant๐‘ >1such that for all Borel independent sets๐ดโІ ๐‘‹,๐œ‡(๐‘๐บ(๐ด)) โ‰ฅ๐‘ ๐œ‡(๐ด). Then๐‘ฎhas a Borel perfect matching ๐œ‡-a.e.

Finally, in Section 4, we consider Borel matchings that are almost perfect in a Baire category sense. Suppose ๐‘‹ is a Polish space and๐‘ฎ = (๐‘‹ , ๐บ) is a Borel graph. We say that a Borel matching๐‘€ of๐บ is aBorel perfect matching genericallyif ๐‘‹๐‘€ is ๐บ-invariant and comeager. Marks and Unger proved the following statement, which gives a sufficient condition analogous to that in Hallโ€™s theorem.

Theorem 1.0.5. [MU16, Theorem 1.3] Let ๐‘‹ be a Polish space, and let ๐‘ฎ be a locally finite bipartite Borel graph with a bipartition {๐ต0, ๐ต1}. Suppose there is some๐œ€ >0such that for every finite set๐น โІ ๐ต0or๐น โІ ๐ต1, |๐‘๐บ(๐น) | โ‰ฅ (1+๐œ€) |๐น|. Then๐‘ฎadmits a Borel perfect matching generically.

(8)

C h a p t e r 2

BOREL PERFECT MATCHINGS

One important result about matchings in classical graph theory is Kรถnigโ€™s theorem.

Theorem 2.0.1(Kรถnigโ€™s theorem). For all ๐‘‘ โ‰ฅ 2, every finite bipartite ๐‘‘-regular graph has a perfect matching.

2.1 Laczkovichโ€™s Example

In [Lac88], Laczkovich constructs the following example, which demonstrates that Kรถnigโ€™s theorem does not hold in a Borel setting for ๐‘‘ = 2. Fix some irrational ๐›ผ โˆˆ (0,1). Let ๐‘…denote the rectangle with vertices (0, ๐›ผ), (๐›ผ,0), (1,1โˆ’๐›ผ), and (1โˆ’๐›ผ,1), and let๐‘…0:=๐‘…โˆช {(0,0),(1,1)}, as shown in the diagram below.

(0, 0)

(1, 1)

(๐›ผ, 0)

(1, 1โˆ’๐›ผ) (1โˆ’๐›ผ, 1)

(0,๐›ผ)

๐‘ฅ ๐‘ฆ1

๐‘ฆ2

Let ๐‘‹ and๐‘Œ be copies of [0,1], and let ๐‘ฎ be the bipartite graph on ๐‘‹ t๐‘Œ where ๐‘ฅ โˆˆ ๐‘‹ and ๐‘ฆ โˆˆ๐‘Œ are adjacent in ๐‘ฎ if and only if (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘…0. For example, in the diagram above, the neighborhood of ๐‘ฅ is {๐‘ฆ1, ๐‘ฆ2}. Observe that ๐‘ฎ is a 2-regular Borel graph with ๐œ’๐ต(๐‘ฎ) = 2. Laczkovich proved that ๐‘ฎ is a counterexample to Kรถnigโ€™s theorem in the Borel setting.

Theorem 2.1.1. [Lac88] The graph๐‘ฎ has no Borel perfect matching.

Proof of Theorem 2.1.1. We follow Laczkovichโ€™s proof in [Lac88].

(9)

Let๐œ†1denote the measure on๐‘…0such that๐œ†1(๐‘) =0 for all๐‘ โˆˆ ๐‘…0and such that for any disjoint line segments ๐ด1, ๐ด2, . . . , ๐ด๐‘› โІ ๐‘…0,

๐œ†1(๐ด1t๐ด2t. . .t๐ด๐‘›) =

๐‘›

ร•

๐‘–=1

๐œ†(๐ด๐‘–),

where๐œ†gives the Euclidean length of each line segment. Define the measure๐œ‡on ๐‘…0by

๐œ‡(๐ป) := 1 2

โˆš 2

๐œ†1(๐ป) for all measurable subsets๐ป โІ ๐‘…0. So ๐œ‡(๐‘…0) =1.

Note that a matching in ๐‘ฎ is equivalent to a subset ๐‘€ โІ ๐‘…0 that is the graph of an injective involution from ๐‘‹ to ๐‘Œ. We will prove that no such ๐‘€ โІ ๐‘…0 is ๐œ‡-measurable, which will imply that๐‘ฎdoes not have a Borel matching.

We will now define two functions ๐‘“ : ๐‘…0โ†’ ๐‘…0and๐‘” : ๐‘…0โ†’ ๐‘…0. Let ๐‘“(๐‘ฅ , ๐‘ฆ) = (๐‘ฅ , ๐‘ฆ) if๐‘ฅ = 0 or๐‘ฅ =1. If๐‘ฅ โˆˆ (0,1), let ๐‘“(๐‘ฅ , ๐‘ฆ) := (๐‘ฅ , ๐‘ง), where๐‘ง is the unique point in [0,1] \ {๐‘ฆ}such that(๐‘ฅ , ๐‘ง) โˆˆ ๐‘…0. Similarly, let๐‘”(๐‘ฅ , ๐‘ฆ) =(๐‘ฅ , ๐‘ฆ)if๐‘ฆ =0 or ๐‘ฆ =1. If ๐‘ฆ โˆˆ (0,1), let๐‘”(๐‘ฅ , ๐‘ฆ) := (๐‘ค , ๐‘ฆ), where๐‘คis the unique point in[0,1] \ {๐‘ฅ}such that (๐‘ค , ๐‘ฆ) โˆˆ ๐‘…0. Note that ๐‘“ = ๐‘“โˆ’1and๐‘”=๐‘”โˆ’1and that ๐‘“ and๐‘”are measure-preserving homeomorphisms from ๐‘…0to itself.

We claim that ๐‘”โ—ฆ ๐‘“ is ergodic on ๐‘…. Let๐‘‡ = R/Z be the circle group with the Lebesgue measure. Let โ„Ž : ๐‘… โ†’ ๐‘‡ be a measure-preserving homeomorphism satisfying

โ„Ž(1,1โˆ’๐›ผ) =0;

โ„Ž(1โˆ’๐›ผ,1) = ๐›ผ 2; โ„Ž(0, ๐›ผ) = 1

2; โ„Ž(๐›ผ,0) = 1+๐›ผ

2 .

Define๐‘˜ := โ„Žโ—ฆ๐‘”โ—ฆ ๐‘“ โ—ฆโ„Žโˆ’1. Note that ๐‘˜ is a measure-preserving homeomorphism from๐‘‡ to itself, so there is some constant๐‘ โˆˆ๐‘‡ such that๐‘˜(๐‘ก) =๐‘ก +๐‘for all๐‘ก โˆˆ๐‘‡ or๐‘˜(๐‘ก) =โˆ’๐‘ก+๐‘for all๐‘ก โˆˆ๐‘‡. Since๐‘˜(0)=๐›ผand๐‘˜(1

2) = 12+๐›ผ, ๐‘˜(๐‘ก) =๐‘ก+๐›ผfor all ๐‘ก โˆˆ๐‘‡. We chose๐›ผto be irrational, so ๐‘˜is ergodic on๐‘…. Therefore,๐‘”โ—ฆ ๐‘“ is ergodic on๐‘….

Suppose there is a ๐œ‡-measurable ๐‘€ โІ ๐‘…0such that ๐‘€ is the graph of an injective involution from ๐‘‹ to๐‘Œ. Observe that ๐‘€ โˆฉ ๐‘“(๐‘€), ๐‘…0\ (๐‘€ โˆช ๐‘“(๐‘€)), ๐‘€ โˆฉ๐‘”(๐‘€),

(10)

and ๐‘…0\ (๐‘€ โˆช๐‘”(๐‘€)) are finite sets, so๐œ‡(๐‘€) = 12. Using our earlier observation that๐‘” =๐‘”โˆ’1, we note that๐‘€4(๐‘”โ—ฆ ๐‘“) (๐‘€)is finite. Then๐œ‡(๐‘€) โˆˆ {0,1}since๐‘”โ—ฆ ๐‘“ is ergodic. This is a contradiction, so there is no such ๐œ‡-measurable ๐‘€ โІ ๐‘…0, and therefore,๐‘ฎ does not have a Borel perfect matching.

2.2 Kรถnigโ€™s Theorem in Higher Degree

Laczkovichโ€™s example demonstrates that Kรถnigโ€™s theorem fails in the Borel setting for degree ๐‘‘ = 2. A theorem by Marks states that Kรถnigโ€™s theorem fails for Borel matchings for all๐‘‘ โ‰ฅ 2:

Theorem 2.2.1. [Mar16, Theorem 1.5] For all ๐‘‘ โ‰ฅ 2, there is a๐‘‘-regular acyclic Borel graph ๐‘ฎ on a standard Borel space ๐‘‹ such that ๐œ’๐ต(๐‘ฎ) = 2 and ๐‘ฎ has no Borel perfect matching.

