• Tidak ada hasil yang ditemukan

Core Analysis (SCAL & RCAL)

N/A
N/A
bilal elfitra

Academic year: 2024

Membagikan "Core Analysis (SCAL & RCAL) "

Copied!
57
0
0

Teks penuh

(1)

Core Analysis

(SCAL & RCAL)

Group 5

Muhammad Anjab Muhyiddin 12218023 Anggie Fadhilatissalam 12218024 Umarul Muhammad 12218025

Fitri Milenia 12218026

Dian Asfriany Nurfalah 12218027

REPORT WEEKLY PROJECT 3

(2)

ii

TABLE OF CONTENT

TABLE OF CONTENT ... ii

LIST OF FIGURE... iv

LIST OF TABLE ... v

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1. Basic Theory ... 1

1.2. Objectives ... 5

CHAPTER 2 ... 6

ROCK TYPING ... 6

2.1. Data ... 6

2.2. Workflow ... 7

2.3. Result and Analysis ... 8

CHAPTER 3 ... 13

CAPILLARY PRESSURE ... 13

3.1. Data ... 13

3.2. Workflow ... 13

3.3. Result and Analysis ... 22

CHAPTER IV ... 25

RELATIVE PERMEABILITY ... 25

4.1. Data ... 25

4.2. Workflow ... 26

4.3. Result and Analysis ... 33

CHAPTER V ... 41

WATER SATURATION HEIGHT FUNCTION ... 41

5.1. Data ... 41

5.2. Workflow ... 41

5.3. Result and Analysis ... 41

CHAPTER VI ... 44

WATER SATURATION PROFILE... 44

6.1. Data ... 44

6.2. Workflow ... 44

6.3. Result and Analysis ... 45

(3)

iii

CHAPTER VII ... 50

CONCLUSION AND RECOMMENDATION ... 50

REFERENCES ... 51

ATTACHMENT ... 52

(4)

iv

LIST OF FIGURE

Figure 1 Drainage and Imbibition Capillary Pressure Curve (Ganat, 2020) ... 3

Figure 2. Plot RQI vvs Phi(z) for Determining Rock Type ... 11

Figure 3. Crossplot Permeability vs Porosity (using HFU Method) ... 11

Figure 4. Plot Pc vs Sw ... 15

Figure 5. J-Function vs Sw Plot for All sample ... 15

Figure 6. Rock Typing using J-Function ... 16

Figure 7. Swc vs FZI Plot ... 17

Figure 8. Pc vs Sw Reconstruction for RT HFU ... 23

Figure 9.. Pc vs Sw Reconstruction for RT Jfunc ... 23

Figure 10. krw* and kro* vs Sw* ... 27

Figure 11. Sor vs DRT Plot... 30

Figure 12. Swc vs DRT Plot ... 30

Figure 13. kro @Swc vs DRT ... 31

Figure 14. krw @Sor vs DRT ... 31

Figure 15. Relative Permeability Denormalization Plot RT HFU ... 39

Figure 16. Relative Permeability Denormalization Plot RT Jfunc ... 39

Figure 17. Plot Water Saturation Height Function ... 43

Figure 19. Comparison between Sw Log and Sw Calculated ... 48

(5)

v

LIST OF TABLE

Table 1. Input Data for Calculating RQI, FZI, Phi(Z) ... 6

Table 2. Calculation result of RQI, Phi(Z), FZI, DRT ... 9

Table 3. Summary Plot RQI vs phi_z ... 10

Table 4. SCAL Data ... 13

Table 5. Rock Typing using HFU Method on SCAL Data... 14

Table 6. Rock Typing using J-Function Method on SCAL Data ... 14

Table 7. Rock Typing Result from HFU and J-Function... 16

Table 8. Calculation result of FZI, K.ave, Phi,ave and Swc.ave ... 17

Table 9. Average parameters result for all Rock Type by HFU method ... 17

Table 10. Average parameters result for Rock Type by J-function method ... 18

Table 11. Capillary Pressure Reconstruction Calculation for RT HFU ... 19

Table 12. Capillary Pressure Reconstruction Calculation for RT Jfunc ... 21

Table 13. Jfunction equation for each Rock Type ... 22

Table 14. Example Water Oil-system data From SCAL ... 25

Table 15. Relative permeability absolute condition ... 26

Table 16. Normalization of Relative Permeability ... 27

Table 17. Summary Parameter of Oil-Water System ... 28

Table 18. DRT Calculation Result of Each Core Sample ... 29

Table 19. Average of Swc, Sor, krw@Sorw, kro@Swc for each DRT ... 29

Table 20. End Point Parameter Result of RT HFU ... 32

Table 21. End Point Parameter Result of RT Jfunc ... 32

Table 22. Denormalization Calculation Result for RT HFU ... 34

Table 23. Denormalization Calculation Result for RT Jfunc ... 37

Table 24. Parameter for Calculation Water Saturation Height Function ... 41

Table 25. Result of height function... 41

Table 26. Parameter Water saturation calculated ... 44

Table 27. Water Saturation Calculated ... 45

(6)

1 CHAPTER 1 INTRODUCTION

1.1. Basic Theory

1.1.1. Routine Core Analysis (RCA)

There isn't anyt any strict discrimination among ordinary middle analysis (RCA), which is regularly known as fundamental or traditional middle analysis (CCA), and special middle analysis (SCAL) (McPhee, Reed, & Zubizaretta, 2015). One lab’s RCA skills would possibly mirror every other lab’s SCAL skills. Generally, RCA is normal to be decrease price and quicker turnaround than SCAL. It entails fluid saturation measurements and petrophysical measurements on dry samples generally at ambient or nominal strain and temperature conditions, while maximum SCAL measurements are made on plugs which have been conditioned and examined to mirror reservoir- suitable saturations and regularly reservoir conditions. A standard RCA programme includes the subsequent measurements on plugs and middle samples:

• Fluid saturations

• Porosity

• Air (nitrogen) and Klinkenberg permeability

• Probe (or profile) permeability.

