• Tidak ada hasil yang ditemukan

Chapter 11 Solution 1

N/A
N/A
Kaynaan

Academic year: 2023

Membagikan "Chapter 11 Solution 1"

Copied!
105
0
0

Teks penuh

(1)

Chapter 11, Solution 1.

) t 50 cos(

160 ) t (

v 

i(t) = –33sin(50t–30˚) = 33cos(50t–30˚+180˚–90˚) = 33cos(50t+60˚) p(t) = v(t)i(t) = 160x33cos(50t)cos(50t+60˚)

= 5280(1/2)[cos(100t+60˚)+cos(60˚)] = [1.320+2.640cos(100t+60˚)] kW.

P = [VmIm/2]cos(0–60˚) = 0.5x160x33x0.5 = 1.320 kW.

(2)

Using current division,

j1 Ω I2 I1

Vo

-j4 Ω 20o A 5 Ω

1

1 4 6

5 1 4(2) 5 3

j j j

I j j j

 

 

  

2

5 1

5 1 4(2) 5 3

I 0

j j j

 

  

.

For the inductor and capacitor, the average power is zero. For the resistor,

2 2

1

1 1

| | (1.029) (5) 2.647 W

2 2

PI R 

5 1 2.6471 4.4118 VoI    j

1 * 1

( 2.6471 4.4118) 2 2.6471 4.4118

2 o 2

SV I    j x    j

Hence the average power supplied by the current source is 2.647 W.

(3)

Chapter 11, Solution 3.

I

C 1600˚ R

+

1 16 3

90 F 5.5556

j C 90 10 2 10 j

j x x x

  

I = 160/60 = 2.667A

The average power delivered to the load is the same as the average power absorbed by the resistor which is

Pavg = 0.5|I|260 = 213.4 W.

(4)

Using Fig. 11.36, design a problem to help other students better understand instantaneous and average power.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

Find the average power dissipated by the resistances in the circuit of Fig. 11.36.

Additionally, verify the conservation of power. Note, we do not talk about rms values of voltages and currents until Section 11.4, all voltages and currents are peak values.

5 Ω

2030o V j4 Ω 8 Ω

–j6 Ω

+

Figure 11.36 For Prob. 11.4.

Solution

We apply nodal analysis. At the main node, I1 5 Ω I2

Vo

2030o V j4 Ω 8 Ω

–j6 Ω

+

(5)

20 30

5.152 10.639

5 4 8 6

o

o o o

o

V V V

V j

j j

      

 = 11.82164.16˚

For the 5-Ω resistor,

1

20 30

2.438 3.0661 A 5

o o o

I   V   

The average power dissipated by the resistor is

2 2

1 1 1

1 1

| | 2.438 5 14.86 W

2 2

PI Rx x

For the 8-Ω resistor,

I2 = Vo/(8–j6) = (11.812/10)(64.16+36.87)˚ = 1.1812101.03˚ A The average power dissipated by the resistor is

P2 = 0.5|I2|2R2 = 0.5(1.1812)28 = 5.581 W The complex power supplied is

S = 0.5(Vs)(I1)* = 0.5(2030˚)(2.4383.07˚) = 24.3833.07˚

= (20.43+13.303) VA

Adding P1 and P2 gives the real part of S, showing the conservation of power.

P = 14.86+5.581 = 20.44 W which checks nicely.

(6)

Converting the circuit into the frequency domain, we get:

1 2

W 4159 . 1 2 1

6828 . P 1

38 . 25 6828 . 1 2 j 2 6 j

) 2 j 2 ( 6 1 j

40 I 8

2 1

1

 

 

P1Ω = 1.4159 W P3H = P0.25F = 0 W

W 097 . 5 2 2

258 . P 2

258 . 2 38 . 25 6828 . 21 j 2 6 j

6 I j

2 2

2

 

 

P2Ω = 5.097 W

j6 –j2

+

8–40˚

(7)

Chapter 11, Solution 6.

3 3

20 mH  j L  j10 x20 10x j20 25

j 10

x 40 x 10 j

1 C

j F 1

40  3 6 

 

We apply nodal analysis to the circuit below.