We follow the proof of Theorem 2.2.1 given in [Mar16]. We first introduce some definitions. Given a standard Borel space ๐‘‹ and a countable group ฮ“, ๐‘‹ฮ“ is a standard Borel space under the product structure. We define theleft shift actionof ฮ“on๐‘‹ฮ“by

๐›ผยท๐‘ฅ(๐›ฝ) =๐‘ฅ(๐›ผโˆ’1๐›ฝ)

for all ๐‘ฅ โˆˆ ๐‘‹ฮ“ and ๐›ผ, ๐›ฝ โˆˆ ฮ“. We define Free(๐‘‹ฮ“) to be the set of all๐‘ฅ โˆˆ ๐‘‹ฮ“ for which๐›พ ยท๐‘ฅ โ‰  ๐‘ฅ for all๐›พ โˆˆ ฮ“\ {๐‘’}. If ๐‘‹ and๐‘Œ are spaces equipped with actions ofฮ“ and ๐‘“ : ๐‘‹ โ†’ ๐‘Œ is a function satisfying๐›พ ยท ๐‘“(๐‘ฅ) = ๐‘“(๐›พ ยท๐‘ฅ) for all๐›พ โˆˆ ฮ“and ๐‘ฅ โˆˆ ๐‘‹, then we say ๐‘“ isฮ“-equivariant.

The proof of Theorem 2.2.1 relies on a result about equivalence relations. For an equivalence relation๐ธ on a standard Borel space ๐‘‹, a subset ๐ด โІ ๐‘‹ is acomplete sectionif ๐ดintersects every๐ธ-class. If๐ธ and๐นare equivalence relations on ๐‘‹and there exist disjoint Borel sets ๐ด, ๐ตโІ ๐‘‹ such that๐ดand๐ตare complete sections for ๐ธand๐น, respectively, then๐ธ and๐นhaveBorel disjoint complete sections. We have the following theorem:

Theorem 2.2.2. [Mar16, Theorem 3.7] Letฮ“andฮ” be countable groups. Define ๐ธฮ“to be the equivalence relation onFree(Nฮ“โˆ—ฮ”)such that๐‘ฅ ๐ธฮ“๐‘ฆif and only if there exists some๐›พ โˆˆฮ“for which๐›พยท๐‘ฅ =๐‘ฆ. Define๐ธฮ” similarly. Then๐ธฮ“and๐ธฮ” do not have Borel disjoint complete sections.

To prove Theorem 2.2.2, we use several lemmas. We need the following definitions to state these lemmas. Given an equivalence relation๐ธ on a standard Borel space

(11)

๐‘‹, ๐ธ is a countable Borel equivalence relation if ๐ธ โІ ๐‘‹ ร— ๐‘‹ is a Borel set and each๐ธ-class is countable. Suppose ๐ธ is a countable Borel equivalence relation on a standard Borel space ๐‘‹, we define the following. A set ๐ด โІ ๐‘‹ is ๐ธ-invariant if for every ๐‘ฅ โˆˆ ๐ด, the orbit of ๐‘ฅ is contained in ๐ด. We define [๐‘‹]<โˆž to be the standard Borel space of finite subsets of๐‘‹, and we let[๐ธ]<โˆžbe the Borel subset of [๐‘‹]<โˆž consisting of the finite subsets of๐‘‹ whose elements are๐ธ-equivalent. The intersection graphon[๐ธ]<โˆžis the graph with vertex set[๐ธ]<โˆžwhere๐ด, ๐ต โˆˆ [๐ธ]<โˆž

are adjacent exactly when๐ดโˆฉ๐ตโ‰ 0 and๐ด โ‰  ๐ต. Then we have the following lemma, which we state without proof:

Lemma 2.2.3. [KM04, Lemma 7.3] Suppose ๐ธ is a countable Borel equivalence relation on a standard Borel space ๐‘‹. Let ๐‘ฎ be the intersection graph on [๐ธ]<โˆž. Then๐‘ฎhas a BorelN-coloring.

We also need the following definitions. Let๐ผ โˆˆ {1,2, . . . ,โˆž}, and let {๐ธ๐‘–}๐‘– < ๐ผ be a collection of equivalence relations on a standard Borel space๐‘‹. If, for some๐‘› โ‰ฅ 2, there is a sequence of distinct points๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ๐‘› โˆˆ ๐‘‹and a sequence๐‘–0, ๐‘–1, . . . , ๐‘–๐‘› โˆˆ Nsuch that๐‘–๐‘— โ‰ ๐‘–๐‘—+1for 0 โ‰ค ๐‘— โ‰ค ๐‘›โˆ’1,๐‘–๐‘› โ‰ ๐‘–0, and๐‘ฅ0๐ธ๐‘–

0๐‘ฅ1๐ธ๐‘–

1๐‘ฅ2. . . ๐‘ฅ๐‘›๐ธ๐‘–

๐‘›๐‘ฅ0, then we say that the๐ธ๐‘– arenon-independent. Otherwise, we say that the๐ธ๐‘–areindependent.

Letร”

๐‘– < ๐ผ๐ธ๐‘– be the smallest equivalence relation that contains every๐ธ๐‘–. The๐ธ๐‘– are everywhere non-independentif for eachร”

๐‘– < ๐ผ๐ธ๐‘–-class ๐ดโІ ๐‘‹, the restrictions๐ธ๐‘–๐ด are not independent. We state the following lemma without proof:

Lemma 2.2.4. [Mar16, Lemma 2.3] Suppose ๐ผ โˆˆ {1,2, . . . ,โˆž}, and suppose {๐ธ๐‘–}๐‘– < ๐ผ are countable Borel equivalence relations on a standard Borel space ๐‘‹ that are everywhere non-independent. Then there is a Borel partition{๐ด๐‘–}๐‘– < ๐ผ of ๐‘‹ such that for all๐‘– < ๐ผ, ๐ด๐‘

๐‘– intersects every๐ธ๐‘–-class.

We use Lemma 2.2.3 and Lemma 2.2.4 to prove the following lemma:

Lemma 2.2.5. [Mar16, Lemma 2.1] Let ฮ“ and ฮ” be countable groups. Suppose ๐ด โІ Free(Nฮ“โˆ—ฮ”)is a Borel set. Then at least one of the following holds.

1. There is a continuous injective function ๐‘“ : Free(Nฮ“) โ†’ Free(Nฮ“โˆ—ฮ”) such that ๐‘“ is equivariant with respect to the left shift action of ฮ“andran(๐‘“) โІ ๐ด. 2. There is a continuous injective function ๐‘“ : Free(Nฮ”) โ†’ Free(Nฮ“โˆ—ฮ”) such that ๐‘“ is equivariant with respect to the left shift action of ฮ” andran(๐‘“) โІ Free(Nฮ“โˆ—ฮ”) \๐ด.

(12)

We refer to words of the form ๐›พ0๐›ฟ1๐›พ2. . ., where ๐›พ๐‘– โˆˆ ฮ“\ {๐‘’} and ๐›ฟ๐‘– โˆˆ ฮ” \ {๐‘’} for all ๐‘–, as ฮ“-words. Similarly, we refer to words of the form ๐›ฟ0๐›พ1๐›ฟ2. . ., where ๐›พ๐‘– โˆˆฮ“\ {๐‘’}and๐›ฟ๐‘– โˆˆฮ”\ {๐‘’}, asฮ”-words.

Proof of Lemma 2.2.5. First, we will define a game that produces an element ๐‘ฆ โˆˆ Nฮ“โˆ—ฮ”, where player I defines ๐‘ฆ(๐›ผ) when ๐›ผ is a ฮ“-word and player II defines ๐‘ฆ(๐›ผ)when๐›ผis aฮ”-word. Let๐›พ0, ๐›พ1, . . ., and๐›ฟ0, ๐›ฟ1, . . .be enumerations ofฮ“\ {๐‘’} andฮ” \ {๐‘’}, respectively. Let๐‘Œ be the subset ofNฮ“โˆ—ฮ” consisting of the elements ๐‘ฅ โˆˆNฮ“โˆ—ฮ” such that for all๐‘ฅ0in the orbit of๐‘ฅ and๐‘– โˆˆN,๐›พ๐‘–ยท๐‘ฅ0โ‰  ๐‘ฅ0and๐›ฟ๐‘–ยท๐‘ฅ0โ‰ ๐‘ฅ0. We now define a function๐‘ก : ฮ“โˆ—ฮ”\ {๐‘’} โ†’Nโˆช {โˆ’1}to determine which values of ๐‘ฆare fixed on each turn of the game. Define๐‘ก(๐‘’) :=โˆ’1. For every๐›ผโˆˆฮ“โˆ—ฮ”\ {๐‘’}, we can write ๐›ผ uniquely in the form ๐›พ๐‘–

0๐›ฟ๐‘–

1๐›พ๐‘–

2. . . ๐œ‹๐‘–

๐‘š or ๐›ฟ๐‘–

0๐›พ๐‘–

1๐›ฟ๐‘–

2. . . ๐œ‹๐‘–

๐‘š, where ๐œ‹๐‘–

๐‘š โˆˆ {๐›พ๐‘–

๐‘š, ๐›ฟ๐‘–

๐‘š} based on the parity of ๐‘š. Define ๐‘ก(๐›ผ) := max0โ‰ค๐‘—โ‰ค๐‘š(๐‘–๐‘— + ๐‘—).

