CALCULATION IR, RAMAN, VCD, UV-VIS AND NMR FROM PYRIDINE, TETRACHLOROETHYLENE, TETRAHYDROFURAN, AND TOLUENE DENSITY FUNCTIONAL THEORY (DFT) METHODS WITH B3LYP, B3PW91, AND M06L BASIS
SET 6-311G+(2df)
Putri Priangan*, Safiinatunajah Hafiyyah, Tsabita Vecida Nandya, Ayu Jelita Sinambela Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University,
Jatinangor 45365, Indonesia
Email correspondence:[email protected],[email protected], [email protected],[email protected]
Abstract
In the present analysis, IR, Raman, VCD, UV-VIS and NMR of Pyridine, Tetrachloroethylene, Tetrahydrofuran, and Toluene are recorded. The observed vibrational frequencies are assigned and the computational calculations are carried out DFT (B3LYP and B3PW91) and M06L methods with 6-311G+(2df) basis set were performed which is assisted with Gaussian 09W and GaussView 6.0 and the corresponding results are tabulated. In order to yield good coherence with observed values, the calculated frequencies are scaled by appropriate scale factors.
KEYWORDS:B3LYP, B3PW91, M06L, IR, raman, UV-Vis, VCD, NMR.
INTRODUCTION
One of the methods used for computational calculations is B3LYP and M06L. B3LYP is by far the most popular density functional in chemistry (Zhang et al., 2010). Infrared spectroscopy (IR) provides information about the energy level of molecules in wave numbers (cm-1 ) in the electromagnetic spectrum region by studying molecular vibrations, which are also given in 2 wavelengths (µm). Thus, infrared spectroscopy is the study of the interaction of matter with light radiation when waves pass through a medium (matter). Waves are electromagnetic and interact with the polarity of chemical bonds. if there is no polarity in the molecule, the infrared interaction is inactive and the molecule does not produce an IR spectrum. The Raman spectrum is very typical and characteristic for a functional group. Therefore this Raman spectrum can be
used to identify a molecule. On the basis of its usefulness, the Raman spectrum is widely used in scientific forensics, especially in the identification of a chemical compound in the form of a prohibited or dangerous compound (Mayo et al., 2004).
Vibrational circular dichroism (VCD) is a spectroscopic technique that probes the difference in absorption of left and right circularly polarized light for vibrational transitions (Berova, 2012 )and is one of the most accurate techniques to determine the absolute configuration of chiral molecules. As the VCD spectrum is highly sensitive to key details of the molecular structure—much more than commonly used techniques such as IR absorption—it is increasingly also employed to study and determine the structure of complex molecules like enantioselective catalysts, (Chamayou, 2011) bio-organic compounds, (Batista, 2015) and supramolecular complexes. The interpretation of experimental VCD spectra and the amount of information that can be obtained from these spectra critically depends on the comparison with theoretically predicted spectra. To this purpose several groups have put efforts to develop tools to interpret VCD and other vibrational spectroscopy data (Fedorovsky, 2006).
UV-Vis spectrophotometry is a part of spectroscopic analysis technique that uses near ultraviolet (190-380 nm) and visible (380 - 780 nm) REM (electromagnetic radiation) sources using a spectrophotometer instrument. UV-Vis spectrophotometry involves a large enough electronic energy in the molecules being analyzed, so UV-Vis spectrophotometry is more widely used for quantitative analysis than qualitative (Kusnanto, 2020). Absorption of ultraviolet light and visible light by a molecule generally results in the excitation of bonding electrons, as a result the maximum absorption length can be correlated with the type of bonding in the molecule (Hendayana, 1994).
Nuclear Magnetic Resonance (NMR) Spectroscopy is a method for quantitatively detecting the presence of certain chemical elements by measuring the amount of energy absorbed from the frequency coils surrounding the sample. Elements with one or more isotopes whose nucleus has a magnetic moment, which acts like a tiny magnet, can be detected in this way when experiments are carried out in strong magnetic fields (Shoolery, 1972).
