COMPUTER VISION AND DEEP LEARNING APPROACH
FOR SOCIAL DISTANCING DETECTION DURING COVID-19 PANDEMIC
FUAD WIDIATMOKO Page 83 of 92
REFERENCES
Gugus Tugas Percepatan COVID-19 2020, Data Sebaran COVID-19, accessed 10 August 2020, <https://www.covid19.go.id>
Kathuria, A, What’s New In YOLO V3?, accessed 10 October 2020, <
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b >
Mihajlovic, Ilija, Everything you Ever Wanted to Know About Computer Vision, accessed 20 November 2020, < https://towardsdatascience.com/everything-you- ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-
awesome-e8a58dfb641e >
ChiSoftware, Supervised vs Unsupervised Learning, accessed 25 October 2020, <
https://medium.com/@chisoftware/supervised-vs-unsupervised-machine- learning-7f26118d5ee6>
Perera, Shanika, An introduction to Reinforcement Learning, accessed 25 October 2020, <https://towardsdatascience.com/an-introduction-to-reinforcement- learning-1e7825c60bbe>
Karpathy, Andrej. 2015. “Neural Networks Part 1: Setting Up the Architecture.” Notes for CS231n Convolutional Neural Networks for Visual Recognition, Stanford University. http://cs231n.github.io/neural-networks-1/
Alves-Oliveira, P., Gomes, S., Chandak, A., Arriaga, P., Hoffman, G., & Paiva, A.
(2020). Software architecture for YOLO, a creativity-stimulating robot.
SoftwareX, 11, 100461. https://doi.org/10.1016/j.softx.2020.100461
Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020). Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19 Detection from X- rays. Computer Methods and Programs in Biomedicine, 196, 105608.
https://doi.org/10.1016/j.cmpb.2020.105608
Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3642–3649.
COMPUTER VISION AND DEEP LEARNING APPROACH
FOR SOCIAL DISTANCING DETECTION DURING COVID-19 PANDEMIC
FUAD WIDIATMOKO Page 84 of 92
https://doi.org/10.1109/CVPR.2012.6248110
Cires, D. C., Meier, U., Masci, J., & Gambardella, L. M. (2003). IJCAI11-210.pdf.
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Flexible, 1237–1242.
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3098/3425 Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I. N., &
Pourghasemi, H. R. (2019). 14 - Artificial Neural Networks for Flood
Susceptibility Mapping in Data-Scarce Urban Areas (H. R. Pourghasemi & C. B.
T.-S. M. in G. I. S. and R. for E. and E. S. Gokceoglu (eds.); pp. 323–336).
Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-815226-3.00014-4 Guo, Q., Qian, Y., Liang, X., She, Y., Li, D., & Liang, J. (2019). Logic could be
learned from images. August. http://arxiv.org/abs/1908.01931
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386–397.
https://doi.org/10.1109/TPAMI.2018.2844175
Hijazi, S., Kumar, R., Rowen, C., Group, I., & Cadence. (2015). Using Convolutional Neural Networks for Image Recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). www.cadence.com
Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., & Pasupuleti, V. R. (2020). A critical review on computer vision and artificial intelligence in food industry.
Journal of Agriculture and Food Research, 2(February), 100033.
https://doi.org/10.1016/j.jafr.2020.100033
Middleton, J., Martin-Moreno, J. M., Barros, H., Chambaud, L., & Signorelli, C.
(2020). ASPHER statement on the novel coronavirus disease (COVID-19) outbreak emergency. International Journal of Public Health, 65(3), 237–238.
https://doi.org/10.1007/s00038-020-01362-x
COMPUTER VISION AND DEEP LEARNING APPROACH
FOR SOCIAL DISTANCING DETECTION DURING COVID-19 PANDEMIC
FUAD WIDIATMOKO Page 85 of 92
Overview, S. (n.d.). Selecting the Right Bounding Box Using Non-Max Suppression ( with implementation ).
Park, Y.-S., & Lek, S. (2016). Chapter 7 - Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In S. E. B. T.-D. in E. M. Jørgensen (Ed.), Ecological Model Types (Vol. 28, pp. 123–140). Elsevier.
https://doi.org/https://doi.org/10.1016/B978-0-444-63623-2.00007-4
Punn, N. S., Sonbhadra, S. K., & Agarwal, S. (2020). Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques. 1–10. http://arxiv.org/abs/2005.01385
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–
788. https://doi.org/10.1109/CVPR.2016.91
Redmon, J., & Farhadi, A. (2018). YOLO v.3. Tech Report, 1–6.
https://pjreddie.com/media/files/papers/YOLOv3.pdf
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y
Shinde, S., Kothari, A., & Gupta, V. (2018). YOLO based Human Action Recognition and Localization. Procedia Computer Science, 133(2018), 831–838.
https://doi.org/10.1016/j.procs.2018.07.112
Singh, A. K., Prakash, P., Achra, A., Singh, G. P., & Das, A. (2018). Standardization and Classification of In vitro Biofilm Formation by Clinical Isolates of
Staphylococcus aureus Background : Materials and Methods : Results : Conclusions : Journal of Global Infectious Diseases, 9(3), 93–101.
https://doi.org/10.4103/jgid.jgid
COMPUTER VISION AND DEEP LEARNING APPROACH
FOR SOCIAL DISTANCING DETECTION DURING COVID-19 PANDEMIC
FUAD WIDIATMOKO Page 86 of 92
Sun, C., & Zhai, Z. (2020). The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustainable Cities and Society, 62(June), 102390. https://doi.org/10.1016/j.scs.2020.102390
Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape.
Nature Reviews. Drug Discovery, 19(5), 305–306.
https://doi.org/10.1038/d41573-020-00073-5
West, R., Michie, S., Rubin, G. J., & Amlôt, R. (2020). Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nature Human Behaviour, 4(5), 451–459. https://doi.org/10.1038/s41562-020-0887-9
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., & Girshick, R. (2020). Detectron2.
https://github.com/facebookresearch/detectron2
Yoshinaga, S., Shimada, A., & Taniguchi, R. I. (2010). Real-time people counting using blob descriptor. Procedia - Social and Behavioral Sciences, 2(1), 143–152.
https://doi.org/10.1016/j.sbspro.2010.01.028
Yu, Y., Xu, D., Fu, S., Zhang, J., Yang, X., Xu, L., Xu, J., Wu, Y., Huang, C.,
Ouyang, Y., Yang, L., Fang, M., Xiao, H., Ma, J., Zhu, W., Hu, S., Hu, Q., Ding, D., Hu, M., … Shang, Y. (2020). Patients with COVID-19 in 19 ICUs in Wuhan, China: A cross-sectional study. Critical Care, 24(1), 1–10.
https://doi.org/10.1186/s13054-020-02939-x