Observe that if ๐›ผ is a ฮ”-word or ๐›ผ = ๐‘’, then ๐‘ก(๐›พ๐‘–๐›ผ) = max{๐‘ก(๐›ผ) +1, ๐‘–}. In particular, if๐‘– โ‰ค ๐‘›, then๐‘ก(๐›พ๐‘–๐›ผ) โ‰ค ๐‘›if and only if๐‘ก(๐›ผ) < ๐‘›. Similarly, if๐‘– โ‰ค ๐‘›and ๐›ผis aฮ“-word or๐›ผ=๐‘’, then๐‘ก(๐›ฟ๐‘–๐›ผ) โ‰ค ๐‘›if and only if๐‘ก(๐›ผ) < ๐‘›.

We will define the game ๐บ๐ต

๐‘˜ for any ๐‘˜ โˆˆ N and any Borel set ๐ต โІ ๐‘Œ. The game ๐บ๐ต

๐‘˜ will produce some ๐‘ฆ โˆˆ Nฮ“โˆ—ฮ” satisfying๐‘ฆ(๐‘’) = ๐‘˜. On each turn ๐‘› โˆˆN, player I defines๐‘ฆ(๐›ผ) for allฮ“-words๐›ผsatisfying๐‘ก(๐›ผ) =๐‘›, followed by player II defining ๐‘ฆ(๐›ผ) for all ฮ”-words ๐›ผ satisfying๐‘ก(๐›ผ) = ๐‘›. We now specify who wins each run of the game. If ๐‘ฆ โˆˆ ๐ต, then player II wins, and if ๐‘ฆ โˆˆ ๐‘Œ \ ๐ต, then player I wins.

Otherwise,๐‘ฆโˆ‰๐‘Œ, so one of the following must hold:

1. There is some๐›ผ โˆˆ ฮ“โˆ—ฮ”and๐‘– โˆˆNsuch that ๐›พ๐‘–๐›ผโˆ’1ยท ๐‘ฆ = ๐‘ฆ. In this case, we say that(๐›ผ,ฮ“)witnesses๐‘ฆ โˆ‰๐‘Œ.

2. There is some๐›ผ โˆˆ ฮ“โˆ—ฮ” and๐‘– โˆˆ Nsuch that๐›ฟ๐‘–๐›ผโˆ’1ยท ๐‘ฆ = ๐‘ฆ. In this case, we say that(๐›ผ,ฮ”)witnesses๐‘ฆโˆ‰๐‘Œ.

We say that๐›ผwitnesses ๐‘ฆ โˆ‰๐‘Œ if either of the above statements holds. We specify that if(๐‘’,ฮ“)witnesses๐‘ฆ โˆ‰๐‘Œ, then player II wins, and if(๐‘’,ฮ”)witnesses๐‘ฆโˆ‰๐‘Œ, then player I wins. If neither of these happens, then there must be a ฮ“-word orฮ”-word witnessing๐‘ฆ โˆ‰๐‘Œ. If there is someฮ”-word๐›ผwitnessing๐‘ฆ โˆ‰๐‘Œ such that noฮ“-words ๐›ฝwith๐‘ก(๐›ฝ) โ‰ค ๐‘ก(๐›ผ) witness๐‘ฆโˆ‰๐‘Œ, then player I wins. Otherwise, player II wins.

We will use games of the form๐บ๐ต

๐‘˜ to construct our desired function ๐‘“ for the given ๐ด โІ Free(Nฮ“โˆ—ฮ”). Let ๐ธฮ“ be the equivalence relation on๐‘Œ such that ๐‘ฅ ๐ธฮ“๐‘ฆ if and

(13)

only if๐›พยท๐‘ฅ = ๐‘ฆfor some๐›พ โˆˆ ฮ“, and let๐ธฮ” be defined similarly. Note that๐ธฮ“and ๐ธฮ” are everywhere non-independent on๐‘Œ\Free(Nฮ“โˆ—ฮ”). By applying Lemma 2.2.4 with๐ผ =2, there exists some Borel๐ถ โІ๐‘Œ\Free(Nฮ“โˆ—ฮ”)such that๐ถintersects every ๐ธฮ”-class on๐‘Œ \Free(Nฮ“โˆ—ฮ”) and๐ถ๐‘ intersects every๐ธฮ“-class on๐‘Œ \Free(Nฮ“โˆ—ฮ”).

Define ๐ต๐ด := ๐ดโˆช๐ถ. Borel determinacy implies that for every ๐‘˜ โˆˆ N, player I or player II has a winning strategy for ๐บ

๐ต๐ด

๐‘˜ . Then player I or player II must have a winning strategy for ๐บ๐ต๐ด

๐‘˜ for infinitely many ๐‘˜. Suppose player II has a winning strategy for๐บ๐ต๐ด

๐‘˜ for infinitely many๐‘˜ โˆˆN, and let๐‘†be the set of all such๐‘˜. We omit the case where player I has a winning strategy for ๐บ๐ต๐ด

๐‘˜ for infinitely many ๐‘˜ โˆˆ N; a similar proof holds in that situation. For each ๐‘˜ โˆˆ ๐‘†, fix a winning strategy for player II in๐บ๐ต๐ด

๐‘˜ .

There exists a continuous injective equivariant function๐‘” : Free(Nฮ“) โ†’Free(๐‘†ฮ“).

So if we can construct a continuous injection ๐‘“ : ran(๐‘”) โ†’Free(Nฮ“โˆ—ฮ”) such that ๐‘“ is equivariant with respect to the left shift action ofฮ“and ran(๐‘“) โІ ๐ด, then ๐‘“ โ—ฆ๐‘”is a function satisfying the lemma.

We now define ๐‘“ : ran(๐บ) โ†’ Free(Nฮ“โˆ—ฮ”). Consider any๐‘ฅ0 โˆˆ Free(Nฮ“), and let ๐‘ฅ := ๐‘”(๐‘ฅ0). We will choose moves for player I in ๐บ๐ต๐ด

๐‘ฅ0(๐›พโˆ’1) such that the outcome of the game when player II plays according to their fixed winning strategy will be the value of๐›พ ยท ๐‘“(๐‘ฅ). We will do so simultaneously for all ๐›พ โˆˆ ฮ“such that ๐‘“ is an equivariant function and ๐‘“(๐‘ฅ) (๐›พ) =๐‘ฅ0(๐›พ)for all๐›พ โˆˆฮ“.

We will define(๐›พยท ๐‘“(๐‘ฅ)) (๐›ผ) inductively on๐‘ก(๐›ผ). By our definition of๐บ

๐ต๐ด

๐‘ฅ0(๐›พโˆ’1), we have(๐›พยท ๐‘“(๐‘ฅ)) (๐‘’) =๐‘ฅ0(๐›พโˆ’1) for all๐›พ โˆˆ ฮ“. Suppose we have defined(๐›พยท ๐‘“(๐‘ฅ)) (๐›ผ) for all๐›พ โˆˆ ฮ“and all๐›ผ for which๐‘ก(๐›ผ) < ๐‘›. We need to specify player Iโ€™s move on turn๐‘› in each game; equivalently, we need to define(๐›พ ยท ๐‘“(๐‘ฅ)) (๐›ฝ) for all ฮ“-words ๐›ฝ with๐‘ก(๐›ฝ) = ๐‘›. Suppose ๐›ฝ is aฮ“-word such that๐‘ก(๐›ฝ) = ๐‘›and ๐›ฝ =๐›พ๐‘–๐›ผfor some ๐‘– โˆˆNand some๐›ผwith๐‘ก(๐›ผ) < ๐‘›. By definition of the left shift action ofฮ“, we need (๐›พยท ๐‘“(๐‘ฅ)) (๐›พ๐‘–๐›ผ) = (๐›พโˆ’1

๐‘– ๐›พยท ๐‘“(๐‘ฅ)) (๐›ผ) for all๐›พ โˆˆฮ“. By assumption, we have already defined the value of(๐›พโˆ’1

๐‘– ๐›พยท ๐‘“(๐‘ฅ)) (๐›ผ), so this determines what player I should play for (๐›พ ยท ๐‘“(๐‘ฅ)) (๐›พ๐‘–๐›ผ). So we can determine player Iโ€™s move on turn๐‘›in each game, which determines (๐›พยท ๐‘“(๐‘ฅ)) (๐›ฝ)for all๐›พ โˆˆ ฮ“and allฮ“-words ๐›ฝsuch that๐‘ก(๐›ฝ) =๐‘›. The values of(๐›พยท ๐‘“(๐‘ฅ)) (๐›ฝ)forฮ”-words๐›ฝis determined by player IIโ€™s move on turn ๐‘›in each game, which is specified by the winning strategies we fixed for player II.