METHODS
The software used is Gaussian 09W and GaussView 6.0 to perform computational calculations on the compound pyridine, tetrachloroethylene, tetrahydrofuran, and toluene. The methods B3LYP, B3PW91, and M06L were carried out using the basis set of 6-311+G (2df) by performing opt+freq on the calculation. In chemistry, basis sets are mathematical functions used to arrange the orbits of a molecule. This set of mathematical functions is arranged in a linear combination by including the coefficients in it. Generally, the function used is the orbital groups of atoms that form up the molecule.
The steps in this calculation are making the molecular structure of pyridine, tetrachloroethylene, tetrahydrofuran, and toluene with computational modeling using GaussView 6.0. Then, used the DFT method with the B3LYP, B3PW91, and M06L functions with the basis set 6-311+G(2df). The calculated frequencies are scaled down to yield the coherent with the observed frequencies. After that, optimization of the opt+freq geometry to get the optimized structure of the molecule and the amount of energy can be calculated. Then, calculated UV-Vis, IR, Raman, VCD, and NMR spectroscopy on the optimized structure and obtained the diagrams from UV-Vis, IR, Raman, VCD, and NMR spectroscopy of the molecule.
RESULTS AND DISCUSSION
The following results from the optimization of the compound Pyridine, Tetrachloroethylene, Tetrahydrofuran, and Toluene using the DFT (B3LYP and B3PW91) method and M06L
Molecule Structure
B3LYP B3PW91 M06L
Pyridine
Tetrachloroethyl ene
Tetrahydrofuran
Toluene
Table 1. Pyridine, Tetrachloroethylene, Tetrahydrofuran, and Toluene molecules structure with DFT (B3LYP and B3PW91) method and M06L
In the Pyridine there are 11 atoms with 42 electrons and neutral with singlet.
In the Tetrahydrofuran there are 6 atoms with 80 electrons and neutral with singlet.
In the Toluene there are 15 atoms with 50 electrons and neutral with singlet
The energy minimization obtained from the four compounds that have been optimized geometry are as follows :
Molecule Energy
B3LYP ( Hartree)
B3PW91 (Hartree)
M06L (Hartree)
Pyridine -248.266701 -248.163838 -248.220524
Tetrachloroethylene -1917.087473 -1916.844281 -1916.995234
Tetrahydrofuran -232.399123 -232.310181 -232.350547
Toluene -271.510289 -271.399687 -271.456009
Table 2. The energy of geometry optimization UV-Vis Spectroscopy
When an atom or molecule absorbs energy, electrons are promoted from their basic state to an excited state. In a molecule, atoms can spin and vibrate with each other. These vibrations and rotations also have energy levels. UV-Vis molecular spectra data in this experiment are as follows:
Methods UV-Vis spectra
Pyridine Tetrachloroethylene
B3LYP
B3PW91
M06L
Table 3. UV-Vis Spectrum of Pyridine and Tetrachloroethylene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods UV-Vis spectra
Tetrahydrofuran Toluene
B3LYP
B3PW91
M06L
Table 4. UV-Vis Spectrum of Tetrahydrofuran, and Toluene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Vibrations of IR, VCD, dan Raman
The results of IR, VCD, Raman spectra from Pyridine molecule can be seen in the following table.