The take a look at plugs used for RCA are usually one hundred or 1.500 diameter, with large samples being favored for saturation and porosity measurements, in particular. Fluid saturations, porosity and permeability may be measured on complete diameter or complete middle samples.

However, the time and fees concerned imply that complete middle evaluation is commonly handiest done wherein plug measurements might be taken into consideration to be unrepresentative. Examples consist of sandstone conglomerates and vuggy or obviously fractured carbonates wherein the dimensions of the heterogeneity is bigger than the plug scale.

1.1.2. Special Core Analysis (SCAL)

Special Core Analysis a rigorous dimension offers greater consultant reservoir rock homes facts at reservoir conditions (Ganat, 2020). The received SCAL facts alongside with the properly take a look at and log facts to characterise the complete reservoir performance. Though, the price of the SCAL measurements is greater high-priced than RCA measurements, where the center samples are cautiously selected. Several exams are carried out to decide fluid distribution, electric

(7)

2

homes, and fluid float capabilities in both or 3 phase condition and are done on properly- maintained center samples. A extensive variety of precious facts that may be received from SCAL measurements as follows:

• Capillary Pressure

• Wettability

• Reservoir Condition Core floods

• Relative Permeability

• Relative Permeability Effects

• Surface and interfacial tension

• Pore Volume Compressibility

• Fluid Compatibility

• Steady-country and Unsteady country

• Archie Exponents—a, m, n

• CT Scan Evaluation

• Overburden pressure

• And more.

1.1.3. Capillary Pressure

The mixture of the effect of the floor and interfacial tensions of the reservoir fluids, the aperture length and shape, and the wetting functions of the gadget will generate capillary forces in hydrocarbon reservoir (immiscible fluids to be had in the aperture of the reservoir rock) (Ganat, 2020). Usually, one segment described as a wetting segment and the opposite segment described as a non-wetting segment. When each fluids are in contact, a discontinuity in stress gift among the 2 immiscible fluids, which depend on the curvature of the interface splitting the fluids. This stress distinction diagnosed as capillary stress (Pc). The capillary stress statistics are wished for 3 key uses:

• The calculation of preliminary reservoir fluid saturations.

• Cap-rock seal capacity.

As extra statistics for assessment of relative permeability statistics.

(8)

3

Figure 1 Drainage and Imbibition Capillary Pressure Curve (Ganat, 2020) 1.1.4. Relative Permeability

The permeability of porous medium as calculated through the usage of Equations 𝑞 = 1.127 𝑥 10−3 𝑘𝐴

𝜇𝐿∆𝑃 and Equations 𝑞 = 7.08 𝑥 10−3[ 𝑘ℎ(𝑃𝑒−𝑃𝑤)

𝜇𝐵𝑜ln (𝑟𝑒 𝑟𝑤

)] is called absolute permeability as simplest one fluid is flowing. The maximum common approach of measuring absolute permeability is flooding a middle pattern withinside the laboratory with a single-segment fluid (both brine or oil or gas) till a steady-country glide condition is attained (Satter, 2016).

Effective permeability of rock to a fluid phase (oil, gas, or water) in porous medium is a measure of the ability of that phase to flow in the presence of other fluid phases. For example, effective permeability to oil is a measure of its flow capability in the presence of water, and in some cases, in the presence of both water and gas phases. Absolute Permeability was stated that permeability at 100% saturation of a fluid (other than gases at low pressure) is a characteristic of the rock and not a function of the flowing fluid (Lyons, 2010).

Relative permeability of rock to a reservoir fluid (oil, gas, or water) is defined as the ratio of the effective permeability of the respective fluid phase to the absolute permeability of the rock (Satter, 2016).

𝑘𝑟𝑜 = 𝑘𝑜

𝑘 … ( 1 )

𝑘𝑟𝑔 = 𝑘𝑔

𝑘 … ( 2 )

𝑘𝑟𝑤 = 𝑘𝑤

𝑘 … ( 3 )

(9)

4

Klinkenberg found that by extrapolating all data to infinite mean pressure, the points converged at an equivalent liquid permeability (𝑘𝑙), which was the same as the permeability of the porous medium to a nonreactive single-phase liquid (Lyons, 2010).