Vo 20Ix

+ – Ix

j20 50

60o

–j25 10

25 0 j 50

0 V 20 j 10

I 20

6 Vo x o



 

 

 But

25 j 50 Ix Vo

  . Substituting this and solving for Vo leads

0.02 j0.04 0.012802 j0.009598 0.016 j0.008

V 6

6 57 V

. 26 9 . 55

1 )

57 . 26 9 . 55 )(

43 . 63 36 . 22 (

20 43

. 63 36 . 22

1

6 25 V

j 50

1 )

25 j 50 (

1 ) 20 j 10 (

20 20

j 10

1

o

o o

 

 

 

 

 

 

 

 

(0.0232 – j0.0224)Vo = 6 or Vo = 6/(0.03225–43.99˚) = 186.0543.99˚ volts.

|Ix| = 186.05/55.9 = 3.328

We can now calculate the average power absorbed by the 50-Ω resistor.

Pavg = [(3.328)2/2]x50 = 276.8 W.

(8)

Applying KVL to the left-hand side of the circuit,

o o 0.1 4

20

8  IV (1)

Applying KCL to the right side of the circuit, 5 0

j 10 5

8 oVj1V1I

But, o 1 1 o

10 5 j 10 5

j 10

10 V V V

V     

Hence, 0

10 50

j 5 j

8 o 10 oVoV

I

o o j0.025V

I  (2)

Substituting (2) into (1),

) j 1 ( 1 . 0 20

8  Vo  j

1 20 80

o   

V

 -25

2 8 10

1 o

I V

 

 



 



 (10)

2 64 2 R 1 2

P 1 I1 2 160W

(9)

Chapter 11, Solution 8.

We apply nodal analysis to the following circuit.

At node 1,

20 j - 10

6 jV1V1V2 V1  j120V2 (1) At node 2,

5 40 .

0 o o V2 I I   But,

j20 -

2 1 o

V

I V

 Hence,

40 j20

-

) (

5 .

1 V1 V2 V2

 

2 1 (3 j)

3V   V (2)

Substituting (1) into (2),

0 j 3 3 360

j  V2V2V2  j6) -1 37 ( 360 j 6

360 j

2    

V

j6) -1 37(

9 40

2

2V  

I

 

 

 

 (40)

37 9 2 R 1 2

P 1

2 2

I2 43.78W

40

j10 0.5 Io

60 A

V1 Io -j20 V2

I2

(10)

This is a non-inverting op amp circuit. At the output of the op amp,

3 2

3 1

(10 6) 10

1 1 (8.66 5) 20.712 28.124

(2 4) 10

o s

Z j x

V V j j

Z j x

    

          The current through the 20-k resistor is

0.1411 1.491 mA

20 12

o o

I V

k j k

  

j or |Io| = 1.4975 A

P = [|Io|2/2]R = [1.48752/2]10–6x20x103

= 22.42 mW

(11)

Chapter 11, Solution 10.

No current flows through each of the resistors. Hence, for each resistor, . It should be noted that the input voltage will appear at the output of each of the op amps.

P 0W

(12)

, ,

377

 R104 C20010-9 754 . 0 ) 10 200 )(

10 )(

377 (

RC 4-9

RC) 37.02 (

tan-1

 

 -37.02 7.985 -37.02 k

) 754 . 0 ( 1

k Z 10

ab 2

mA t

t t

i( )33sin(377 22)33cos(377 68) I = 33–68˚ mA

 

2

10 ) 37.02 - 985 . 7 ( 10 33 2

2 3 3

2    

I Z x

S ab

S = 4.348–37.02˚ VA

 S cos(37.02)

P 3.472 W

(13)

Chapter 11, Solution 12.

We find the Thevenin impedance using the circuit below.

j2 Ω

4 Ω -j3 Ω

5 Ω

We note that the inductor is in parallel with the 5-Ω resistor and the combination is in series with the capacitor. That whole combination is in parallel with the 4-Ω resistor. Thus,

 

 

 





 

39 . 46 1936 . 1

22 . 15 86 . 4

) 61 . 61 4502 . 1 ( 4 2758

. 1 j 69 . 4

) 2758 . 1 j 6896 . 0 ( 4 2 j 5

2 xj 3 5 j 4

2 j 5

2 xj 3 5 j 4 ZThev

ZThev = 0.8233 – j0.8642 or ZL = [823.3 + j864.2] mΩ. We obtain VTh using the circuit below. We apply nodal analysis.