Mode B3LYP B3PW91
Freq IR VCD Raman Freq IR VCD Raman 1. 385.48 0.0014 0.0000 0.0080 380.54 0.0000 0.0001 0.0107 2. 421.96 38.208 0.0000 0.1469 418.36 36.782 0.0007 0.1502 3. 616.00 41.305 0.0000 32.202 610.06 40.417 0.0002 31.127 4. 669.44 0.2260 0.0000 44.621 665.44 0.2593 0.0003 43.694 5. 721.27 687.600 0.0000 0.1081 720.58 698.130 -0.0025 0.0833 6. 768.23 89.780 0.0000 0.0478 768.94 83.703 -0.0013 0.0697 7. 899.88 0.0020 0.0000 0.7093 898.84 0.0000 0.0003 0.4874 8. 963.51 0.0089 0.0000 0.3212 963.61 0.0040 -0.0022 0.2263 9. 1008.23 0.0006 0.0000 0.0114 1007.40 0.0000 0.0001 0.0114 10. 1011.42 55.480 0.0000 278.745 1013.77 67.294 -0.0001 175.297 11. 1017.89 0.0157 0.0000 0.0312 1016.97 0.0055 0.0000 0.0242 12. 1049.92 67.146 0.0000 377.984 1051.98 44.274 0.0001 467.342 13. 1078.82 0.0372 0.0000 0.2710 1081.60 0.0008 0.0002 0.2405 14. 1094.14 38.022 0.0000 16.459 1096.37 49.952 -0.0003 15.639 15. 1172.39 25.458 0.0000 18.075 1168.98 23.442 -0.0001 21.279 16. 1242.26 38.769 0.0000 78.864 1243.65 38.009 0.0005 81.457 17. 1282.18 0.0164 0.0000 18.189 1308.89 0.0027 0.0011 17.668 18. 1384.35 0.0511 0.0000 0.2189 1376.41 0.0080 -0.0001 0.2294 19. 1473.49 266.687 0.0000 0.0665 1473.24 270.541 -0.0007 0.0228 20. 1511.68 20.045 0.0000 20.296 1512.13 24.808 0.0002 16.306 21. 1618.19 103.065 0.0000 83.225 1632.37 112.731 -0.0007 76.359 22. 1623.81 243.952 0.0000 137.064 1636.22 246.416 -0.0001 122.136 23. 3137.49 265.741 0.0000 999.118 3142.14 266.794 0.0000 964.389 24. 3139.64 39.326 0.0000 689.183 3144.47 40.039 -0.0001 728.012
25. 3157.79 59.754 0.0000 998.199 3165.54 49.940 -0.0001 971.883 26. 3174.96 275.086 0.0000 325.817 3182.78 242.118 0.0000 324.194 27. 3183.29 69.465 0.0000 2.799.33
9
3191.62 62.709 0.0001 2.689.97 3
Mode M06L
Freq IR VCD Raman
1. 370.42 0.0000 0.0001 0.0422 2. 417.42 34.837 0.0035 0.2137 3. 607.95 44.612 -0.0001 32.233 4. 666.59 0.2540 -0.0034 42.957 5. 713.22 648.750 -0.0710 0.0726 6. 767.39 24.221 -0.0101 0.1436 7. 890.52 0.0000 -0.0027 0.4094 8. 959.27 0.0218 -0.0020 0.0873 9. 995.70 0.0000 -0.0001 0.0540 10. 1007.53 64.338 -0.0038 231.300 11. 1009.92 0.0135 0.0001 0.0134 12. 1048.92 52.122 0.0053 407.634 13 1075.30 0.0701 -0.0450 0.2455 14 1089.77 25.797 0.0037 13.963 15 1163.73 19.599 -0.0079 26.534 16 1238.15 32.391 -0.0025 85.802 17 1310.69 0.0661 0.0107 16.867 18 1364.70 0.0145 -0.0002 0.3579
19 1463.44 236.530 -0.1153 0.0544 20 1498.98 0.7369 -0.0003 19.060 21 1616.93 112.246 -0.0577 79.541 22 1617.95 233.342 -0.0143 127.995 23 3119.82 349.219 0.2360 837.805 24 3122.52 60.444 0.0069 955.593 25 3158.75 54.411 -0.0047 807.777 26 3176.33 267.995 0.0944 367.292 27 3184.68 103.351 0.0309 2.359.669
The results of IR, VCD, Raman spectra from Tetrachloroethylene molecule can be seen in the following table.
