• Tidak ada hasil yang ditemukan

Calculation of Strong Acid Reactance

N/A
N/A
19@ Amelia Aura Trisiawati

Academic year: 2024

Membagikan "Calculation of Strong Acid Reactance"

Copied!
10
0
0

Teks penuh

(1)

a. Calculation

Non Graphic method

Strong acid Formula :

CH3COOC2H5(aq) + H2O(l) HCl

CH3COOC2H5(aq)

5 45 50 = 100 ml

÷10

0,5 4,5 5 = 10 ml

n CH3COOC2H5 = M.CH3COOC2H5 x V.CH3COOHC2H5

= 2 M x 0,50 ml

= 1,00 mmol n HCl = M.HCl x V.HCl

= 0,5M x 5 ml

= 2,5 mmol

to → nNaOH = nCH3COOH M NaOH x V NaOH = 2,50 mmol 0,2M x V NaOH = 2,5 mmol

V NaOH = 12,5 ml

t→ nNaOH = nHClcatalyst + nCH3COOHproduct

M NaOH x V NaOH = 3 mmol V NaOH = 15 ml

t→ nNaOH = nHClcatalyst + nCH3COOHproduct

M NaOH x V NaOH = 2,5 mmol + 1,00 mmol 0,2M x V NaOH = 3,50 mmol

V NaOH = 17,5 ml Calculation of the CH3COOH that react :

(2)

Formula :

mol ek NaOH = mol ek CH3COOHcatalyst + mol ek CH3COOHproduct M NaOH . V NaOH = (M CH3COOH . V CH3COOHcatalyst) + X

a) 0,2 M . 14,3 ml = (0,5 M . 5 ml) + X 2,86 = 2,5 + X

2,86 – 2,5 = X 0,36 = X

b) 0,2 M . 14,5 ml = (0,5 M . 5 ml) + X 2,9 = 2,5 + X

2,9 – 2,5 = X 0,4 = X

c) 0,2 M . 14,7 ml = (0,5 M . 5 ml) + X 2,94 = 2,5 + X

2,94 – 2,5 = X 0,44 = X

d) 0,2 M . 14,8 ml = (0,5 M . 5 ml) + X 2,96 = 2,5 + X

2,96 – 2,5 = X 0,46 = X

e) 0,2 M . 15 ml = (0,5 M . 5 ml) + X 3,0 = 2,5 + X

3,0 – 2,5 = X 0,5 = X

f) 0,2 M . 15,2 ml = (0,5 M . 5 ml) + X 3,04 = 2,5 + X

(3)

3,04 – 2,5 = X 0,54 = X

t a x a-x ln(a-x) a/(a-x)

300 1 0,36 0,64 -0,446287 1,5625

600 1 0,4 0,6 -0,5108256 1,6666

1200 1 0,44 0,56 -0,5798184 1,7857 1800 1 0,46 0,54 -0,6161861 1,8518

3000 1 0,5 0,5 -0,6931471 2

6000 1 0,54 0,46 -0,7765287 2,173

(4)

 Reaction order 1

1/t a/(a-x) ln a/(a-x) k

0, 00333 1,5625 0,44628 1,48×10−3 0, 00166 1,6666 0,51078 8,4×10−4 0,000833 1,7857 0,57981 4,8×10−4 0,00055 1,8518 0,61616 3,3×10−4

0,0003333 2 0,69314 2,3×10−4

0,0001666 2,173 0,77610 1,3×10−4

 Reaction order 2

1/t 1/(a-x) 1/a (1/(a-x)-1/a) k 0, 00333 1,5625 1 0,5625 1,3 x10-4

0, 00166 1,6666 1 0,25 4,1 x10-4

0,000833 1,7857 1 0,35135 2,9 x10-4

0,00055 1,8518 1 0,5625 3,1 x10-4

0,0003333 2 1 0,78571 2,6 x10-4

0,0001666 2,173 1 1 1,6 x10-4

 Reaction order 3

1/t (a-x)2 2(a-x)2 1/2(a-x)2 a2 2a2 1/2a2 1/ 2(a- x)2-1/2a2

k

0, 00333 0,409 6

0,8192 1,2207 1 2 0,5 0,7207 2,3 x10-3

0, 00166 0,36 0,72 1,3888 1 2 0,5 0,8888 1,4 x10-3

0,000833 0,313 6

0,6272 1,5943 1 2 0,5 1,0943 9,1 x10-4

0,00055 0,219 6

0,5832 1,7146 1 2 0,5 1,2146 6,6 x10-4

0,000333 3

0,25 0,5 2 1 2 0,5 1,5 4,9 x10-4

0,000166 6

0,211 6

0,4232 2,3629 1 2 0,5 1,8629 x10-4

(5)

Weak acid Formula :