2j

I

4 Ω –j3 Ω V2 +

1650o V

VTh 5 Ω

+

(14)

165 ) 17 . 67 4123 . 0 ( ) 55 . 46 5235 . 0 (

165 ) 5 . 0 12 . 0 16 . 0 ( ) 2 . 0 5 . 0 12 . 0 16 . 0 (

5 0 0 2

165 3

4 165

2 2 2 2

2

 

 

 

V

j j

V j

j

V j

V j V

4.125

Thus, V2 = 129.94–20.62˚V = 121.62–j45.76

I = (165 – V2)/(4 – j3) = (165 – 121.62 + j45.76)/(4 – j3)

= (63.0646.52˚)/(5–36.87˚) = 12.61383.39˚ = 1.4519+j12.529 VThev = 165 – 4I = 165 – 5.808 – j50.12 = [159.19 – j50.12] V = 166.89–17.48˚V

We can check our value of VThev by letting V1 = VThev. Now we can use nodal analysis to solve for V1.

At node 1,

25 . 41 )

3333 . 0 2 . 0 ( ) 3333 . 0 25 . 0 ( 5 0

0 3

4 165

2 1

2 2 1

1        



  V j V j V

j V V V

At node 2,

5 . 82 )

1667 . 0 ( 3333 . 0 2 0

165

3 1 2

2 1

2 j V j V j

j V j

V

V       



>> Y=[(0.25+0.3333i),-0.3333i;-0.3333i,(0.2-0.1667i)]

Y =

0.2500 + 0.3333i 0 - 0.3333i 0 - 0.3333i 0.2000 - 0.1667i

>> I=[41.25;–82.5i]

I =

41.2500 0 -20.0000i

>> V=inv(Y)*I V =

(15)

159.2221 – 50.1018i 121.6421–45.7677i

Please note, these values check with the ones obtained above.

To calculate the maximum power to the load, |IL| = (166.89/(2x0.8233)) = 101.34 A

Pavg = [(|IL|rms)20.8233]/2 = 4.228 mW.

(16)

For maximum power transfer to the load, ZL = [120 – j60] Ω. IL = 165/(240) = 0.6875 A

Pavg = [|IL|2120]/2 = 28.36 W.

(17)

Chapter 11, Solution 14.

Using Fig. 11.45, design a problem to help other students better understand maximum average power transfer.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

It is desired to transfer maximum power to the load Z in the circuit of Fig. 11.45. Find Z and the maximum power. Let is 5 cos 40t A.

40 mF 8 Ω

is 7.5 mH 12 Ω Z

Figure 11.45 For Prob. 11.14.

Solution

We find the Thevenin equivalent at the terminals of Z.

40 mF 1 1 3

0.625 40 40 10 j j Cj x x

  

7.5 mH  j L  j40 7.5 10x x 3j0.3 To find ZTh, consider the circuit below.

-j0.625 8 Ω

j0.3 12 Ω ZTh

(18)

12 0.3

ZL = (ZThev)* = [8.008 + j0.3252] Ω. ZL = (ZThev)* = [8.008 + j0.3252] Ω.

To find VTh, consider the circuit below.

To find VTh, consider the circuit below.

-j0.625 8 Ω

-j0.625 8 Ω

I1 +

I1 +

50o j0.3 12 Ω VTh

50 j0.3 12 o Ω VTh

– –

By current division, By current division,

I1 = 5(j0.3)/(12+j0.3) = 1.590˚/12.0041.43˚ = 0.1249688.57˚ I1 = 5(j0.3)/(12+j0.3) = 1.590˚/12.0041.43˚ = 0.1249688.57˚

= 0.003118 + j0.12492A = 0.003118 + j0.12492A

VThev rms = 12I1/

VThev rms = 12I1/ 2 = 1.060388.57˚V

ILrms = 1.060388.57˚/2(8.008) = 66.288.57˚mA Pavg = |ILrms|28.008 = 35.09 mW.

(19)

Chapter 11, Solution 15.

To find Zeq, insert a 1-A current source at the load terminals as shown in Fig. (a).

At node 1,

2 o o

2 o

o j

j - j

1 V V V V V

V   

 (1)

At node 2,

o 2

o 2

o 1 j (2 j)

j 2 -

1 V V V V

V     

 (2)

Substituting (1) into (2),

2 2

2 (2 j)(j) (1 j) j

1 V   V   V

j 1

1

2  

V

5 . 0 5 . 2 0 1 1

2 j j

eqV    

Z

*eq

L Z

Z [0.5j0.5] We now obtain VThev from Fig. (b).

1 0

2  12 

j

o o

o

V V V

1 A

1 1 2 -j

j 2 Vo

+ Vo

(a)

1 -j

j 2 Vo

+ Vo

(b) 120 V

+ +

VThev

(20)

j 1

Vo (-j2Vo)VTh 0 j

j

Thev     

1

) 2 1 )(

12 j2) (

- (1 Vo V

2 0.5

0.5

2 2

5 12 5 . 2 0

5 . 0 5 . 0 5 . 0 5 . 0

2 2 2

max x

j j

V P

Thev 



 

 

 

= 90 W

(21)

Chapter 11, Solution 16.