Mode B3LYP B3PW91
Freq IR VCD Raman Freq IR VCD Raman
98.39 0.0000 0.0000 0.0000 99.57 0.0000 0.0000 0.0000 176.90 0.8143 0.0000 0.0000 175.78 0.7775 0.0000 0.0000 237.70 0.0000 0.0000 4.0889 238.02 0.0000 0.0000 4.0149 295.08 0.3390 0.0000 0.0000 298.49 0.4380 0.0000 0.0000 313.59 0.1062 0.0000 0.0000 316.61 0.0787 0.0000 0.0000 346.67 0.0000 0.0000 3.2704 351.48 0.0000 0.0000 3.0657 446.88 0.0000 0.0000 16.0331 459.32 0.0000 0.0000 14.4988 566.03 0.0000 0.0000 0.4017 569.55 0.0000 0.0000 0.4806 771.03 72.1717 0.0000 0.0000 791.28 72.1477 0.0000 0.0000 879.48 197.9026 0.0000 0.0000 925.40 200.2693 0.0000 0.0000 961.87 0.0000 0.0000 0.1464 990.00 0.0000 0.0000 0.4891
1612.29 0.0000 0.0000 82.9362 1626.77 0.0000 0.0000 86.5974
Mode M06L
Freq IR VCD Raman
1. -34.08 0.0000 0.0000 0.0007 2. 183.09 0.5316 0.0000 0.0000 3. 243.92 0.0000 0.0000 3577.4033 4. 282.11 0.1075 0.0000 0.0000 5. 318.31 0.0793 0.0000 0.0000 6. 356.41 0.0000 0.0000 350.1729 7. 461.79 0.0000 0.0000 6194.9748 8. 486.12 0.0000 -0.0001 932962.1984 9. 789.54 97.6020 0.0000 0.0000 10. 905.07 254.4677 -0.0001 0.0002 11. 965.63 0.0000 0.0000 12109.6198 12. 1616.76 0.0000 0.0000 1010789.3647
The results of IR, VCD, Raman spectra from Tetrahydrofuran molecule can be seen in the following table.
Mode B3LYP B3PW91
Freq IR VCD Raman Freq IR VCD Raman
1 67.41 10.4541 14.0908 0.0393 43.88 0.0165 -0.0061 0.0155 2 252.87 0.0001 -0.0476 0.2739 272.72 7.3402 0.0071 0.4161 3 584.03 0.7104 -5.6557 1.1983 645.85 5.3954 0.1254 0.3869 4 665.52 4.9230 6.4107 1.0789 653.35 0.0043 -0.1319 1.3057 5 817.20 22.3779 -22.4090 7.6635 800.68 5.5234 0.0161 0.1494
6 873.41 4.0335 27.3655 6.4061 867.62 3.5139 -0.0152 0.8766 7 873.90 18.6810 53.2622 0.9780 918.78 6.1790 0.0080 17.6574 8 915.65 7.7085 -22.5220 1.5259 947.38 1.1031 -0.0027 1.0717 9 916.83 6.3232 14.0451 13.8877 953.29 12.0253 0.0014 6.7412 10 984.60 2.5639 15.1837 0.5661 976.13 29.5835 0.0187 3.0360 11 1041.97 76.5081 -59.8203 1.4592 1059.03 5.5220 -0.0130 5.6475 12 1049.80 2.4379 -8.9861 9.2573 1124.04 78.2398 -0.0146 0.5480 13 1168.73 1.7073 7.8365 4.1915 1147.61 8.3541 -0.0122 0.2401 14 1169.26 1.0214 1.8348 1.9575 1217.17 5.7333 0.0395 2.9755 15 1191.14 3.1159 12.7504 10.5502 1231.86 5.2849 -0.0240 3.9891 16 1255.02 0.9718 6.5977 7.9655 1264.18 8.2168 0.3517 4.0045 17 1270.53 5.7895 -30.7613 