1.1.5. Rock Typing

Rock typing is a process of classifying reservoir rocks into distinct units, each of which was de posited under similar geological conditions and undergone through similar diagenetic alterations. When properly classified, a given rock type is imprinted by a unique permeability- porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Guo, Diaz, Smalley, Waninger, & Paz, 2005). As a result, when properly applied, rock typing can lead to accurate estimation of formation permeability inuncored intervals and inuncored wells; reliable generation of initial water saturation profile; and subsequently, consistent and realistic simulation of a reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques presented in the literature, two techniques (RQI/FZI and Winland’s R35) appear to be more widely used than the others for clastic reservoirs. I n the RQI/FZI approach, rock types are classified using the following three equations:

𝑅𝑄𝐼 = 0.0314 × √𝑘

𝜙𝑧 … ( 4 )

𝜙𝑧 = 𝜙𝑒

1 − 𝜙𝑒 … ( 5 )

𝐹𝑍𝐼 =𝑅𝑄𝐼

𝜙𝑧 … ( 6 )

In the Winland’s R35 approach, rock types are calculated using the Winland’s equation as follows :

log(𝑅35) = 0.732 + 0.588 log(𝑘) − 0.864 log(𝜙) … ( 7 )

To facilitate permeability calculation and rock type transfer tosimulation model as saturation number (SATNUM) theresultant 3D FZI model is converted to a 3D discrete rock type(DRT) model by using equation below.

(10)

5

𝐷𝑅𝑇 = 𝑅𝑜𝑢𝑛𝑑(2 × 𝑙𝑛(𝐹𝑍𝐼) + 10.6) … ( 8 )

1.1.6. Leverett J – Function

The second objective of this case study is to show that rock type correlates very well with capillary pressure curves andrelative permeability curves (Guo, Diaz, Smalley, Waninger, & Paz, 2005). The capillary pressure curves canbe normalized using the Leverett J function as follows :

𝐽(𝑆𝑤) = 0.2166 𝑥 𝑃𝑐

𝜎𝑐𝑜𝑠𝜃 𝑥 √(𝑘/Ø) … ( 9 )

The corresponding water saturation values can be normalizedas :

𝑆𝑤 = 𝑆𝑤(∗) 𝑥 (𝑆𝑤𝑑 − 𝑆𝑤𝑖𝑟𝑟) + 𝑆𝑤𝑖𝑟𝑟 … ( 10 )

A single generalized J function in the form of equation can be obtained from the normalized capillary pressure data,

𝐽 = 𝑎 𝑥 (𝑆𝑤(∗))𝑏 … ( 11 )

So, the capillary pressure as follows :

𝑃𝑐 = 𝑎 𝑥 𝑆𝑤𝑏 𝑥 4.167 𝑥 𝜎𝑐𝑜𝑠𝜃 / (√𝐾

Ø) … ( 12 )

1.2.Objectives

The objectives of this study of PVT analysis are :

a. Rock typing to help establish the relationship of porosity to permeability b. Normalization and denormalization of relative permeability data

c. Evaluation of capillary pressure data

d. Developing of saturation height function if data allows

(11)

6 CHAPTER 2 ROCK TYPING 2.1. Data

Table 1. Input Data for Calculating RQI, FZI, Phi(Z)

Core Plug Depth Formation H. Permeability Porosity, He (%) Oil SaT. (%) Water Sat. (%) Grain Density (gr/cc)