20 5 / 1 4

1 F 1

20 / 1 , 4 H

1 ,

4 j

x j C j j

L

j    



  

We find the Thevenin equivalent at the terminals of ZL. To find VThev, we use the circuit shown below.

0.5Vo

2 V1 4 V2

+ + +

10<0o

Vo -j5 j4 VThev

- -

- At node 1,

2 2 1

1 1 1

1 5 V (1.25 j0.2) 0.25V

4 V V V

5 . 5 0 j V 2

V

10       

 

 (1)

At node 2,

) 25 . 0 25 . 0 ( 5

. 0 4 0

25 .

4 0 1 2

2 1 2

1 V V j

j V V V

V        

(2) Solving (1) and (2) leads to

o

Thev V j

V2 6.1947 7.07969.407248.81

(22)

0.5V1

2 V1 4 V2

-j5 j4

1A

At node 1,

2 1

2 1 1 1

1 0 0 (1 0.2) 0.25

25 4 . 5 0

2 V V V j V

j V V

V        

 (3)

At node 2,

) 25 . 0 25 . 0 ( 5

. 0 4 1

25 . 4 0

1 1 2 1 2 V1 V2 j

j V V V

V         

 (4)

Solving (1) and (2) gives

o

eq V j

Z 1.9115 3.3274 3.837 60.12 1

2    

 and ZL = 3.837–60.12° Ω

 

 2 4 1.9115

4072 . 9115 9 . 1 2

|

| 2

2 2

max Z Z x x

P V

L eq

Th 5.787 W

(23)

Chapter 11, Solution 17.

We find Zeq at terminals a-b following Fig. (a).

   

10 70

) 20 40 )(

10 30 40 ( 20

||

30

10 j

j j j

eq j

 

 

Z = 20 Ω = ZL

We obtain VThev from Fig. (b).

Using current division,

3 . 2 j 1 . 1 - ) 5 j 10( j 70

20 j 30

1    

I

7 . 2 j 1 . 1 ) 5 j 10( j 70

10 j 40

2    

I

70 j 10 10

j

30 2 1

ThII  

V

 20

) 20 2 )(

2 (

5000

2 2 2

2

max Z x

Z Z

P L

L eq

VTh

31.25 W

-j10 30

40 j20

(a)

a b

I1 I2

-j10 30

j5 A + VThev

j20 40

(b)

(24)

We find ZTh at terminals a-b as shown in the figure below.

j10 80 (80)(-j10) 20

j30 -j10) (

||

80 40

||

40

30     

j ZTh

154 . 20 23 .

21 j

Th  

Z

*Th

L Z

Z [21.23–j20.15] Ω

40 -j10

80 40

a Zth j30

b

(25)

Chapter 11, Solution 19.

At the load terminals,

j 9

j) (6)(3 -j2

) j 3 (

||

6 2 j

Th -



Z

561 . 1 j 049 .

Th 2 

Z

Th

RL Z 2.576 Ω

To get VTh, let Z6||(3j)2.049 j0.439. By transforming the current sources, we obtain

487 . 14 62 . 67 ) 0 33

( j

Th    Z 

V = 69.1612.09˚

Pmax =

2 576 . 2 576 . 2 561 . 1 049 . 2

16 .

69 2

j = 258.5 W.

(26)

Combine j20  and -j10  to get j20||-j10-j20.

To find ZTh, insert a 1-A current source at the terminals of RL, as shown in Fig. (a).

At the supernode,

10 j - 20 j -

1 40V1 V1 V2

2 1 j4 )

2 j 1 (

40  VV (1)

Also, V1V2 4 Io, where

40 - 1

o

IV

1 . 1 1

.

1 1 2 1 V2

V V

V    (2)

Substituting (2) into (1),

2

2 j4

1 . ) 1 2 j 1 (

40 V V



 

 

4 . 6 j 1

44

2  

V

 1.05 j6.71 1

2 Th

Z V

Th

RL Z 6.792

1 A 40

-j10

V1 V2

(a) 4 Io Io

+  -j20

(27)

To find VTh, consider the circuit in Fig. (b).

At the supernode,

j10 - j20 - 40

165 V1 V1 V2

 

2

1 4

) 2 1 (

165  j Vj V (3)

Also, V1V2 4 Io, where

40 165 V1 Io   1

. 1

5 .