10.7915 12.6751 6.2346 -0.2907 1.8582 18 1353.05 6.3702 6.8266 3.4408 1310.67 2.0137 -0.0599 6.5479 19 1363.81 0.4515 -11.2439 1.5304 1315.99 0.3245 0.0178 0.8800 20 1366.75 0.3661 -1.6122 3.8750 1358.17 0.0339 -0.0024 1.3481 21 1385.67 0.3738 0.8895 1.7951 1393.05 4.5906 0.0003 0.6579 22 1524.95 5.9827 -1.7477 11.0097 1483.84 1.1099 0.0000 10.8563 23 1528.36 8.6085 2.0190 6.9260 1500.25 6.7285 0.0043 2.4778 24 1546.81 0.7494 4.8179 6.1237 1504.03 0.3746 -0.0021 5.3959 25 1554.91 0.0778 -0.2304 8.6338 1521.88 0.7479 -0.0010 4.8690 26 3011.12 119.2366 19.4397 10.6121 2964.56 47.0218 0.0312 24.2971 27 3015.00 6.5639 -40.4627 213.8158 2968.95 104.021
8
-0.0334 196.462 6 28 3029.05 18.0089 -12.9264 175.1814 3053.29 23.3815 0.0159 38.3014 29 3029.76 28.1156 22.9498 38.1836 3064.39 39.6982 -0.0695 151.279
2
30 3080.04 55.4186 -110.735
6 36.1119 3084.68 21.5552 0.0752 8.9861 31 3081.78 10.1250 3.7298 181.4866 3097.62 0.3605 0.1773 184.003
2 32 3088.11 14.0473 105.6515 141.4132 3100.56 31.9763 -0.2093 116.868
6 33 3098.50 90.3329 -18.7784 57.6054 3113.54 63.7353 0.0049 50.5830
Mode M06L
Freq IR VCD Raman
1. 105.98 4.4749 -12.4193 0.0216 2. 267.04 0.0004 0.1131 0.3327 3. 576.20 0.4476 4.7570 0.6221 4. 678.02 2.6984 -2.1203 0.5069 5. 853.52 5.7619 23.6839 0.7706 6. 894.01 8.6233 -31.9983 0.5649 7. 922.48 29.6025 -33.8235 5.5106 8. 923.26 5.4093 21.1990 0.6591 9. 945.22 2.8439 -3.8917 14.7119 10. 975.55 0.5701 -6.0257 1.0777 11. 1045.03 4.0609 7.6705 7.6608 12. 1105.84 124.0758 16.1336 0.5199 13. 1174.67 0.0154 -0.1558 2.1771 14. 1187.84 7.5379 4.8314 1.5968 15. 1206.08 7.0315 -19.5327 4.4320 16. 1266.44 0.2800 -2.0508 6.8983
17. 1269.83 7.1080 30.0987 9.3675 18. 1317.93 0.1590 0.2602 1.2751 19. 1350.38 0.2224 6.5181 0.7069 20. 1366.57 0.0502 -1.5303 3.0751 21. 1397.37 6.4717 7.7017 1.3937 22. 1485.50 3.9995 0.6969 9.2027 23. 1493.40 4.5089 -2.1155 6.7260 24. 1517.92 1.1654 -5.1013 4.7991 25. 1529.05 0.0357 0.2662 8.3196 26. 2991.86 163.5143 1.4512 9.2488 27. 2998.31 3.8716 31.4289 233.7512 28. 3046.83 24.6733 -61.2177 96.6128 29. 3047.87 16.4979 41.9575 57.5062 30. 3061.79 2.2174 28.7773 241.1508 31. 3062.38 104.8087 4.9992 5.8366 32. 3114.58 18.1050 -52.8637 87.4370 33. 3123.31 50.5067 44.0194 56.2537
The results of IR, VCD, Raman spectra from Toluene molecule can be seen in the following table.