CH3COOC2H5(aq) + H2O(l) CH3COOH

C2H5OH(l) + CH3COOH(aq)

n CH3COOC2H5 =M.CH3COOC2H5 x V.CH3COOHC2H5

= 2 M x 0,50 ml

= 1,00 mmol

n CH3COOH = M.CH3COOH x V.CH3COOH

= 0,5M x 5 ml

= 2,5 mmol

to → nNaOH = nCH3COOH M NaOH x V NaOH = 2,50 mmol 0,2M x V NaOH = 2,5 mmol

V NaOH = 12,5 ml

t→ nNaOH = nCH3COOHcatalyst + nCH3COOHproduct

M NaOH x V NaOH = 3 mmol V NaOH = 15 ml

t→ nNaOH = nCH3COOHcatalyst + nCH3COOHproduct

M NaOH x V NaOH = 2,5 mmol + 1,00 mmol 0,2M x V NaOH = 3,50 mmol

V NaOH = 17,5 ml

(6)

Calculation of the CH3COOH that react :

Formula :

mol ek NaOH = mol ek CH3COOHcatalyst + mol ek CH3COOHproduct M NaOH . V NaOH = (M CH3COOH . V CH3COOHcatalyst) + X

a) 0,2 M . 12,7 ml = (0,5 M . 5 ml) + X 2,54 = 2,5 + X

2,54 – 2,5 = X 0,04 = X

b) 0,2 M . 13,5 ml = (0,5 M . 5 ml) + X 2,7 = 2,5 + X

2,7 – 2,5 = X 0,2 = X

c) 0,2 M . 13,8 ml = (0,5 M . 5 ml) + X 2,76 = 2,5 + X

2,76 – 2,5 = X 0,26 = X

d) 0,2 M . 14,3 ml = (0,5 M . 5 ml) + X 2,86 = 2,5 + X

2,86 – 2,5 = X 0,36 = X

e) 0,2 M . 14,7 ml = (0,5 M . 5 ml) + X 2,94 = 2,5 + X

2,94 – 2,5 = X 0,44 = X

(7)

f) 0,2 M . 15 ml = (0,5 M . 5 ml) + X 3 = 2,5 + X

3 – 2,5 = X 0,5 = X

t a X a-x ln(a-x) a/(a-x)

300 1 0,004 0,96 -0,040821 1,0416

600 1 0.1 0,8 -0,223143 1,25

1200 1 0,26 0,74 -0, 301105 1,351 1800 1 0,36 0,64 -0,446287 1,5625 3000 1 0,44 0,56 -0,579818 1,785

6000 1 0,5 0,5 -0,693147 2

(8)

 Reaction order 1

1/t a/(a-x) ln a/(a-x) k

0, 00333 1, 0416 0,040757 0,000135

0, 00166 1,25 0,223143 0,00037

0,000833 1,351 0,300845 0,00025 0,00055 1,5625 0,446287 0,00024 0,0003333 1,785 0,579418 0,00019

0,0001666 2 0,6913 0,00011

 Reaction order 2

1/t 1/(a-x) 1/a (1/(a-x)-1/a) k 0, 00333 1, 04166 1 0,040166 1,3 x10-4

0, 00166 1,25 1 0,25 4,1 x10-4

0,000833 1,35135 1 0,35135 2,9 x10-4

0,00055 1,5625 1 0,5625 3,1 x10-4

0,0003333 1,78571 1 0,78571 2,6 x10-4

0,0001666 2 1 1 1,6 x10-4

 Reaction order 3

1/t (a-x)2 2(a-x)2 1/2(a-x)2 a2 2a2 1/2a2 1/ 2(a- x)2-1/2a2

k

0, 00333 0,921 6

1,8432 0,54253 1 2 0,5 0,0425 1,4 x10-4

0, 00166 0,64 1,28 0,78125 1 2 0,5 0,281523 4,6 x10-4

0,000833 0,547 6

1,0952 0,91307 1 2 0,5 0,41307 3,4 x10-4

0,00055 0,409 6

0,8192 1,2267 1 2 0,5 0,7267 3,9 x10-4

0,000333 3

0,313 6

0,6272 1,5943 1 2 0,5 1,0943 3,6 x10-4

0,000166 6

0,25 0,5 2 1 2 0,5 1,5 2,4 x10-4

Graphic method

(9)

Weak acid

(10)

Strong acid

Referensi

Dokumen terkait

The bamboo strips were bleached with sodium hydroxide NaOH, 1% w/v followed by hydrogen peroxide H2O2, 12.5% w/v and in a mixture of oxalic acid COOH2.. The bleaching was carried out by

1 Gamma–gamma pdf for three different turbulence regimes, namely weak, moderate and strong The gamma–gamma turbulence in the given model is valid for all turbulence scenarios from weak

Production of Formic Acid from Formates The reaction of sodium formate [141-53-7] or calcium formate [544-17-2] with strong mineral acids, such as sulfuric and nitric acids, is the