2 16

1

V

V (4)

Substituting (4) into (3),

150–j30(0.9091 j5.818)V2

 

 

 

 

 25.98 92.43

12 . 81 889 . 5

31 . 11 97 . 152 818 . 5 9091 . 0

30 150

2 j

j

Th V

V Pmax =

2 792 . 6 792 . 6 71 . 6 05 . 1

98 .

25 2

j = 21.51 W

40

-j10

V1 V2

(b) 4 Io

Io

+  -j20

+ Vth

1650 V +

(28)

We find ZTh at terminals a-b, as shown in the figure below.

] ) 30 j 40 (

||

100 10 j - [

||

Th 50  

Z

where 31.707 j14.634

30 j 140

) 30 j 40 )(

100 ) (

30 j 40 (

||

100      

634 . 4 j 707 . 81

) 634 . 4 j 707 . 31 )(

50 ) ( 634 . 4 j 707 . 31 (

||

Th 50   

Z

73 . 1 j 5 .

Th 19 

Z

Th

RL Z 19.58

50 100 -j10

a 40

Zth j30

b

(29)

Chapter 11, Solution 22.

i(t) = [2–2cos(2t)] amps

(30)

Using Fig. 11.54, design a problem to help other students to better understand how to find the rms value of a waveshape.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

Determine the rms value of the voltage shown in Fig. 11.54.

v(t) (V) 10

0 1 2 3 4 t (s) Figure 11.54 For Prob. 11.23.

Solution

1

2 2 2

0 0

1 1 100

( ) 10

3 3

T

Vrms v t dt dt

T

Vrms = 5.7735 V

(31)

Chapter 11, Solution 24.

, 2 T



 

2 t 1 5, -

1 t 0 , ) 5 t ( v

5 dt (-5) dt

252 [1 1] 25

2

V 1 2

1 1 2

0 2 2

rms

  

 Vrms 5V

(32)

 

266 . 3 3 f 32

3 ] 32 16 0 16 3[ 1

dt 4 dt 0 dt ) 4 3 ( dt 1 ) t ( T f

f 1

rms

3 2 2 2

1 1

0 T 2

0 2 rms2

   

frms = 3.266

(33)

Chapter 11, Solution 26.

,

4 T



 

4 t 2 20

2 0 ) 5

( t

t v

250 ] 800 200 4[ ) 1

20 ( 4 10

1 4

2 2 2

0 2

2   

 

dt

dt

Vrms

Vrms 15.811 V.

(34)

, 5

T i(t)t, 0t5

333 . 15 8 125 3

t 5 dt 1 5 t

I 1 50

5 3 0

2 2

rms

   

Irms 2.887A

(35)

Chapter 11, Solution 28.

02 2 25 2

2

rms (4t) dt 0 dt

5 V 1

533 . 8 ) 8 15( 16 3

t 16 5

V 1 20

3 2

rms    

Vrms 2.92V

 2

533 . 8 R P V

2

rms 4.267W

(36)

, 20 T



 

25 t 15 6t 120 -

15 5

6 ) 60

( t t

t i



   

515 2

1525 2

2 (60 6 ) (-120 6t)

20

1 t dt dt

Ieff



     

515 2

1525 2

2 (900 180 9 ) (9t 360t 3600)

5

1 t t dt dt

Ieff

   

2 3 155 3 2 1525

2 900 90 3 3 180 3600

5

1 t t t t t t

Ieff      

300 ] 750 750 5[

2 1  

Ieff

Ieff 17.321 A

I R

P 2eff (17.321)2x12 = 3.6 kW.

(37)

Chapter 11, Solution 30.



 

4 t 2 1 -

2 t 0 ) t

t ( v

t dt (-1) dt

41 38 2 1.1667

4

V 1 4

2 2 2

0 2 2

rms 

 

 

Vrms 1.08V

(38)

6667 . 8 3 16

4 2 ) 1

4 ( )

2 2 ( ) 1 2 ( 12

0

1

0

2

1 2 2

2 

 



 

  

v t dt

t dt

dt

V rms

V 944 .

2 Vrms

(39)

Chapter 11, Solution 32.



 

01 2 2

12

2

rms (10t ) dt 0dt

2 I 1

5 10 50 t dt t 50

I 10

1 5 0

4 2

rms

  

Irms 3.162A

(40)

3 4

2 2 1 2 2

0

0 1 3

1 1

( ) 25 25 ( 5 20)

6

T

Irms i t dt t dt dt t dt

T

 

       

 

   

3 3

2 1 1 2 4

25 25(3 1) (25 100 400 ) 11.1056

0 3

6 3 3

rms

t t

It

       

t

Irms = 3.332 A

(41)

Chapter 11, Solution 34.