By induction, we can thus use the games๐บ๐ต๐ด

๐‘ฅ0(๐›พโˆ’1) to define๐›พยท ๐‘“(๐‘ฅ) for all๐›พ โˆˆ ฮ“.

From our construction, ๐‘“ is injective, continuous, and equivariant with respect to the left shift action ofฮ“. We also know that each ๐‘“(๐‘ฅ)is a winning outcome for player

(14)

II in๐บ๐ต๐ด

๐‘ฅ0 . It suffices to show that ran(๐‘“) โІ ๐ด. We will first show that ran(๐‘“) โІ๐‘Œ. Consider any๐‘ฅ0 โˆˆFree(Nฮ“), and let๐‘ฅ =๐‘”(๐‘ฅ0). Because ๐‘“(๐‘ฅ)results from a winning strategy for player II, (๐‘’,ฮ”) does not witness ๐‘“(๐‘ฅ) โˆ‰๐‘Œ. Suppose (๐‘’,ฮ“) witnesses ๐‘“(๐‘ฅ) โˆ‰๐‘Œ. Then there exists๐‘– โˆˆNsuch that for all๐›พ โˆˆฮ“,(๐›พ๐‘–ยท ๐‘“(๐‘ฅ)) (๐›พ) = ๐‘“(๐‘ฅ) (๐›พ). We can rewrite (๐›พ๐‘– ยท ๐‘“(๐‘ฅ)) (๐›พ) as ๐‘“(๐‘ฅ) (๐›พโˆ’1

๐‘– ๐›พ). By construction of ๐‘“, we then have ๐‘ฅ0(๐›พโˆ’1

๐‘– ๐›พ) = ๐‘ฅ0(๐›พ) for all ๐›พ โˆˆ ฮ“, or equivalently, ๐›พ๐‘– ยท๐‘ฅ0 = ๐‘ฅ0. But this contradicts ๐‘ฅ โˆˆFree(Nฮ“). We conclude that (๐‘’,ฮ“) does not witnesses ๐‘“(๐‘ฅ) โˆ‰๐‘Œ. Therefore,๐‘’ does not witness ๐‘“(๐‘ฅ) โˆ‰๐‘Œ.

We will show that for all ๐›ผ โˆˆ ฮ“โˆ—ฮ” and all ๐‘ฅ0 โˆˆ Free(Nฮ“), ๐›ผ does not witness ๐‘“(๐‘ฅ) โˆ‰๐‘Œ, where๐‘ฅ =๐‘”(๐‘ฅ0). We will use induction on๐‘ก(๐›ผ). Suppose this statement holds for all๐›ฝ โˆˆฮ“โˆ—ฮ”such that๐‘ก(๐›ฝ) < ๐‘›. First, we consider anyฮ“-word๐›ผsatisfying ๐‘ก(๐›ผ) =๐‘›. We can find๐›พ โˆˆ ฮ“and ๐›ฝ โˆˆ ฮ“โˆ—ฮ” such that๐›ผ =๐›พ ๐›ฝ and๐‘ก(๐›ฝ) < ๐‘›. Then ๐›ผโˆ’1ยท ๐‘“(๐‘ฅ) = ๐›ฝโˆ’1๐›พโˆ’1 ยท ๐‘“(๐‘ฅ), which we can rewrite as ๐›ฝโˆ’1 ยท ๐‘“(๐›พโˆ’1ยท ๐‘ฅ) since ๐‘“ is ฮ“-equivariant. By our induction hypothesis, ๐›ฝdoes not witness ๐‘“(๐›พโˆ’1ยท๐‘ฅ) โˆ‰๐‘Œ, so ๐›ผ does not witness ๐‘“(๐‘ฅ) โˆ‰ ๐‘Œ. Now consider any ฮ”-word ๐›ผ satisfying๐‘ก(๐›ผ) = ๐‘›. By our induction hypothesis and our argument for ฮ“-words, there is no ฮ“-word ๐›ฝ witnessing ๐‘“(๐‘ฅ) โˆ‰๐‘Œ satisfying๐‘ก(๐›ฝ) โ‰ค ๐‘›. Since ๐‘“(๐‘ฅ)is consistent with player IIโ€™s winning strategy,๐›ผcannot witness ๐‘“(๐‘ฅ) โˆ‰๐‘Œ.

Therefore, we have ran(๐‘“) โІ ๐‘Œ. Because each ๐‘“(๐‘ฅ) is the result of a winning strategy for player II in some game๐บ

๐ต๐ด

๐‘˜ , we must have ran(๐‘“) โІ ๐ต๐ด = ๐ดโˆช๐ถ. Note that ran(๐‘“) is ฮ“-invariant. By definition of๐ถ, ๐ถ does not contain any non-empty ฮ“-invariant sets, so we must have ๐‘“(๐‘ฅ) โІ ๐ด. We conclude that ๐‘“ is a function of

form (1), as desired.

We now use these lemmas to prove Theorem 2.2.2.

Proof of Theorem 2.2.2. It suffices to show that it is impossible to find any Borel set ๐ด โІ Free(Nฮ“โˆ—ฮ”) such that ๐ดis a complete section for๐ธฮ” and Free(Nฮ“โˆ—ฮ”) \๐ด is a complete section for๐ธฮ“. Given any Borel set ๐ด โІ Free(Nฮ“โˆ—ฮ”), we can find a function ๐‘“๐ด as in Lemma 2.2.5. If ๐‘“๐ด satisfies statement (1) of Lemma 2.2.5, then Free(Nฮ“โˆ—ฮ”) \ ๐ดcannot be a complete section for ๐ธฮ“. If ๐‘“๐ด satisfies statement (2) of Lemma 2.2.5, then๐ดcannot be a complete section for๐ธฮ”. Therefore, we cannot have๐ดbe a complete section for๐ธฮ” while Free(Nฮ“โˆ—ฮ”) \๐ดis a complete section for

๐ธฮ“.

Finally, we prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Fix some ๐‘‘ โ‰ฅ 2, and let ฮ“ := Z/๐‘‘Z =: ฮ”. Define ๐ธฮ“

(15)

and ๐ธฮ” as in Theorem 2.2.2, and let ๐‘‹ be the standard Borel space consisting of equivalence classes of๐ธฮ“and ๐ธฮ”. LetGbe the intersection graph on ๐‘‹, and note thatGis๐‘‘-regular, acyclic, and Borel with๐œ’๐ต(G) =2.

We claim thatGdoes not admit a Borel perfect matching. Suppose๐‘€ โІ ๐‘‹ร— ๐‘‹ is a Borel perfect matching forG. Define ๐ด โІ Free(Nฮ“โˆ—ฮ”)by

๐ด:={๐‘ฅ โˆˆFree(Nฮ“โˆ—ฮ”) | {๐‘ฅ}= ๐‘…โˆฉ๐‘†for some(๐‘…, ๐‘†) โˆˆ ๐‘€}.

Then ๐ด and Free(Nฮ“โˆ—ฮ”) \ ๐ด are Borel disjoint complete sections for ๐ธฮ“ and ๐ธฮ”, contradicting Theorem 2.2.2. Therefore,Gdoes not admit a Borel perfect matching.

(16)

C h a p t e r 3

BOREL MATCHINGS AND MEASURE THEORY

In graph theory, Hallโ€™s theorem states that bipartite graphs with a certain expansion property have perfect matchings. Recall that for any set of vertices๐น in a graph๐‘ฎ, we write๐‘๐‘ฎ(๐น) to denote the set of vertices that are adjacent to๐น. Hallโ€™s theorem states the following:

Theorem 3.0.1(Hallโ€™s theorem). Let๐‘ฎ be a finite bipartite graph with bipartition {๐ด, ๐ต}. Then ๐‘ฎ has a perfect matching if and only if |๐‘๐บ(๐น) | โ‰ฅ |๐น| for every ๐น โІ ๐ดand every๐น โІ ๐ต.

Theorem 2.2.1 states that Kรถnigโ€™s theorem does not hold for Borel perfect matchings.

Since Kรถnigโ€™s theorem is a specific case of Hallโ€™s theorem, Hallโ€™s theorem likewise fails for Borel perfect matchings. Instead of Borel perfect matchings, we can consider Borel matchings that are perfect on โ€œlargeโ€ subsets of a graph. Lyons-Nazarov [LN11] and Marks-Unger [MU16] proved results analogous to Hallโ€™s theorem from the perspectives of measure theory and Baire category notions, respectively.

3.1 Bipartite Graphs

To present the theorem of Lyons and Nazarov, we first recall some definitions.

Let ๐‘ฎ = (๐‘‹ , ๐บ) be a locally countable Borel graph on a standard Borel space ๐‘‹ with some probability measure ๐œ‡. Recall that if ๐‘€ is a Borel matching of ๐‘ฎ such that ๐‘‹๐‘€ is๐บ-invariant and ๐œ‡(๐‘‹๐‘€) = 1, we call ๐‘€ aBorel perfect matching ๐œ‡-almost everywhere (a.e.). Furthermore, recall that the graph ๐‘ฎ is ๐œ‡-measure preservingif for every Borel automorphism ๐‘“ : ๐‘‹ โ†’ ๐‘‹ such that Graph(๐‘“) โІ ๐บ, ๐œ‡(๐ด) =๐œ‡(๐‘“โˆ’1(๐ด))for all measurable ๐ด โІ ๐‘‹.