1 5266.1 FTTM B sd' Fract 21.39988415 22.39856446 63.15979428 2.732232786

2 5165.15 FTTM A sd' 6250 22.55489348 23.39567533 47.04690214 2.640696473

3 5368.15 FTTM C sd' 5048 22.42783674 24.33817996 58.98336537 2.637011631

4 5369.95 FTTM C sd' 7332 25.33820782 22.96120918 60.38263523 2.637481395

5 5371.15 FTTM C sd' 5093 24.78079758 24.29949643 60.83225579 2.642088142

7 5372.1 FTTM C sd' 8937 26.18670265 23.95965534 56.92713327 2.650694105

8 5377.15 FTTM C sd' 4522 24.04682473 24.45003021 58.83810232 2.632495392

9 5369.1 FTTM C sd' 2609 21.79284264 24.50623291 69.41320136 2.643634931

10 5378.1 FTTM C sd' 2511 21.45786245 23.06308822 72.98171695 2.642808691

11 5164 FTTM A sd' 1741 22.38110483 25.23761438 45.69294342 2.634388891

12 5347.7 FTTM B sd' 992 21.30136189 27.161888 65.57377049 2.654581423

13 5348.2 FTTM C sd' 938 19.84271523 23.63633675 60.49228202 2.654118903

14 5349.1 FTTM C sd' 944 20.74374215 22.8145945 60.9133601 2.654013324

15 5352.1 FTTM C sd' 1392 22.75864138 21.58845301 65.58998022 2.653731111

16 5357.2 FTTM C sd' 1959 24.12642075 23.07916861 63.33917104 2.646600212

17 5361.1 FTTM C sd' 1385 23.48413826 23.88287996 69.53834267 2.656858289

18 5362.1 FTTM C sd' 1443 23.03434394 25.42393041 66.44820681 2.651374814

19 5363.2 FTTM C sd' 1629 23.85344354 23.80043431 69.65761511 2.650276458

20 5366.2 FTTM C sd' 896 20.4798417 23.13538836 71.04290992 2.653974934

21 5367.1 FTTM C sd' 2079 24.31476186 24.93124119 56.42335333 2.645881433

22 5376.1 FTTM C sd' 2464 22.28569816 23.90793472 50.63611621 2.646567684

23 5379.1 FTTM C sd' 2331 23.69141423 24.08303123 68.30513884 2.636911368

24 5383.2 FTTM C sd' 1100 20.76980078 23.03091687 74.09948542 2.651720355

25 5387.1 FTTM C sd' 1146 20.47466511 22.79797938 74.66932158 2.641198872

26 5345.1 FTTM B sd' 651 19.31087758 25.64892453 56.60804589 2.653703035

27 5347 FTTM B sd' 1107 22.42744802 22.25830634 67.69403544 2.645026877

28 5350.1 FTTM C sd' 799 21.26473235 24.19587549 61.04328524 2.650917062

29 5351.2 FTTM C sd' 1358 23.76552906 23.78910826 63.08958721 2.648060389

30 5353.1 FTTM C sd' 1344 23.80264332 22.32172804 63.97667083 2.646718721

31 5359.1 FTTM C sd' 988 21.93800641 21.52829436 71.57683774 2.655643393

32 5373.1 FTTM C sd' 474 18.41915984 22.79763635 64.39016284 2.657637547

33 5384.1 FTTM C sd' 1065 23.13302918 21.35881301 72.98559751 2.648209614

34 5385.1 FTTM C sd' 1474 23.99724071 22.73803811 68.87052342 2.652793798

35 5386.2 FTTM C sd' 1298 23.91339785 22.51485393 73.1238768 2.650241508

36 5272.1 FTTM B sd' 624 23.60110552 30.94546877 38.39508543 2.659886135

37 5346.25 FTTM B sd' 531 20.14440028 25.26221679 69.73014434 2.656622691

38 5354.2 FTTM C sd' 757 21.23173468 24.59809804 69.25108874 2.655729818

39 5355.1 FTTM C sd' 1066 23.29375951 20.24778715 76.77731312 2.646757679

40 5356.1 FTTM C sd' 580 20.34081074 23.18988411 74.28850446 2.655647187

41 5358.1 FTTM C sd' 1067 23.26659863 22.66284018 69.66393601 2.653934167

42 5360.2 FTTM C sd' 804 21.52209609 20.35174775 72.31473496 2.655216331

43 5364.1 FTTM C sd' 945 22.80683915 26.31855058 69.74522293 2.65516852

44 5365.1 FTTM C sd' 392 21.12768758 25.04046248 68.53582555 2.661288827

45 5375.1 FTTM C sd' 292 18.21317555 23.1871353 72.61022532 2.653336445

46 5380.15 FTTM C sd' 341 19.16008281 23.360568 64.68210217 2.653130553

47 5382.1 FTTM C sd' 504 20.86700325 22.37560557 72.65250171 2.646080717

48 5155.1 FTTM A sd' 230 21.29804565 16.89424154 61.80469716 2.687963637

49 5269.1 FTTM B sd' 183 19.68630664 20.84709316 62.4303233 2.674469868

50 5271.1 FTTM B sd' 61.7 15.29645887 11.02198596 70.12363905 2.68067983

51 5387.85 FTTM C sd' 35 11.80476028 23.78483361 74.72469848 2.646569574

52 5146.1 FTTM A sd' 181 26.12953938 16.14838204 63.17309428 2.687714146

53 5158.1 FTTM A sd' 15.7 14.801884 21.07021627 62.30529595 2.692600611

54 5169.1 FTTM A sd' 55.2 21.37538693 23.59487805 58.70841487 2.66281833

55 5170.1 FTTM A sd' 53.5 21.75670607 21.270677 51.71753288 2.65638704

56 5171.2 FTTM A sd' 55.8 21.66022194 22.88123614 65.32147743 2.703822078

57 5374.15 FTTM C sd' 12 12.63118762 21.42448604 77.54131764 2.662935323

58 5165.95 FTTM A sd' 13.9 15.11478704 17.47293171 75.68783881 2.694871421

59 5168.2 FTTM A sd' 37.1 20.45529718 24.30381751 61.16422947 2.681865023

(12)

7 2.2. Workflow

- Calculate Rock Quality Index (RQI) 𝑅𝑄𝐼 = 0.0314 ∗ √𝑘

∅ … ( 13 )

- Calculate phi_z (∅𝑧)

𝑧 = ∅

1 − ∅ … ( 14 )

- Calculate Flow Zone Index (FZI)