Mode B3LYP B3PW91
Freq IR VCD Raman Freq IR VCD Raman
1. 13.95 0.2358 0.0243 0.7347 2.73 0.2638 0.0292 0.7342 2. 209.90 2.1466 0.0021 1.5309 209.41 2.2002 -0.0271 1.5071 3. 344.30 0.2827 0.0001 0.2303 340.65 0.2799 -0.0035 0.2363
4. 417.28 0.0046 -0.0011 0.0166 413.98 0.0053 -0.0046 0.0172 5. 478.59 9.0515 -0.0026 0.3270 475.95 9.2533 0.0013 0.3217 6. 529.36 0.5405 -0.0019 6.2568 526.73 0.5631 -0.0045 5.8662 7. 637.77 0.0769 -0.0003 4.4097 632.37 0.0884 0.0004 4.3318 8. 715.65 27.8754 0.0103 0.1206 715.14 29.2251 0.0384 0.1097 9. 748.91 53.1654 -0.0084 0.9281 747.26 51.8452 -0.0499 0.7323 10. 799.59 0.8483 0.0047 16.5169 802.64 0.8589 0.0116 15.8248 11. 860.41 0.0261 0.0010 1.0110 859.85 0.0209 0.0026 0.6807 12. 916.80 0.6840 0.0014 0.4465 914.87 0.5855 0.0036 0.3059 13. 981.45 0.0000 0.0002 0.0487 980.63 0.0003 0.0005 0.0462 14. 1000.24 0.0403 -0.0004 0.0190 998.04 0.1452 -0.0467 0.1170 15. 1002.33 0.2453 0.0094 0.0995 998.75 0.0329 -0.0055 0.0201 16. 1020.78 0.0798 -0.0081 34.8799 1019.04 0.0442 -0.0216 28.9627 17. 1052.73 3.3237 0.0002 12.9904 1056.24 3.6075 -0.0023 17.2463 18. 1069.35 7.0638 0.0004 0.7601 1061.74 7.8395 0.1267 0.6157 19. 1112.57 5.2374 0.0026 0.5606 1112.29 6.1678 -0.0031 0.5667 20. 1183.23 0.0540 -0.0004 3.0539 1178.64 0.0321 -0.0007 3.0631 21. 1205.80 0.3909 0.0005 3.4632 1202.20 0.4196 0.0008 3.9058 22. 1229.25 1.2633 -0.0060 13.5445 1236.50 0.9276 -0.0132 13.7839 23. 1327.07 0.0728 0.0041 0.0296 1340.84 0.0369 -0.0189 0.6360 24. 1357.51 0.0067 -0.0024 1.0676 1356.39 0.0143 -0.0007 0.4935 25. 1418.07 0.4780 0.0003 11.6713 1407.69 0.8906 0.0043 12.5307 26. 1471.08 0.0001 0.0145 4.4001 1466.58 0.1607 -0.1215 5.2917 27. 1494.25 6.3972 -0.0096 8.5712 1486.31 7.0362 0.3241 8.3314 28. 1505.65 13.0053 -0.0098 2.6598 1500.95 13.9250 -0.1958 1.9383
29. 1529.53 12.9220 -0.0036 0.3489 1529.50 14.3706 -0.0024 0.2428 30. 1623.77 0.1655 0.0001 7.9866 1636.04 0.1793 0.0010 7.0697 31. 1646.02 8.4127 -0.0002 21.3694 1658.68 8.5355 -0.0009 21.0864 32. 3016.31 31.4888 0.0228 210.108
1
3025.64 29.7732 0.0532 210.586 9 33. 3066.58 20.2146 -0.0093 78.3942 3084.48 17.0359 -0.2023 76.0764 34. 3091.77 17.7757 -0.0108 56.8730 3109.86 15.4614 0.1755 54.8484 35. 3139.73 8.5822 0.0012 15.9918 3148.07 7.7264 0.0001 15.4033 36. 3141.74 5.5121 0.0003 107.079
2
3150.37 4.8646 -0.0054 104.862 0 37. 3154.88 7.5924 0.0012 132.097
1 3163.58 6.9717 0.0014 128.954 3 38. 3163.65 36.8620 -0.0004 23.0468 3172.66 33.2301 -0.0058 21.8661 39. 3176.80 13.9824 -0.0005 284.072
5 3185.96 12.4869 0.0003 280.164 4
Mode M06L
Freq IR VCD Raman
1. 65.80 0.2623 0.0637 0.4615 2. 214.42 1.8017 -0.8517 1.8624 3. 339.52 0.2486 -0.0410 0.4123 4. 411.84 0.0163 -0.1175 0.0132 5. 477.07 8.5694 -0.4717 0.2092 6. 527.26 0.3915 -0.0478 5.6514 7. 631.54 0.0696 0.0057 4.4637 8. 716.96 39.9471 -0.3497 0.0837 9. 744.36 33.3427 0.1438 0.5414