Lyons and Nazarov proved the following theorem, which uses a measure-theoretic concept of expansion in the setting of Borel perfect matchings๐œ‡-a.e.

Theorem 3.1.1. [LN11, Remark 2.6] Let๐‘ฎ =(๐‘‹ , ๐บ)be a Borel graph on a standard probability space (๐‘‹ , ๐œ‡) such that ๐‘ฎ is locally finite, ๐œ‡-measure preserving, and bipartite. Suppose there is some constant๐‘ > 1such that for all Borel independent sets๐ด โІ ๐‘‹, ๐œ‡(๐‘๐บ(๐ด)) โ‰ฅ๐‘ ๐œ‡(๐ด). Then๐‘ฎhas a Borel perfect matching๐œ‡-a.e.

(17)

The proof of this statement relies on a result by Elek and Lippner about the lengths of augmenting paths in Borel matchings. Apath of length ๐‘˜ in ๐‘ฎ = (๐‘‹ , ๐บ) is a sequence of vertices๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ๐‘˜ such that (๐‘ฅ๐‘–, ๐‘ฅ๐‘–+1) โˆˆ ๐บ for 0 โ‰ค ๐‘– < ๐‘˜ and such that๐‘ฅ๐‘– โ‰  ๐‘ฅ๐‘— for ๐‘– โ‰  ๐‘—. Given a Borel matching ๐‘€ on a graph ๐‘ฎ = (๐‘ฅ , ๐บ), a path ๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘›+1in๐‘ฎis called anaugmenting pathif(๐‘ฅ2๐‘–, ๐‘ฅ2๐‘–+1) โˆ‰๐‘€ for 0 โ‰ค๐‘– โ‰ค ๐‘›, (๐‘ฅ2๐‘–+1, ๐‘ฅ2๐‘–+2) โˆˆ ๐‘€ for 0โ‰ค ๐‘– < ๐‘›, and๐‘ฅ0, ๐‘ฅ2๐‘›+1 โˆ‰ ๐‘‹๐‘€. Such a path is augmenting in the following sense: if we define ๐‘€0to be the matching on ๐‘ฎ that reverses which edges in๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘›+1are contained in๐‘€ and agrees with๐‘€ on all other edges, then ๐‘‹๐‘€0 = ๐‘‹๐‘€ โˆช {๐‘ฅ0, ๐‘ฅ2๐‘›+1}. Elek and Lippner proved the following statement about the lengths of augmenting paths in Borel matchings.

Proposition 3.1.2. [EL10, Proposition 1.1] Let ๐‘‹ be a standard Borel space, and let๐‘ฎ = (๐‘‹ , ๐บ)be a locally finite Borel graph on ๐‘‹. Fix any๐‘‡ โ‰ฅ 1. For any Borel matching๐‘€ of๐‘ฎ, there is a Borel matching๐‘€0of๐‘ฎsuch that ๐‘‹๐‘€ โІ ๐‘‹๐‘€0 and such that every augmenting path in๐‘€0has length greater than2๐‘‡+1.

Proof of Proposition 3.1.2. We follow the proof given in [Ant13].

Let๐‘Œ be the set of paths of odd length at most 2๐‘‡ +1 in ๐‘‹. Let ๐‘ฏ be the graph with vertex set๐‘Œ such that two paths๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘›+1and๐‘ฆ0, ๐‘ฆ1, . . . , ๐‘ฆ2๐‘š+1in๐‘Œ are adjacent in ๐‘ฏ if and only if ๐‘ฅ๐‘– = ๐‘ฆ๐‘— for some 0 โ‰ค ๐‘– โ‰ค ๐‘› and 0 โ‰ค ๐‘— โ‰ค ๐‘š. Since ๐‘ฎ is locally finite, ๐‘ฏis locally finite as well, an therefore, there is a Borel coloring ๐‘ :๐‘Œ โ†’Non ๐‘ฏ.

Define ๐‘€โˆ’1 := ๐‘€. Let ๐‘0, ๐‘1, ๐‘2, . . . be a sequence of elements in N such that each element ofNappears infinitely many times in this sequence. To construct the desired matching ๐‘€0, we first construct a sequence of matchings ๐‘€0, ๐‘€1, ๐‘€2, . . . such that๐‘‹๐‘€

๐‘› โІ ๐‘‹๐‘€

๐‘›+1for all๐‘› โˆˆN. We do the following for each๐‘– โˆˆNinductively.

First, consider all paths in๐‘โˆ’1(๐‘๐‘–). If ๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘–+1 โˆˆ ๐‘โˆ’1(๐‘๐‘–) is an augmenting path in ๐‘€๐‘–โˆ’1, switch which edges of the path lie in the matching. In other words, remove each(๐‘ฅ2๐‘—+1, ๐‘ฅ2๐‘—+2)from๐‘€๐‘–โˆ’1for 0โ‰ค ๐‘— < ๐‘–, and add(๐‘ฅ2๐‘—, ๐‘ฅ2๐‘—+1)to๐‘€๐‘–โˆ’1for 0โ‰ค ๐‘— โ‰ค ๐‘–. Since no two paths in๐‘โˆ’1(๐‘๐‘–)share a vertex, the result of this procedure is still a matching; call this matching ๐‘€๐‘–. Note that๐‘‹๐‘€

๐‘–โˆ’1 โІ ๐‘‹๐‘€

๐‘– for each๐‘– โˆˆN. We claim that for every edge(๐‘ฅ , ๐‘ฆ) โˆˆ ๐บ, there exists an๐‘such that either(๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘‹๐‘› for all๐‘› > ๐‘ or (๐‘ฅ , ๐‘ฆ) โˆ‰ ๐‘‹๐‘› for all๐‘› > ๐‘. Suppose not, and let (๐‘ฅ , ๐‘ฆ) โˆˆ ๐บ be a counterexample. Then (๐‘ฅ , ๐‘ฆ) must be switched infinitely many times as part of an augmenting path. Define ๐ต โІ ๐‘‹ to be the collection of points ๐‘ง โˆˆ ๐‘‹ for which there is some ๐‘˜ โ‰ค 2๐‘› and๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘˜ โˆˆ ๐‘‹ such that๐‘ฅ , ๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘˜, ๐‘ง is a path

(18)

in๐‘ฎ. Note that every augmenting path that contains the vertex ๐‘ฅ must lie in๐ต, so switching the edges in any augmenting path containing๐‘ฅ increases the number of matched vertices in๐ตby 1. Since(๐‘ฅ , ๐‘ฆ)is switched infinitely many times,|๐‘‹๐‘€

๐‘›โˆฉ๐ต| is unbounded as๐‘›increases, implying that ๐ตis an infinite set. However, ๐ตmust be finite since๐‘ฎis locally finite. So such a counterexample cannot exist. We conclude that for every (๐‘ฅ , ๐‘ฆ) โˆˆ ๐บ, there is some ๐‘ such that (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘‹๐‘› for all๐‘› > ๐‘ or (๐‘ฅ , ๐‘ฆ) โˆ‰ ๐‘‹๐‘›for all๐‘› > ๐‘.

Let ๐‘€0 โІ ๐บ consist of the edges (๐‘ฅ , ๐‘ฆ) for which there exists some ๐‘ such that (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€๐‘› for all ๐‘› > ๐‘. If (๐‘ฅ , ๐‘ฆ) and (๐‘ฅ , ๐‘ง) are edges in ๐‘€0, there is some ๐‘› for which (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€๐‘› and (๐‘ฅ , ๐‘ง) โˆˆ ๐‘€๐‘› by definition of ๐‘€0. Since each ๐‘€๐‘› is a matching, ๐‘ฆ =๐‘ง. Therefore, ๐‘€0is a matching as well. Since each ๐‘€๐‘›is Borel, ๐‘€0 is a Borel matching. We claim that๐‘€0has the desired properties.