60 5145.15 FTTM A sd' 43.2 23.71370439 17.43867669 69.075838 2.700608006

61 5329.1 FTTM B sd' 2.36 9.929078014 0 92.24219489 2.705376232

62 5334.2 FTTM B sd' 1.8 8.847297787 0 86.91374221 2.700033425

63 5381.1 FTTM C sd' 7.57 13.78901558 26.19232411 66.74208145 2.664712588

64 5156.1 FTTM A sd' 3.59 14.18580661 19.9443109 69.51128222 2.695829724

65 5255.15 FTTM B sd' 0.98 9.469310728 0 97.23561556 2.722148441

66 5256.1 FTTM B sd' 0.58 9.580066266 0 98.5915493 2.712556582

67 5267.15 FTTM B sd' 0.69 8.978123137 16.68289307 76.22326039 2.712068296

68 5330.1 FTTM B sd' 0.648 10.16591038 0 99.03752267 2.706760746

69 5338.1 FTTM B sd' 1.03 9.819967267 21.73130115 69.68390805 2.652512673

70 5150.2 FTTM A sd' 5.19 20.40508743 14.09973031 78.76092855 2.708723795

71 5332.1 FTTM B sd' 0.379 9.294295374 0 98.29721362 2.691807439

72 5143.1 FTTM A sd' 0.58 12.34194844 0 97.79783887 2.814062319

73 5144.1 FTTM A sd' 1.83 17.9817062 13.6442054 77.54800591 2.74558261

74 5149.2 FTTM A sd' 3.85 21.26150337 17.59909893 76.42563198 2.703601548

75 5157.2 FTTM A sd' 2.54 18.45244416 23.0145132 53.71187416 2.660365483

76 5264.2 FTTM B sd' 2.56 18.58918478 20.26635515 77.14998865 2.700696016

77 5328.15 FTTM B sd' 0.411 11.51415386 0 71.48327802 2.690867716

78 5341.1 FTTM B sd' 0.6 12.19806763 11.86952813 85.19456597 2.661303221

79 5343.15 FTTM B sd' 0.47 12.86609355 18.60326042 72.4801812 2.663979933

80 5344.1 FTTM B sd' 1.77 19.40633359 27.27472626 57.0623981 2.650535332

81 5142.5 FTTM A sd' 0.493 13.50949439 0 92.53659127 2.82385172

82 5333.1 FTTM B sd' 0.415 12.99558182 12.3454672 78.80220646 2.682467085

83 5336.1 FTTM B sd' 0.49 14.04178583 16.98959868 81.26818501 2.681564887

84 5339.1 FTTM B sd' 0.59 14.2838831 20.0777037 77.27589989 2.672083479

85 5340.2 FTTM B sd' 0.5 14.15892054 21.50436276 75.18000847 2.671807322

86 5153.25 FTTM A sd' 0.233 11.74415602 0 99.58613554 2.795439291

87 5154.2 FTTM A sd' 0.31 13.83614037 15.42997623 83.89912706 2.721735067

88 5167 FTTM A sd' 0.21 12.42204348 4.378051504 91.49560117 2.778047685

89 5257.1 FTTM B sd' 0.06 8.866987593 0 97.61945539 2.677614477

90 5258.15 FTTM B sd' 0.105 10.90729547 0 77.50342936 2.685369294

91 5265.1 FTTM B sd' 0.557 15.32719327 16.78696942 82.28877619 2.711128432

92 5268.1 FTTM B sd' 0.0096 4.913089748 0.332690547 99.27797834 2.700596904

93 5335.1 FTTM B sd' 0.161 12.79447948 16.99647726 74.0495137 2.685568348

94 5337.15 FTTM B sd' 0.429 14.78747013 18.02989938 75.998076 2.690906663

95 5342.1 FTTM B sd' 0.21 12.35422076 20.87181561 76.1104169 2.672596554

96 5263.55 FTTM B sd' 0.337 16.36999848 15.64015901 81.95336262 2.742008037

97 5331.15 FTTM B sd' 0.059 9.509447095 0 97.59072888 2.67962503

98 5159.1 FTTM A sd' 0.03 8.343506982 19.02584488 75.1653638 2.706437251

99 5162.2 FTTM A sd' 0.01 6.434670764 1.055359625 97.16823987 2.727833359

100 5163.1 FTTM A sd' 0.07 10.97664415 18.82017619 78.65323582 2.699736282

101 5262.1 FTTM B sd' 0.28 17.09981222 5.880895981 93.88884232 2.708258404

102 5270.2 FTTM B sd' 0.089 12.67153683 14.57304696 80.81896552 2.671988117

103 5273.25 FTTM B sd' 0.135 16.37118492 3.641760081 87.38862234 2.710569569

104 5148.2 FTTM A sd' 0.02 9.655131068 1.823936419 87.70568147 2.728728081

105 5274.3 FTTM B sd' 0.06 13.46590909 15.55363403 77.85814748 2.665462902

106 5152.1 FTTM A sd' 0.019 11.39520156 0 98.22928784 2.791306516

107 5259.1 FTTM B sd' 0.03 13.39549382 0 98.99979588 2.670697439

108 5260.1 FTTM B sd' 0.05 13.71095005 0 99.81666327 2.671300717

109 5261.15 FTTM B sd' 0.06 14.88609745 0 98.92334591 2.683635369

110 5160.35 FTTM A sd' 0.01 10.69210828 6.803824184 91.62672681 2.729064704

111 5151.15 FTTM A sd' 0.014 12.92720307 0 97.80675756 2.753445393

(13)

8 𝐹𝑍𝐼 = 𝑅𝑄𝐼

𝑝ℎ𝑖(𝑧)=

0.0314 × √𝑘

∅ 1 − ∅

… ( 15 )

- Calculate DRT

𝐷𝑅𝑇 = 2 × 𝑙𝑛(𝐹𝑍𝐼) + 10.6 … ( 16 )

2.3. Result and Analysis

The following table is the calculation result of RQI, phi(Z), FZI, DRT :

(14)

