Turnitin DEEPREPOMEDUNM: A Train Deep Learning Network and Extraction Feature for The
Classification of Pap Smear Images
by Dwiza Riana
Submission date: 09-Apr-2023 08:19AM (UTC+0700) Submission ID: 2059264852
File name: XTRACTION_FEATURE_FOR_THE_CLASSIFICATION_OF_PAP_SMEAR_IMAGES.pdf (2.41M) Word count: 5923
Character count: 31805
2
5
6
7 9
15 16
22
1
4 17
5
14
21
1
2 3
4
7
8
1
1 2
9
11 12
20
1 6
10 19
23 24
4
2
3
3
13 18
25
7
%SIMILARITY INDEX
4
%INTERNET SOURCES
6
%PUBLICATIONS
1
%STUDENT PAPERS
1
1
%2
1
%3
1
%4
1
%5
< 1
%Turnitin DEEPREPOMEDUNM: A Train Deep Learning Network and Extraction Feature for The Classification of Pap Smear Images
ORIGINALITY REPORT
PRIMARY SOURCES
link.springer.com
Internet Source
repository.nusamandiri.ac.id
Internet Source
Marina E. Plissiti, P. Dimitrakopoulos, G.
Sfikas, Christophoros Nikou, O. Krikoni, A.
Charchanti. "Sipakmed: A New Dataset for Feature and Image Based Classification of Normal and Pathological Cervical Cells in Pap Smear Images", 2018 25th IEEE International Conference on Image Processing (ICIP), 2018
Publication
arxiv.org
Internet Source
Md Mamunur Rahaman, Chen Li, Xiangchen Wu, Yudong Yao, Zhijie Hu, Tao Jiang, Xiaoyan Li, Shouliang Qi. "A Survey for Cervical
Cytopathology Image Analysis Using Deep Learning", IEEE Access, 2020
6
< 1
%7
< 1
%8
< 1
%9
< 1
%10
< 1
%11
< 1
%Publication
Ling Zhang, Le Lu, Isabella Nogues, Ronald M.
Summers, Shaoxiong Liu, Jianhua Yao.
"DeepPap: Deep Convolutional Networks for Cervical Cell Classification", IEEE Journal of Biomedical and Health Informatics, 2017
Publication
Xiaomin Zhou, Chen Li, Md Mamunur Rahaman, Yudong Yao et al. "A
Comprehensive Review for Breast
Histopathology Image Analysis Using Classical and Deep Neural Networks", IEEE Access,
2020Publication
zaguan.unizar.es
Internet Source
Madhura Kalbhor, Swati Shinde, Daniela Elena Popescu, D. Jude Hemanth. "Hybridization of Deep Learning Pre-Trained Models with
Machine Learning Classifiers and Fuzzy Min–
Max Neural Network for Cervical Cancer Diagnosis", Diagnostics, 2023
Publication
Submitted to University of Minnesota System
Student Paper
Na Dong, Qingyue Feng, Mengdie Zhai, Jianfang Chang, Xiaoming Mai. "A novel
12
< 1
%13
< 1
%14
< 1
%15
< 1
%16
< 1
%17
< 1
%feature fusion based deep learning
framework for white blood cell classification", Journal of Ambient Intelligence and
Humanized Computing, 2022
Publication
www.nature.com
Internet Source
www.researchsquare.com
Internet Source
www.science.gov
Internet Source
discovery.researcher.life
Internet Source
Indrabayu, Andi Rezky Fatmasari, Ingrid Nurtanio. "A Colour Space Based Detection for Cervical Cancer Using Fuzzy C-Means Clustering", Proceedings of the 6th
International Conference on Bioinformatics and Biomedical Science - ICBBS '17, 2017
Publication
Jakub Zak, Michal K. Grzeszczyk, Antonina Pater, Lukasz Roszkowiak, Krzysztof Siemion, Anna Korzynska. "Cell image augmentation for classification task using GANs on Pap smear dataset", Biocybernetics and
Biomedical Engineering, 2022
Publication
18
< 1
%19
< 1
%20
< 1
%21
< 1
%22
< 1
%23
< 1
%24
< 1
%25
< 1
%Sapna R Bisht, Pratibha Mishra, Deep Yadav, Rakesh Rawal, Karla P Mercado-Shekhar.
"Current and emerging techniques for oral cancer screening and diagnosis: a review", Progress in Biomedical Engineering, 2021
Publication
mdpi-res.com
Internet Source
www.mdpi.com
Internet Source
Wen Chen, Liang Gao, Xinyu Li, Weiming Shen.
"Lightweight convolutional neural network with knowledge distillation for cervical cells classification", Biomedical Signal Processing and Control, 2022
Publication
www.aimspress.com
Internet Source
www.hindawi.com
Internet Source
www.researchgate.net
Internet Source
Dwiza Riana, Yudi Ramdhani, Rizki Tri Prasetio, Achmad Nizar Hidayanto. "Improving
Hierarchical Decision Approach for Single Image Classification of Pap Smear",
Exclude quotes On Exclude bibliography On
Exclude matches Off
International Journal of Electrical and Computer Engineering (IJECE), 2018
Publication