Consider any๐‘ฅ โˆˆ ๐‘‹๐‘€. Since ๐‘‹๐‘€ โІ ๐‘‹๐‘€

๐‘› for all๐‘› โˆˆ N, we can find points {๐‘ฆ๐‘›}๐‘›โˆˆN

such that(๐‘ฅ , ๐‘ฆ๐‘›) โˆˆ ๐‘€๐‘›for each๐‘›โˆˆN. By local finiteness of๐‘ฎ, some๐‘ฆ๐‘šmust occur infinitely many times. Our argument above implies that there is some ๐‘ such that (๐‘ฅ , ๐‘ฆ๐‘š) โˆˆ ๐‘€๐‘›for all๐‘› > ๐‘. Then(๐‘ฅ , ๐‘ฆ๐‘š) โˆˆ ๐‘€0, so๐‘ฅ โˆˆ ๐‘‹๐‘€0. Therefore,๐‘‹๐‘€ โІ ๐‘‹๐‘€0. It remains to show that ๐‘€0 does not contain any augmenting paths of length at most 2๐‘‡ +1. Suppose there is an augmenting path ๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘›+1 in ๐‘€0 with ๐‘› โ‰ค ๐‘‡. By definition of ๐‘€0, we can find some ๐‘ such that for all ๐‘› > ๐‘, we have (๐‘ฅ2๐‘–, ๐‘ฅ2๐‘–+1) โˆ‰ ๐‘€๐‘› for 0 โ‰ค ๐‘– โ‰ค ๐‘›, and (๐‘ฅ2๐‘–+1, ๐‘ฅ2๐‘–+2) โˆˆ ๐‘€๐‘› for 0 โ‰ค ๐‘– < ๐‘›. Let ๐‘˜ be the color assigned to this path by the coloring ๐‘. By definition of the sequence ๐‘0, ๐‘1, ๐‘2, . . ., we can find๐‘0> ๐‘ such that๐‘๐‘0 =๐‘˜. Then in round๐‘0, the edges of ๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘›+1are switched. In other words,(๐‘ฅ2๐‘–, ๐‘ฅ2๐‘–+1) โˆˆ ๐‘€๐‘0 for 0โ‰ค ๐‘– โ‰ค ๐‘›, and (๐‘ฅ2๐‘–+1, ๐‘ฅ2๐‘–+2) โˆˆ ๐‘€๐‘0 for 0 โ‰ค ๐‘– < ๐‘›. This is a contradiction, so no such path exists.

Therefore, ๐‘€0does not contain any augmenting paths of length at most 2๐‘‡ +1.

Thus, ๐‘€0is a Borel matching of๐‘ฎ satisfying the desired conditions.

We now use Proposition 3.1.2 to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We follow the proof given in [Ant13].

First, we recursively define a sequence {๐‘€๐‘–}๐‘–โˆˆN of Borel matchings in ๐‘ฎ. Let ๐‘€0 := โˆ…. Given the matching ๐‘€๐‘–, define ๐‘€๐‘–+1 to be the Borel matching obtained via the construction in the proof of Proposition 3.1.2 above, using๐‘‡ =๐‘–+1. Then ๐‘‹๐‘€

๐‘– โІ ๐‘‹๐‘€

๐‘–+1, and every augmenting path for๐‘€๐‘–+1has length greater than 2(๐‘–+1) +1.

We bound the measure of๐‘‹ \๐‘‹๐‘€

๐‘– using the following lemma.

(19)

Lemma 3.1.3. [LN11] Suppose ๐‘€ is a Borel matching of ๐‘ฎ such that every aug- menting path for ๐‘€ has length greater than 2๐‘›+1, and let ๐ต := ๐‘‹ \ ๐‘‹๐‘€. Then ๐œ‡(๐ต) โ‰ค๐‘โˆ’

๐‘› 2.

Proof of Lemma 3.1.3. We define a sequence of sets {๐ต๐‘–}0โ‰ค๐‘–โ‰ค๐‘› recursively. Let ๐ต0:= ๐ต. Given๐ต2๐‘˜ for some๐‘˜ โˆˆN, define

๐ต2๐‘˜+1:=๐‘๐บ(๐ต2๐‘˜) ={๐‘ฅ โˆˆ ๐‘‹ | โˆƒ๐‘ฆ โˆˆ๐ต2๐‘˜ (๐‘ฅ , ๐‘ฆ) โˆˆ๐บ}. Given๐ต2๐‘˜+1for some๐‘˜ โˆˆN, define

๐ต2๐‘˜+2:={๐‘ฅ โˆˆ ๐‘‹ | โˆƒ๐‘ฆ โˆˆ ๐ต2๐‘˜+1 (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€}.

First, we will show that ๐ต2๐‘˜ is an independent set for 0 โ‰ค 2๐‘˜ โ‰ค ๐‘›. Suppose ๐‘ฅ , ๐‘ฆ โˆˆ ๐ต2๐‘˜satisfy(๐‘ฅ , ๐‘ฆ) โˆˆ๐บ. By construction of๐ต2๐‘˜, there is a path๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘˜ = ๐‘ฅ such that ๐‘ฅ๐‘— โˆˆ ๐ต๐‘— for 0 โ‰ค ๐‘— โ‰ค 2๐‘˜ and such that (๐‘ฅ2๐‘–+1, ๐‘ฅ2๐‘–+2) โˆˆ ๐‘€ for all 0 โ‰ค ๐‘– < ๐‘˜. Similarly, there is a path ๐‘ฆ0, ๐‘ฆ1, . . . ๐‘ฆ2๐‘˜ = ๐‘ฆ such that ๐‘ฆ๐‘— โˆˆ ๐ต๐‘— for 0 โ‰ค ๐‘— โ‰ค 2๐‘˜ and such that (๐‘ฆ2๐‘–+1, ๐‘ฆ2๐‘–+2) โˆˆ ๐‘€ for all 0 โ‰ค ๐‘– < ๐‘˜. Then observe that ๐‘ฅ0, ๐‘ฅ1, . . . , ๐‘ฅ2๐‘˜, ๐‘ฆ2๐‘˜, ๐‘ฆ2๐‘˜โˆ’1, . . . , ๐‘ฆ1, ๐‘ฆ0is an augmenting path for๐‘€ of length 2๐‘˜+1, contradicting the definition of๐‘€. Therefore, we conclude that๐ต2๐‘˜is an independent set.

Since each๐ต2๐‘˜is a Borel independent set, our conditions on๐‘ฎimply that๐œ‡(๐ต2๐‘˜+1) โ‰ฅ ๐‘ ๐œ‡(๐ต2๐‘˜)for each๐‘˜. Now observe that๐ต2๐‘˜+1 โІ ๐‘‹๐‘€: if some element of๐ต2๐‘˜+1lies in ๐‘‹\ ๐‘‹๐‘€ = ๐ต0, then๐‘ฎ must contain an odd cycle, contradicting the assumption that ๐‘ฎ is bipartite. So we have ๐œ‡(๐ต2๐‘˜+1) = ๐œ‡(๐ต2๐‘˜+2) for each ๐‘˜ since ๐‘ฎ is ๐œ‡-measure preserving. Thus, we conclude that

๐œ‡(๐ต)= ๐œ‡(๐ต0)

โ‰ค ๐‘โˆ’

๐‘› 2๐œ‡(๐ต๐‘›)

โ‰ค ๐‘โˆ’

๐‘› 2.

By Lemma 3.1.3,๐œ‡(๐‘‹\๐‘‹๐‘€

๐‘–)converges to 0 as๐‘–โ†’ โˆž. Since๐‘‹\๐‘‹๐‘€

0 โЇ ๐‘‹\๐‘‹๐‘€

1 โЇ . . ., we have๐œ‡(โˆช๐‘›โˆˆN๐‘‹๐‘€

๐‘›) =1.

For each๐‘ฅ โˆˆ โˆช๐‘›โˆˆN๐‘‹๐‘€

๐‘›, there exists๐‘ such that๐‘ฅ โˆˆ ๐‘‹๐‘€

๐‘› for all๐‘› > ๐‘. For๐‘› > ๐‘, let ๐‘ฆ๐‘› โˆˆ ๐‘‹ be defined such that(๐‘ฅ , ๐‘ฆ๐‘›) โˆˆ ๐‘€๐‘›. Since๐‘ฎ is locally finite, there must be some๐‘ฆ such that ๐‘ฆ๐‘› = ๐‘ฆfor infinitely many๐‘› > ๐‘. We claim that there is a set

(20)

๐ด0 โІ โˆช๐‘›โˆˆN๐‘‹๐‘€

๐‘›of measure 1 such that for๐‘ฅ โˆˆ ๐ด0,๐‘ฆ๐‘› =๐‘ฆfor cofinitely many such๐‘›. Let๐ถ be the set of all๐‘ฅ โˆˆ โˆช๐‘›โˆˆN๐‘‹๐‘€

๐‘› such that this does not hold. We wish to show that๐œ‡(๐ถ)=0.

For each๐‘› โˆˆ N, define๐ถ๐‘›to be the set of ๐‘ฅ โˆˆ ๐‘‹ such that there is some๐‘ฆ โˆˆ ๐‘‹ for which(๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€๐‘›and (๐‘ฅ , ๐‘ฆ) โˆ‰ ๐‘€๐‘›+1. Observe that๐ถ โІ lim sup

๐‘›โ†’โˆž

๐ถ๐‘›. So

๐œ‡(๐ถ) โ‰ค ๐œ‡(lim sup

๐‘›โ†’โˆž

๐ถ๐‘›)

โ‰ค ๐œ‡(lim

๐‘˜โ†’โˆž

ร˜

๐‘›โ‰ฅ๐‘˜

๐ถ๐‘›)

โ‰ค lim

๐‘˜โ†’โˆž

ร•

๐‘›โ‰ฅ๐‘˜

๐œ‡(๐ถ๐‘›).