9

Table 2. Calculation result of RQI, Phi(Z), FZI, DRT

Core Plug Depth Formation H. Permeability Porosity, He (%) RQI phi_z FZI DRT

5266.1 FTTM B sd' Fract 21.39988415 #VALUE! 0.272262756 #VALUE! #VALUE!

5165.15 FTTM A sd' 6250 22.55489348 5.226961083 0.291237168 17.94743825 16

5368.15 FTTM C sd' 5048 22.42783674 4.710810433 0.289122229 16.293491 16

5369.95 FTTM C sd' 7332 25.33820782 5.341373277 0.339373153 15.73893877 16

5371.15 FTTM C sd' 5093 24.78079758 4.501516497 0.329447758 13.66382497 16

5372.1 FTTM C sd' 8937 26.18670265 5.800762955 0.354769447 16.3507963 16

5377.15 FTTM C sd' 4522 24.04682473 4.305921004 0.316600651 13.60048058 16

5369.1 FTTM C sd' 2609 21.79284264 3.435656579 0.278655348 12.32941196 16

5378.1 FTTM C sd' 2511 21.45786245 3.396720216 0.273201916 12.43300292 16

5164 FTTM A sd' 1741 22.38110483 2.769416485 0.288346089 9.60448778 15

5347.7 FTTM B sd' 992 21.30136189 2.142800795 0.270670019 7.916653647 15

5348.2 FTTM C sd' 938 19.84271523 2.158890013 0.247547248 8.721123071 15

5349.1 FTTM C sd' 944 20.74374215 2.118225015 0.261730022 8.093167897 15

5352.1 FTTM C sd' 1392 22.75864138 2.455704463 0.294643204 8.334502305 15

5357.2 FTTM C sd' 1959 24.12642075 2.829439534 0.317981846 8.898116587 15

5361.1 FTTM C sd' 1385 23.48413826 2.411388695 0.306918562 7.856770466 15

5362.1 FTTM C sd' 1443 23.03434394 2.485277511 0.299280811 8.304165927 15

5363.2 FTTM C sd' 1629 23.85344354 2.594864284 0.313257022 8.283499166 15

5366.2 FTTM C sd' 896 20.4798417 2.076922806 0.257542768 8.064380219 15

5367.1 FTTM C sd' 2079 24.31476186 2.903500348 0.321261615 9.037806602 15

5376.1 FTTM C sd' 2464 22.28569816 3.301694435 0.286764439 11.51361182 15

5379.1 FTTM C sd' 2331 23.69141423 3.114621605 0.310468527 10.03200432 15

5383.2 FTTM C sd' 1100 20.76980078 2.285124282 0.262145003 8.717024011 15

5387.1 FTTM C sd' 1146 20.47466511 2.349165171 0.25746091 9.124356657 15

5345.1 FTTM B sd' 651 19.31087758 1.823136295 0.239324422 7.617844763 15

5347 FTTM B sd' 1107 22.42744802 2.206040743 0.289115769 7.630302391 15

5350.1 FTTM C sd' 799 21.26473235 1.924744456 0.270078873 7.126601334 15

5351.2 FTTM C sd' 1358 23.76552906 2.37359047 0.311742559 7.613944266 15

5353.1 FTTM C sd' 1344 23.80264332 2.359482106 0.312381484 7.553207312 15

5359.1 FTTM C sd' 988 21.93800641 2.107218356 0.28103313 7.498113675 15

5373.1 FTTM C sd' 474 18.41915984 1.592883122 0.225778011 7.055085273 15

5384.1 FTTM C sd' 1065 23.13302918 2.130532675 0.300948885 7.079383843 15

5385.1 FTTM C sd' 1474 23.99724071 2.460921361 0.315741704 7.794096668 15

5386.2 FTTM C sd' 1298 23.91339785 2.31337666 0.314291835 7.360600561 15

5272.1 FTTM B sd' 624 23.60110552 1.614565877 0.308919464 5.226494493 14

5346.25 FTTM B sd' 531 20.14440028 1.612128803 0.252260334 6.39073443 14