472 . 4 20

20 3 36

9 3 1

6 )

3 3 ( ) 1 1 (

2

0 3

3 2 2 2

0 2 0

2 2







 



 

  

rms

T rms

f t

dt dt

t dt

t T f

f

frms = 4.472

(42)

01 2 12 2 24 2 45 2 56 2

2

rms 10 dt 20 dt 30 dt 20 dt 10 dt

6 V 1

67 . 466 ] 100 400 1800 400 100 6[

Vrms2  1     

Vrms 21.6V

(43)

Chapter 11, Solution 36.

(a) Irms = 10 A

(b) 2

16 9 2

4 3

2 2

2     



rms

rms V

V 4.528V (checked)

(c) 9.055 A

2 6436

Irms

(d) 4.528V

2 16 2

25 

Vrms

(44)

Design a problem to help other students to better understand how to determine the rms value of the sum of multiple currents.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

Calculate the rms value of the sum of these three currents:

i1 = 8, i2 = 4 sin(t + 10), i3 = 6 cos(2t + 30) A Solution

) 30 2 cos(

6 ) 10 sin(

4

3 8

2 1

o

o t

t i

i i

i       

A 487 . 9 2 90

36 2 64 16

3 2 2

2 1

2       

rms rms rms

rms I I I

I

(45)

Chapter 11, Solution 38.

2 2

1 *

1

220 390.32 124

S V

Z  

2 2

2 *

2

220 944.4 1180.5

20 25

S V j

Z j

   

2 2

3 *

3

220 300 267.03

90 80

S V j

Z j

   

S    S1 S2 S3 1634.7 j913.471872.6 29.196 VAo (a) P = Re(S) = 1634.7 W

(b) Q = Im (S) = 913.47 VA (leading) (c ) pf = cos (29.196o) = 0.8732

(46)

(a) ZL = 4.2 + j3.6 = 5.5317 40.6o pf = cos 40.6 = 0.7592

2 2

*

220 6.643 5.694 kVA

5.5317 40.6

rms

o

S V j

Z   

  P = 6.643 kW Q = 5.695 kVAR (b)

3

1 2

2 2

(tan tan ) 6.643 10 (tan 40.6 tan 0 )

312 F 2 60 220

o o

rms

P x

C V x x

  

   ,

{It is important to note that this capacitor will see a peak voltage of 220 2 = 311.08V, this means that the specifications on the capacitor must be at least this or greater!}

(47)

Chapter 11, Solution 40.

Design a problem to help other students to better understand apparent power and power factor.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

A load consisting of induction motors is drawing 80 kW from a 220-V, 60 Hz power line at a pf of 0.72 lagging. Find the capacitance of a capacitor required to raise the pf to 0.92.

Solution

0 1 1

1 0.72 cos 43.94

pf      

0

2 2

2 0.92 cos 23.07

pf      

3

1 2

2 2

(tan tan ) 80 10 (0.9637 0.4259)

2.4 mF 2 60 (220)

rms

P x

C V x x

 

   ,

{Again, we need to note that this capacitor will be exposed to a peak voltage of 311.08V and must be rated to at least this level, preferably higher!}

(48)

(a) -j6 j

(-j2)(-j3) -j3

||

-j2 ) 2 j 5 j (

||

2 j

-    

4 j6 7.211 -56.31 ZT

cos(-56.31 )

pf 0.5547 (leading)

(b) 0.64 j1.52

3 j 4

) j 4 )(

2 j ) ( j 4 (

||

2

j      

 

 

 0.4793 21.5

44 . 0 j 64 . 1

44 . 0 j 64 . ) 0 j 52 . 1 j 64 . 0 (

||

1 Z

cos(21.5 )

pf 0.9304 (lagging)

(49)

Chapter 11, Solution 42.

(a) S=120, pf 0.707cos   45o

cos sin 84.84 84.84 VA

SS   jS    j

(b) 120

1.091 A rms

rms rms rms 110

rms

S V I I S

  V  

(c) rms2 2 71.278 71.278

rms

S I Z Z S j

   I   

(d) If Z = R + jL, then R = 71.278 Ω

71.278

2 71.278 0.1891 H

2 60

L fL L

 x = 189.1 mH.