Suppose๐‘ฅ โˆˆ ๐ถ๐‘›. By the construction of ๐‘€๐‘›+1 from ๐‘€๐‘› according to the proof of Proposition 3.1.2, ๐‘ฅ must be contained in exactly one augmenting path of length at most 2๐‘› + 1 containing some element of ๐‘‹ \ ๐‘‹๐‘€

๐‘›. Then because ๐‘ฎ is ๐œ‡- measure preserving, ๐œ‡(๐ถ๐‘›) โ‰ค (2๐‘›+ 1)๐œ‡(๐‘‹ \ ๐‘‹๐‘€

๐‘›). Applying Lemma 3.1.3, we have ๐œ‡(๐ถ๐‘›) โ‰ค (2๐‘›+1)๐‘โˆ’

๐‘›

2. So lim

๐‘˜โ†’โˆž

ร

๐‘›โ‰ฅ๐‘˜๐œ‡(๐ถ๐‘›) = 0, implying that ๐œ‡(๐ถ) = 0.

Therefore, there is a set ๐ด0 โІ โˆช๐‘›โˆˆN๐‘‹๐‘€

๐‘› of measure 1 such that for๐‘ฅ โˆˆ ๐ด0, ๐‘ฆ๐‘› = ๐‘ฆ for cofinitely many such๐‘›. Let๐ด โІ ๐ด0be a๐บ-invariant set of measure 1.

We now define a matching ๐‘€ on ๐ด. For ๐‘ฅ , ๐‘ฆ โˆˆ ๐ด, we define (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€ if and only if there are cofinitely many๐‘›such that (๐‘ฅ , ๐‘ฆ) โˆˆ ๐‘€๐‘›. Since each ๐‘€๐‘› is a Borel matching, ๐‘€ is a Borel matching. Therefore, ๐‘€ is a Borel perfect matching ๐œ‡-a.e.

for๐‘ฎ.

The requirement that ๐‘ > 1 in Theorem 3.1.1 is necessary. Let ๐‘ฎ be the Cayley graph of the free part of the shift action of Zon 2Z. Then ๐œ‡(๐‘๐บ(๐ด)) โ‰ฅ ๐œ‡(๐ด) for all Borel independent sets ๐ดโІ 2Z. If๐‘ฎ has Borel perfect matching๐œ‡-a.e., then we obtain a Borel set that has measure12 and is invariant under applying the shift action twice, contradicting the fact that the action ofZon 2Zis mixing. Therefore,๐‘ฎdoes not have a Borel perfect matching๐œ‡-a.e., so the assumption๐‘ > 1 is necessary.

Furthermore, the expansion condition in Theorem 3.1.1 cannot be relaxed to one on finite sets, unlike in Hallโ€™s theorem.

Proposition 3.1.4. [KM19, Proposition 15.1] Let (๐‘‹ , ๐œ‡) be a standard probability space. For every๐‘› โ‰ฅ 1, there is some Borel graph ๐‘ฎ = (๐‘‹ , ๐บ) that is ๐œ‡-measure preserving and has bounded degree, satisfies ๐œ’๐ต(๐‘ฎ) =2, and has the property that

(21)

|๐‘๐บ(๐น)) | โ‰ฅ ๐‘›|๐น| for every finite independent set ๐น โІ ๐‘‹, with no Borel perfect matching ๐œ‡-a.e.

Conley and Miller proved a theorem about Borel perfect matchings๐œ‡-a.e. when the complexity of the edge relation is restricted. Let (๐‘‹ , ๐œ‡) be a standard probability space, and let๐‘ฎ = (๐‘‹ , ๐บ)be a locally countable Borel graph. If there is a๐บ-invariant Borel set ๐ด โІ ๐‘‹ such that ๐œ‡(๐ด) =1 and such that, on ๐ด, the equivalence relation generated by ๐บ can be written as the increasing union of finite Borel equivalence relations, the graph ๐‘ฎ is ๐œ‡-hyperfinite. Conley and Miller proved the following result about Borel matchings in acyclic๐œ‡-hyperfinite graphs:

Theorem 3.1.5. [CM17, Theorem B] Let (๐‘‹ , ๐œ‡) be a standard probability space, and let ๐‘ฎ = (๐‘‹ , ๐บ) be an acyclic, locally countable Borel graph. If ๐‘ฎ is ๐œ‡- hyperfinite and every point in some๐บ-invariant Borel set of measure 1 has degree at least 3, then๐‘ฎ has a Borel perfect matching๐œ‡-a.e.

3.2 A Shift Action

We conclude this section by presenting a theorem by Csรณka and Lippner, which extends a result by Lyons and Nazarov in [LN11] by removing the assumption that the Cayley graph of the given group is bipartite.

Recall that for a standard Borel space ๐‘‹ and a countable groupฮ“, the shift action of ฮ“on ๐‘‹ฮ“ is given by ๐›ผยท๐‘ฅ(๐›ฝ) = ๐‘ฅ(๐›ผโˆ’1๐›ฝ) for all๐‘ฅ โˆˆ ๐‘‹ฮ“ and๐›ผ, ๐›ฝ โˆˆ ฮ“. Suppose ๐‘† is a finite symmetric generating set of ฮ“, where ๐‘† does not contain the identity.

Then we define๐‘ฎ(๐‘†,[0,1]ฮ“)to be the graph on [0,1]ฮ“such that๐‘ฅ , ๐‘ฆ โˆˆ [0,1]ฮ“are adjacent exactly when there is some ๐›พ โˆˆ ๐‘†such that ๐›พยท๐‘ฅ = ๐‘ฆ. Csรณka and Lippner proved the following theorem about Borel matchings on๐‘ฎ(๐‘†,[0,1]ฮ“).

Theorem 3.2.1. [CL17, Theorem 1.1] Letฮ“be a non-amenable group with a finite symmetric generating set๐‘†not containing the identity. Let๐œ‡be the probability mea- sure on[0,1]ฮ“defined as the product of the Lebesgue measure on each coordinate.

Then๐‘ฎ(๐‘†,[0,1]ฮ“) has a Borel perfect matching๐œ‡-a.e.

We first present several definitions.

Let ๐‘ฎ = (๐‘‹ , ๐บ) be a ๐‘‘-regular, infinite, connected graph. A real cut for ๐‘ฎ is a partition ๐‘‹ = ๐ดt ๐ด๐‘ such that ๐ดis a finite set and |๐ด| โ‰ฅ 2. If |๐ด|is odd, we say that this partition is areal cut into odd sets. The sizeof the cut is |{(๐‘ฅ , ๐‘ฆ) โˆˆ ๐บ | ๐‘ฅ โˆˆ ๐ด, ๐‘ฆ โˆˆ ๐ด๐‘}|, the number of edges between ๐ดand ๐ด๐‘, which is finite since๐‘ฎ is

(22)

๐‘‘-regular and ๐ดis finite. Csรณka and Lippner proved the following lemma about the sizes of real cuts:

Lemma 3.2.2. [CL17, Lemma 2.5] Let ๐‘ฎ be as above, and suppose that for every ๐‘ฅ1, ๐‘ฅ2 โˆˆ ๐‘‹, there is an automorphism of๐‘ฎsending๐‘ฅ1โ†ฆโ†’ ๐‘ฅ2. Then every real cut of ๐‘ฎ has size at least๐‘‘, and there is a real cut with size exactly ๐‘‘if and only if every ๐‘ฅ โˆˆ ๐‘‹ lies in a unique๐‘‘-clique.

Now let๐‘‹be a probability space with measure๐œ‡, and let๐‘ฎ = (๐‘‹ , ๐บ)be a๐‘‘-regular, ๐œ‡-measure preserving, Borel graph on ๐‘‹. We define a measure on sets of edges as follows. For any symmetric, measurable set๐ป โІ ๐บ, define

๐œ‡โˆ—(๐ป) := 1 2

โˆซ

๐‘‹

๐‘‘๐ป(๐‘ฅ)๐‘‘๐œ‡(๐‘ฅ),

where ๐‘‘๐ป(๐‘ฅ) is the number of elements ๐‘ฆ โˆˆ ๐‘๐บ(๐‘ฅ) such that (๐‘ฅ , ๐‘ฆ) โˆˆ ๐ป. For any measurable set of vertices๐‘Œ โІ ๐‘‹, let

๐ธ(๐‘Œ , ๐‘Œ๐‘) :={(๐‘ฅ , ๐‘ฆ) โˆˆ๐บ |๐‘ฅ โˆˆ๐‘Œ , ๐‘ฆ โˆˆ๐‘Œ๐‘} โˆช {(๐‘ฆ, ๐‘ฅ) โˆˆ ๐บ | ๐‘ฅ โˆˆ๐‘Œ๐‘, ๐‘ฆ โˆˆ๐‘Œ} be the collection of edges between ๐‘Œ and ๐‘Œ๐‘. For ๐‘0 > 0, we say that ๐‘ฎ is a ๐‘0-expanderif for all measurable๐‘Œ โІ ๐‘‹, we have

๐œ‡โˆ—(๐ธ(๐‘Œ , ๐‘Œ๐‘)) โ‰ฅ ๐‘0๐œ‡(๐ป)๐œ‡(๐ป๐‘).