5354.2 FTTM C sd' 757 21.23173468 1.874929096 0.26954681 6.955857104 14

5355.1 FTTM C sd' 1066 23.29375951 2.124166017 0.303674895 6.994868702 14

5356.1 FTTM C sd' 580 20.34081074 1.676716026 0.255347951 6.566397033 14

5358.1 FTTM C sd' 1067 23.26659863 2.12640218 0.303213441 7.012888928 14

5360.2 FTTM C sd' 804 21.52209609 1.919178587 0.274244023 6.998068964 14

5364.1 FTTM C sd' 945 22.80683915 2.02121728 0.295451552 6.841112424 14

5365.1 FTTM C sd' 392 21.12768758 1.352529351 0.267872045 5.049162011 14

5375.1 FTTM C sd' 292 18.21317555 1.257269086 0.222690827 5.645805463 14

5380.15 FTTM C sd' 341 19.16008281 1.32467136 0.237012648 5.58903237 14

5382.1 FTTM C sd' 504 20.86700325 1.543173918 0.26369535 5.852108959 14

5155.1 FTTM A sd' 230 21.29804565 1.031866919 0.270616477 3.813023243 13

5269.1 FTTM B sd' 183 19.68630664 0.957355133 0.245117686 3.905695872 13

5271.1 FTTM B sd' 61.7 15.29645887 0.630633124 0.180588186 3.492106196 13

5387.85 FTTM C sd' 35 11.80476028 0.5406735 0.133848044 4.039457625 13

5146.1 FTTM A sd' 181 26.12953938 0.826424262 0.353721084 2.336372639 12

5158.1 FTTM A sd' 15.7 14.801884 0.323385822 0.173734875 1.861375405 12

5169.1 FTTM A sd' 55.2 21.37538693 0.504594131 0.271866355 1.856037432 12

5170.1 FTTM A sd' 53.5 21.75670607 0.492390842 0.278064802 1.770777306 12

5171.2 FTTM A sd' 55.8 21.66022194 0.503982314 0.276490724 1.822781999 12

5374.15 FTTM C sd' 12 12.63118762 0.306054083 0.144573187 2.11694914 12

5165.95 FTTM A sd' 13.9 15.11478704 0.301117525 0.178061485 1.691087353 12

5168.2 FTTM A sd' 37.1 20.45529718 0.422876651 0.257154738 1.644444333 12

5145.15 FTTM A sd' 43.2 23.71370439 0.423810606 0.310851434 1.363386361 11

5329.1 FTTM B sd' 2.36 9.929078014 0.153084489 0.11023622 1.388695005 11

5334.2 FTTM B sd' 1.8 8.847297787 0.141631736 0.097060181 1.459215656 11

5381.1 FTTM C sd' 7.57 13.78901558 0.232654232 0.159944996 1.454588998 11

5156.1 FTTM A sd' 3.59 14.18580661 0.157960993 0.165308395 0.955553362 11

5255.15 FTTM B sd' 0.98 9.469310728 0.10101445 0.104597798 0.965741649 11

5256.1 FTTM B sd' 0.58 9.580066266 0.077260833 0.105950822 0.729214103 10

5267.15 FTTM B sd' 0.69 8.978123137 0.087048525 0.098636981 0.882514081 10

5330.1 FTTM B sd' 0.648 10.16591038 0.079276417 0.11316317 0.700549628 10

5338.1 FTTM B sd' 1.03 9.819967267 0.101693511 0.108892922 0.933885406 10

5150.2 FTTM A sd' 5.19 20.40508743 0.158359491 0.256361704 0.617718982 10

5332.1 FTTM B sd' 0.379 9.294295374 0.063407557 0.102466492 0.618812601 10

(15)

10

Rock typing by HFU method determine by DRT which has the smallest value as RT-1 and increase by 1 for the next DRT. After determine RT for all sample, we have to conduct the plot between RQI vs ∅𝑧 for each DRT.