(50)

Design a problem to help other students to better understand complex power.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

The voltage applied to a 10-ohm resistor is v(t) = 5 + 3 cos(t + 10) + cos(2t + 30) V (a) Calculate the rms value of the voltage.

(b) Determine the average power dissipated in the resistor.

Solution

(a) 30 5.477V

2 1 2 25 9

3 2 2

2 1

2       

rms rms rms

rms V V V

V

(b) 30/10 3 W

2  

R P V rms

(51)

Chapter 11, Solution 44.

6

1 1

40 12.5

2000 40 10

F j

j C j x x

  

60mH  j L  j2000 60 10x x 3j120 We apply nodal analysis to the circuit shown below.

100 4

30 12.5 20 120

o x o

V I V Vo

j j

   

 But

120

o x

I V

j . Solving for Vo leads to 2.9563 1.126

Vo   j

Io 30 Ω -j12.5 20 Ω Vo

Ix

1000o + j120 + 4Ix

100 2.7696 1.1165

30 12.5

o o

I V j

j

   

1 * 1

(100)(2.7696 .1165) 138.48 55.825 VA 2 s o 2

SV I   j   j

S = (138.48 – j55.82) VA

(52)

(a) 2200 46.9V 2

20 60

2 2

2rms     Vrms

V

A

Irms 1.125 1.061

2 5 . 1 0

2

2   

(b) p(t) = v(t)i(t) = 20 + 60cos100t – 10sin100t – 30(sin100t)(cos100t); clearly the average power = 20W.

(53)

Chapter 11, Solution 46.

(a) SVI* (22030)(0.5-60)110-30

S [95.26j55]VA Apparent power =110VA Real power =95.26W Reactive power =55VAR

pf is leading because current leads voltage (b) SVI*  (250-10)(6.225)155015

S [497.2j401.2]VA Apparent power =1550VA Real power =1497.2W Reactive power =401.2VAR

pf is lagging because current lags voltage (c) SVI* (1200)(2.415)28815

S [278.2j74.54]VA Apparent power =288VA Real power =278.2W

Reactive power =74.54VAR

pf is lagging because current lags voltage (d) SVI* (16045)(8.5-90)1360-45

S [961.7 – j961.7] VA Apparent power =1360VA Real power = 961.7 W Reactive power =-961.7VAR

pf is leading because current leads voltage

(54)

(a) V11210, I4-50

 224 60

2

1 *

I V

S [112j194]VA

Average power =112W Reactive power =194VAR (b) V1600, I445

 320 -45 2

1 *

I V

S 226.3 – j226.3

Average power = 226.3 W Reactive power = –226.3 VAR

(c)    12830

30 - 50

) 80

( 2

* 2

Z

S V 110.85 + j64

Average power = 110.85 W Reactive power = 64VAR

(d) SI 2Z(100)(10045)[7.071j7.071]kVA Average power =7.071kW

Reactive power =7.071kVAR

(55)

Chapter 11, Solution 48.

(a) SP jQ[269j150]VA (b) pf cos0.9  25.84

31 . ) 4588 84 . 25 sin(

2000 sin

S Q sin

S

Q       

48 . 4129 cos

S P 

S [4.129j ]2 kVA

(c) 0.75

600 450 S sin Q sin

S

Q     

59 .

48

 , pf 0.6614 86 . 396 ) 6614 . 0 )(

600 ( cos S

P  

S [396.9j450]VA

(d) 1210

40 ) 220 S (

2 2

Z V

8264 . 1210 0 1000 S

cos P cos

S

P     

 34.26

25 . 681 sin

S

Q 

S [1j0.6812]kVA

(56)

(a) sin(cos (0.86))kVA 86

. 0 j 4

4 -1

S

S [4j2.373]kVA

(b) 0.8 cos sin 0.6

2 6 . 1 S

pf  P     

1.6 j2sin

S [1.6j1.2]kVA (c) SVrmsI*rms (20820)(6.550)VA

1.352 70

S [0.4624j1.2705]kVA

(d)      

56.31 - 11 . 72

14400 60

j 40

) 120

( 2

* 2

Z S V

199.7 56.31

S [110.77j166.16]VA

(57)

Chapter 11, Solution 50.