If every real cut into odd sets for๐‘ฎhas size at least๐‘‘+1, and if there is some๐‘0> 0 such that๐‘ฎ is a๐‘0-expander, then we say that๐‘ฎ isadmissible. Csรณka and Lippner proved the following theorem about augmenting paths in admissible graphs:

Theorem 3.2.3. [CL17, Theorem 4.2] For any ๐‘0 > 0 and any integer ๐‘‘ โ‰ฅ 3, there is a constant๐‘= ๐‘(๐‘0, ๐‘‘)such that the following holds: given any ๐‘‘-regular, ๐œ‡-measure preserving, Borel graph๐‘ฎ on a probability space (๐‘‹ , ๐œ‡) such that๐‘ฎ is admissible, and given any Borel matching ๐‘€on๐‘ฎ such that๐œ‡(๐‘‹ \๐‘‹๐‘€) โ‰ฅ ๐œ€, there is an augmenting path for๐‘€ of length at most๐‘(log1๐œ€)3.

We can now prove Theorem 3.2.1, following [CL17].

Proof of Theorem 3.2.1. Let๐‘‘ :=|๐‘†|, and note that๐‘ฎ :=๐‘ฎ(๐‘†,[0,1]ฮ“)is๐‘‘-regular.

We also observe that for any ๐‘ฅ1, ๐‘ฅ2 โˆˆ [0,1]ฮ“, there is an automorphism sending ๐‘ฅ1โ†ฆโ†’๐‘ฅ2.

(23)

First, suppose there is a real cut of ๐‘ฎ with size ๐‘‘. Then by Lemma 3.2.2, every vertex of๐‘ฎ lies in a unique๐‘‘-clique. Then define ๐‘€ to be the collection of edges (๐‘ฅ , ๐‘ฆ) โˆˆ ๐บ such that๐‘ฅ and ๐‘ฆ are in different ๐‘‘-cliques. Observe that ๐‘€ is a Borel perfect matching, as desired.

Now suppose every real cut of๐‘ฎ has size at least ๐‘‘+1. Let ๐‘€1 := โˆ…, and define Borel matchings๐‘€1, ๐‘€2, ๐‘€3, . . .inductively such that๐‘€๐‘›has no augmenting paths of length at most 2๐‘›+1 and such that๐‘€๐‘›+1is obtained from ๐‘€๐‘›via the procedure described in the proof of Proposition 3.1.2. Let๐‘ˆ๐‘›:= ๐‘‹\๐‘‹๐‘€

๐‘›. Let๐ธ๐‘› =๐‘€๐‘›4๐‘€๐‘›+1 denote the set of edges in ๐บ that are switched between ๐‘€๐‘› and ๐‘€๐‘›+1. Note that every edge in๐ธ๐‘›must lie along an augmenting path of length at most 2๐‘›+3. Each augmenting path has both endpoints in๐‘ˆ๐‘›, and each point in๐‘ˆ๐‘› is contained in at most one augmenting path whose edges are switched, so๐œ‡โˆ—(๐ธ๐‘›) โ‰ค (2๐‘›+3)๐œ‡(๐‘ˆ๐‘›).

Suppose ๐œ‡(๐‘ˆ๐‘›) = ๐œ€. Since ฮ“is non-amenable, there is some ๐‘0 > 0 such that ๐‘ฎ is a ๐‘0-expander [LN11, Lemma 2.3]. We are assuming that every real cut of ๐‘ฎ has size at lest ๐‘‘+1, so ๐‘ฎ is admissible. Let๐‘ = ๐‘(๐‘0, ๐‘‘) be a constant satisfying Theorem 3.2.3. Then we know that๐‘ฎ has an augmenting path for ๐‘€๐‘›of length at most๐‘(log1๐œ€)3. By definition of๐‘€๐‘›, we must have

๐‘

log1 ๐œ€

3

>2๐‘›+1, which yields

๐œ€ <exp โˆ’

2๐‘›+1 ๐‘

13! .

So by the Borel-Cantelli lemma, the set E of edges that lie in๐ธ๐‘˜ for infinitely many ๐‘˜ satisfies๐œ‡โˆ—(๐ธ) =0.

Define๐‘€to be the set of edges(๐‘ฅ , ๐‘ฆ) โˆˆ๐บthat lie in๐‘€๐‘›for cofinitely many๐‘›. Since each ๐‘€๐‘› is a Borel matching, ๐‘€ is a Borel matching. From above, we have that ๐œ‡(๐‘‹ \ โˆช๐‘›โˆˆN๐‘‹๐‘€

๐‘›) =0 and๐œ‡โˆ—(๐ธ) =0, so ๐‘€is a Borel perfect matching๐œ‡-a.e.

(24)

C h a p t e r 4

BOREL MATCHINGS AND BAIRE CATEGORY

An expansion condition on finite sets of vertices is sufficient to conclude that a Borel matching is almost perfect in a Baire category setting. Suppose ๐‘ฎ = (๐‘‹ , ๐บ) is a Borel graph on a Polish space ๐‘‹. We recall that a Borel matching ๐‘€ of๐บ is called aBorel perfect matching genericallyif๐‘‹๐‘€ is๐บ-invariant and comeager. The following theorem by Marks and Unger adapts Hallโ€™s theorem to this setting.

Theorem 4.0.1. [MU16, Theorem 1.3] Let๐‘‹be a Polish space, and let๐‘ฎ =(๐‘‹ , ๐บ) be a locally finite bipartite Borel graph with a bipartition{๐ต0, ๐ต1}, which need not be Borel. Suppose there is some ๐œ€ > 0 such that for every finite set ๐น โІ ๐ต0 or ๐น โІ ๐ต1,|๐‘๐บ(๐น) | โ‰ฅ (1+๐œ€) |๐น|. Then๐‘ฎadmits a Borel perfect matching generically.

To prove this result, we need several definitions. Let ๐‘ฎ = (๐‘‹ , ๐บ) be a graph.

For๐‘ฅ , ๐‘ฆ โˆˆ ๐‘‹, let ๐‘‘๐บ(๐‘ฅ , ๐‘ฆ) be the length of the minimum-length path from ๐‘ฅ to ๐‘ฆ. Define ๐‘ฎ2 = (๐‘‹ , ๐บ2) to be the graph on ๐‘‹ such that (๐‘ฅ , ๐‘ฆ) โˆˆ ๐บ2 if and only if ๐‘‘๐บ(๐‘ฅ , ๐‘ฆ) = 2. For any matching ๐‘€ of ๐‘ฎ, we define the graph ๐‘ฎ โˆ’ ๐‘€ to be the restriction๐‘ฎ(๐‘‹ \๐‘‹๐‘€).

Now suppose๐‘ฎ is bipartite with some bipartition {๐ต0, ๐ต1}. The graph๐‘ฎ satisfies Hallโ€™s condition if for every finite set ๐น โІ ๐ต0 or ๐น โІ ๐ต1, |๐‘๐บ(๐น) | โ‰ฅ |๐น|. If ๐‘ฎ satisfies Hallโ€™s condition, and if every๐บ2-connected finite set๐น with|๐น| โ‰ฅ๐‘›such that ๐น โІ ๐ต0 or ๐น โІ ๐ต1 satisfies |๐‘๐บ(๐น) | โ‰ฅ (1+๐œ€) |๐น|, we say that ๐‘ฎ satisfies Hall๐œ€,๐‘›.

Marks and Unger proved the following lemma.

Lemma 4.0.2. [MU16, Lemma 3.1] Let ๐‘‹ be a Polish space, and let๐‘ฎ = (๐‘‹ , ๐บ) be a locally finite Borel graph on ๐‘‹. Given any funtion ๐‘“ : N โ†’ N, there is some sequence{๐ด๐‘›}๐‘›โˆˆN of Borel sets in๐‘‹ such that ๐ด:=โˆช๐‘›โˆˆN๐ด๐‘›is comeager and ๐บ-invariant, and such that๐‘‘๐บ(๐‘ฅ , ๐‘ฆ) > ๐‘“(๐‘›) for all distinct๐‘ฅ , ๐‘ฆ โˆˆ ๐ด๐‘›.

Proof of Lemma 4.0.2. We follow the proof in [MU16]. Let{๐‘ˆ๐‘–}๐‘–โˆˆN be a basis of open sets for ๐‘‹. For๐‘– โˆˆNand๐‘Ÿ >0, let ๐ต๐‘–,๐‘Ÿ be the set consisting of exactly those ๐‘ฅ โˆˆ๐‘ˆ๐‘– such that for all ๐‘ฆ โ‰  ๐‘ฅwith ๐‘‘๐บ(๐‘ฅ , ๐‘ฆ) โ‰ค ๐‘Ÿ, ๐‘ฆ โˆ‰๐‘ˆ๐‘–. Given any๐‘Ÿ > 0 and any

Referensi

Dokumen terkait

Any brothers, sisters, cousins, or friends in a gang on delinquency Univariate testing showed that there was a significant difference among the 2 levels of any brothers, sisters,