10. 803.57 0.6063 0.2040 16.6788 11. 851.54 0.0036 -0.0250 0.7417 12. 908.63 0.3519 0.0326 0.1949 13. 970.65 0.0028 -0.0036 0.0273 14. 992.49 0.1091 -0.0149 0.0092 15. 1000.77 2.3254 -0.5094 1.5656 16. 1021.54 0.1333 -0.4746 29.7475 17. 1047.80 2.5967 -0.0434 14.6779 18. 1065.31 3.6646 2.1182 0.1588 19. 1107.27 5.3925 -0.0149 0.6040 20. 1171.58 0.0150 -0.0121 3.3732 21. 1194.94 0.5609 0.0206 3.8942 22. 1238.04 2.0166 -0.2565 13.5217 23. 1330.91 0.3390 -0.2367 0.9411 24. 1358.50 0.2328 -0.1595 0.3978 25. 1415.53 0.3267 -0.0030 15.6613 26. 1461.22 0.1481 -0.4512 4.1203 27. 1484.84 6.5531 -0.0670 8.7484 28. 1500.52 12.2827 0.6204 4.9693 29. 1519.74 10.7772 -0.0593 0.2765 30. 1623.68 0.1636 -0.0186 7.7635 31. 1645.66 9.3416 -0.0409 24.8873 32. 3033.20 35.5041 1.6133 200.9854 33. 3104.99 14.4839 -1.0649 72.1216 34. 3129.29 13.6376 -1.1557 43.1148
35. 3137.34 8.6650 0.0691 31.1840 36. 3140.78 7.1679 0.2814 81.7318 37. 3154.76 6.6731 0.0612 121.9679 38. 3162.80 36.3196 -0.0014 21.6190 39. 3176.82 16.2720 -0.0119 244.7969
IR, VCD and Raman spectra data are as follows:
Methods IR spectra
Pyridine Tetrachloroethylene
B3LYP
B3PW91
M06L
Table . IR Spectra of Pyridine and Tetrachloroethylene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods IR spectra
Tetrahydrofuran Toluene
B3LYP
B3PW91
M06L
Table . IR Spectra of Tetrahydrofuran, and Toluene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods VCD spectra
Pyridine Tetrachloroethylene
B3LYP
B3PW91
M06L
Table . VCD Spectra of Pyridine and Tetrachloroethylene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods VCD spectra
Tetrahydrofuran Toluene
B3LYP
B3PW91
M06L
Table . VCD Spectra of Tetrahydrofuran, and Toluene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods Raman spectra
Pyridine Tetrachloroethylene
B3LYP
B3PW91
M06L
Table . Raman Spectra of Pyridine and Tetrachloroethylene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods Raman spectra
Tetrahydrofuran Toluene
B3LYP
B3PW91
M06L
Table . Raman Spectra of Tetrahydrofuran, and Toluene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
NMR Spectroscopy
Methods NMR spectra
Pyridine Tetrachloroethylene
B3LYP
B3PW91
M06L
Table . NMR spectroscopy of Pyridine and Tetrachloroethylene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
Methods NMR spectra
Tetrahydrofuran Toluene
B3LYP
B3PW91
M06L
Table . NMR spectroscopy of Tetrahydrofuran, and Toluene molecules structure with DFT (B3LYP and B3PW91) and M06L methods
CONCLUSION
IR, Raman, UV-Vis, VCD, and NMR calculations of Pyridine, Tetrachloroethylene, Tetrahydrofuran, and Toluene using the DFT (B3LYP and B3PW91) and M06L methods have been successfully carried out. The influences of the difference in vibration and energy values obtained with three different methods (DFT (B3LYP and B3PW91) and M06L)show results that are not significantly different.