(a) sin(cos (0.8))

8 . 0 j1000 1000

jQ

P   -1

S

750 j 1000

S

But, *

2 rms

Z SV

23 . 23 j 98 . 750 30 j 1000

) 220

( 2

2

*rms    

S Z V

Z [30.98j23.23] (b) SIrms 2Z

 

2 2

rms (12)

2000 j 1500 I

Z S [10.42j13.89]

(c)

 

 1.6 -60

) 60 4500 )(

2 (

) 120 ( 2

2 2 2

* rms

S V S

Z V

1.6 60

Z [0.8j1.386]

(58)

(a) ZT 2(10j5)||(8j6)

j 18

20 j 2 110 j

18

) 6 j 8 )(

5 j 10 2 (

T        

Z

8.152 j0.768 8.188 5.382 ZT

cos(5.382 )

pf 0.9956 (lagging)

(b) (8.188 -5.382 )

) 16 ( 2

* 2

*

 

Z

I V V S

31.26 5.382 S

Scos

P 31.12 W

(c) QSsin2.932 VAR (d) S S31.26 VA

(e) S31.265.382 (31.12+j2.932) VA

(a) 0.9956 (lagging, (b) 31.12 W, (c) 2.932 VAR, (d) 31.26 VA, (e) [31.12+j2.932]

VA

(59)

Chapter 11, Solution 52.

749 j 4200 S

S S S

500 j 1000 S

2749 j 1200 9165

. 0 x 3000 j 4 . 0 x 3000 S

1500 j 2000 6

. 8 0 . 0 j2000 2000

S

C B A C B A

(a)

22

749 4200

pf 4200 0.9845 leading

(b)   





35.55 55.11

45 120

749 j I 4200

I V

S rms rms rms

Irms = 35.5555.11˚ A.

(60)

S = SA + SB + SC = 4000(0.8–j0.6) + 2400(0.6+j0.8) + 1000 + j500 = 5640 + j20 = 56400.2˚

(a)

A I

V S V

S S V I S

rms rms

C A rms

B rms

 

 

 

8 . 29 47 8 . 29 47

8 . 29 30 47

120 2 . 0 5640

(b) pf = cos(0.2˚) ≈ 1.0 lagging.

(61)

Chapter 11, Solution 54.

Consider the circuit shown below.

  

  1.6 16.87 3

j 4

20 - 8 I1



  1.6 -110 5

j 20 - 8 I2

) 4643 . 0 j 531 . 1 ( ) 504 . 1 j -0.5472

2 (

1    

I I I

0.9839 j1.04 1.432 -46.58 I

For the source,

) 46.58 432

. 1 )(

20 - 8

* (    

VI S

11.456 26.58

S (10.24+j3.12) VA

For the capacitor,

I1 2Zc (1.6)2(-j3)

S –j7.68 VA

For the resistor,

I1 2ZR (1.6)2(4)

S 10.24 VA

For the inductor,

I2 2ZL (1.6)2(j5)

S j12.8 VA

(62)

Using Fig. 11.74, design a problem to help other students to better understand the conservation of AC power.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

Problem

Find the complex power absorbed by each of the five elements in the circuit of Fig.

11.74.

Figure 11.74 Solution

We apply mesh analysis to the following circuit.

For mesh 1,

2 1 20I I

) 20 j 20 (

40  

2

1 I

I ) j 1 (

2   (1)

For mesh 2,

1

2 20I

I ) 10 j 20 ( 50 j

-   

2 1 (2 j)I I

-2 j5

-    (2)

Putting (1) and (2) in matrix form,









 





2 1

I I j 2 2 -

1 - j 1 j5 -

2

5090 V rms 400 V rms

j10 -j20

I3

20 +

+ I1 I2

(63)

j 1

 , 1 4 j3, 2 -1 j5

 

 

  (7 j) 3.535 8.13 2

1 j 1

3 j I1 1 4

 

 

  2 j3 3.605 -56.31

j 1

5 j 1 I2 2 -

I I (3.5 j0.5) (2 j3) 1.5 j3.5 3.808 66.8 I3 1 2

For the 40-V source,



 

  

 (7 j)

2 ) 1 40 ( - -VI1*

S [-140j20]VA

For the capacitor,

c

2

1 Z

I

S -j250VA

For the resistor,

I3 2 R

S 290VA

For the inductor,

L

2

2 Z

I

S j130VA

A For the j50-V source,

VI*2 (j50)(2 j3)

S [-150j100]V

Gambar

Figure 11.36  For Prob. 11.4.
Figure 11.45  For Prob. 11.14.
Figure 11.74  Solution

Referensi

Dokumen terkait

CONCLUSION The conclusion of this study are problem solving based learning doesn’t give good effect to problem solving ability but it has an average score is 67 or good level and

The PBL model was design based on Lee & Bae Ahamad et al., 2017 as follow: Step 1: Introduction, Understand the problem and Searching for information Students are introduced to