From the pyridine analysis, there are no significant differences in the results of the IR, Raman, NMR, and UV-Vis spectra, but in the VCD spectra with B3LYP method there are differences in the number of peaks produced compared with B3PW91 and M06L methods. Then, the results of the IR, Raman, UV-Vis, and NMR spectra of tetrahydrofuran compounds have relatively the same peaks, while the VCD spectra have different peaks in the three methods, namely DFT (B3LYP and B3PW91) and M06L.
Tetrachloroethylene is IR, Raman, UV-Vis, VCD, and NMR spectroscopy is calculated with density functional theory (DFT) method with B3LYP, B3PW91, and M06L computational function basis set 6-311G+(2df). From these 3 computational functions, the results are not significantly different. It can be seen from the Toluene analysis, when the DFT (B3LYP and B3PW91) and M06L methods used to calculate the IR, Raman, NMR, and UV – Vis spectra,
there are only small amount of differences at the peaks were obtained. But in the VCD spectra calculation, those three methods produced significantly different results to one another.
REFERENCES
Batista, J. M., Jr.; Blanch, E. W.; da Silva Bolzani, V. Recent Advances in the Use of Vibrational
Chiroptical Spectroscopic Methods for Stereochemical Characterization of Natural Products.Nat.
Prod. Rep.2015,32, 1280– 1302, DOI: 10.1039/C5NP00027K
Berova, N.; Polavarapu, P. L.; Nakanishi, K.; Woody, R. W.Comprehensive Chiroptical Spectrosocopy, Vol. 1–2; John Wiley & Sons: New York, NY,2012.
Chamayou, A. C.; Lüdeke, S.; Brecht, V.; Freedman, T. B.; Nafie, L. A.; Janiak, C. Chirality and Diastereoselection of Δ/Λ-Configured Tetrahedral Zinc Complexes Through Enantiopure Schiff Base Complexes: Combined Vibrational Circular Dichroism, Density Functional Theory, 1H NMR, and X-ray Structural Studies.Inorg. Chem.2011,50, 11363– 11374, DOI:
10.1021/ic2009557
Fedorovsky, M. Exploring Vibrational Optical Activity with PyVib2.Comput. Lett.2006,2, 233– 236, DOI: 10.1163/157404006779194132
Hendayana, S. 1994.Kimia Analitik Instrumen. Semarang : Semarang Press.
Kusnanto, M. 2020.Analisis Spektroskopi Uv -Vis Penentuan Konsentrasi Permanganat (KMnO4).Solo FMIPA UNS.
Mayo, D. W., Miller, F. A., & Hannah, R. W. 2004. Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons. England.
Shoolery, J. N. 1972.A Basic Guide to NMR.
Zhang, Ying Igor., Wu Jianming., Xu Xin. 2010. Extending the reliability and applicability of B3LYP.
Chemical Communications. Vol. 46. 3057-3070