Table 3. Summary Plot RQI vs phi_z

DRT RT HFU lower. Phi_z upper. Phi_z lower.RQI upper. RQI

16 12 0.08 1 1.190378538 14.87973172

15 11 0.08 1 0.72200108 9.025013499

14 10 0.08 1 0.437915791 5.473947392

13 9 0.08 1 0.265609354 3.320116923

12 8 0.08 1 0.161100217 2.013752707

11 7 0.08 1 0.097712221 1.221402758

10 6 0.08 1 0.059265458 0.740818221

9 5 0.08 1 0.035946317 0.449328964

8 4 0.08 1 0.021802543 0.272531793

7 3 0.08 1 0.013223911 0.165298888

6 2 0.08 1 0.008020707 0.100258844

5 1 0.08 1 0.004864805 0.060810063

5143.1 FTTM A sd' 0.58 12.34194844 0.068069378 0.140796518 0.483459241 9

5144.1 FTTM A sd' 1.83 17.9817062 0.100170478 0.219240189 0.456898337 9

5149.2 FTTM A sd' 3.85 21.26150337 0.133617403 0.270026788 0.494830177 9

5157.2 FTTM A sd' 2.54 18.45244416 0.116498292 0.226278323 0.514845126 9

5264.2 FTTM B sd' 2.56 18.58918478 0.116525093 0.228338025 0.510318388 9

5328.15 FTTM B sd' 0.411 11.51415386 0.059324563 0.130124244 0.455907068 9

5341.1 FTTM B sd' 0.6 12.19806763 0.069640159 0.138927098 0.501271244 9

5343.15 FTTM B sd' 0.47 12.86609355 0.060014366 0.147658863 0.40643931 9

5344.1 FTTM B sd' 1.77 19.40633359 0.094829735 0.240792291 0.393823798 9

5142.5 FTTM A sd' 0.493 13.50949439 0.059983743 0.15619627 0.384028009 9

5333.1 FTTM B sd' 0.415 12.99558182 0.056112011 0.149366918 0.375665586 9

5336.1 FTTM B sd' 0.49 14.04178583 0.05865655 0.163355951 0.359072012 9

5339.1 FTTM B sd' 0.59 14.2838831 0.063816431 0.166641743 0.382955853 9

5340.2 FTTM B sd' 0.5 14.15892054 0.059006462 0.164943412 0.357737612 9

5153.25 FTTM A sd' 0.233 11.74415602 0.044227939 0.133069443 0.332367356 8

5154.2 FTTM A sd' 0.31 13.83614037 0.047000558 0.160579394 0.292693582 8

5167 FTTM A sd' 0.21 12.42204348 0.040826559 0.141839842 0.287835619 8

5257.1 FTTM B sd' 0.06 8.866987593 0.025829573 0.097297207 0.265470855 8

5258.15 FTTM B sd' 0.105 10.90729547 0.03080816 0.122426359 0.251646459 8

5265.1 FTTM B sd' 0.557 15.32719327 0.059858514 0.181016714 0.330679484 8

5268.1 FTTM B sd' 0.0096 4.913089748 0.01387995 0.051669465 0.268629655 8

5335.1 FTTM B sd' 0.161 12.79447948 0.0352234 0.146716394 0.240078148 8

5337.15 FTTM B sd' 0.429 14.78747013 0.053482457 0.173536335 0.308191696 8

5342.1 FTTM B sd' 0.21 12.35422076 0.040938471 0.140956254 0.290433873 8

5263.55 FTTM B sd' 0.337 16.36999848 0.045052644 0.195743133 0.230162065 8

5331.15 FTTM B sd' 0.059 9.509447095 0.02473307 0.105087733 0.235356391 8

5159.1 FTTM A sd' 0.03 8.343506982 0.01882851 0.091030179 0.20683811 7

5162.2 FTTM A sd' 0.01 6.434670764 0.012378456 0.068771957 0.179992787 7

5163.1 FTTM A sd' 0.07 10.97664415 0.025075169 0.123300723 0.203365956 7

5262.1 FTTM B sd' 0.28 17.09981222 0.040180283 0.206269885 0.194794713 7

5270.2 FTTM B sd' 0.089 12.67153683 0.026315402 0.145102025 0.181357923 7

5273.25 FTTM B sd' 0.135 16.37118492 0.02851389 0.195760097 0.145657317 7

5148.2 FTTM A sd' 0.02 9.655131068 0.014291097 0.106869722 0.133724468 7

5274.3 FTTM B sd' 0.06 13.46590909 0.020959814 0.15561392 0.134691128 7

5152.1 FTTM A sd' 0.019 11.39520156 0.012821695 0.128607048 0.099696675 6

5259.1 FTTM B sd' 0.03 13.39549382 0.01485973 0.154674328 0.09607108 6

5260.1 FTTM B sd' 0.05 13.71095005 0.018961857 0.158895596 0.119335324 6

5261.15 FTTM B sd' 0.06 14.88609745 0.019934936 0.174896192 0.113981532 6

5160.35 FTTM A sd' 0.01 10.69210828 0.009602802 0.119721875 0.080209251 6

5151.15 FTTM A sd' 0.014 12.92720307 0.010333356 0.148464314 0.069601613 5

(16)

11

Figure 2. Plot RQI vvs Phi(z) for Determining Rock Type

Figure 3. Crossplot Permeability vs Porosity (using HFU Method)

(17)

12

First method that we used is Hydraulic Flow Zone Unit (HFU). HFU method uses the RQI, phi(z), FZI, and DRT values to determine the number of rock types in each formation. From the DRT that we got, we grouped it into several Rock Types based on the similarity of FZI, permeability, and porosity. By using the HFU method, 12 rock typings were obtained. The work of the HFU method is very objective through several calculation formulas, so that the rock typing results obtained are quite a lot. The HFU method considers the value of permeability and porosity and uses a grouping based on Discrete Rock Type (DRT), thus each permeability tendency in a rock typing is subdivided due to the tendency of the porosity value. The HFU method is considered more accurate, objective and also represents the required yield parameters because rock types based on permeability and porosity values are sufficient to indicate the quality criteria of a reservoir. So the results given from the HFU method provide a significant amount of rock typing and indicate that the reservoir is heterogeneous. Based on (Amaefule, Altunbay, Kersey, & Keelan, 1993), if a rock has a low FZI value, then the tendency of the rock will have fine grain properties and be poorly sorted. In addition, the rocks also contain pore lining, pore filling and pore bridging clays. Also, it provides high tortuosity and large surface area. Meanwhile, for the opposite value, the rock also has the opposite nature. Coarse grain, well sorted, and has a small surface area and low tortuosity.

(18)

13 CHAPTER 3

CAPILLARY PRESSURE

3.1. Data

Data used is obtain from Special Core Analysis (SCAL) data from given pdf file: “FTTM-73 SCAL_Redacted”. The data used are: capillary pressure, permeability, porosity and water

Table 4. SCAL Data

3.2.Workflow

a. Convert capillary pressure data in lab condition to reservoir condition, and determine rock type for each sample using HFU method as was done in Chapter 2.

𝑃𝑐 𝑟𝑒𝑠 = 𝑃𝑐 𝑙𝑎𝑏(𝛾𝐶𝑜𝑠𝜃𝑟𝑒𝑠

𝛾𝐶𝑜𝑠𝜃𝑙𝑎𝑏) … ( 17 )

BRINE SATURATION AT VARIOUS PRESSURE

Pressure, PSI [LAB] 2 4 10 40 100 200

Sample Number

Depth Feet

Perm (mD)

Porosity

(%) Brine Saturation, Fraction

CCP-15 5374.7 1658.8 23.3 0.56314 0.41656 0.27412 0.20362 0.16879 0.14864 CCP-14 5363.8 1210 23.3 0.5158 0.3864 0.3174 0.2346 0.1854 0.1512 CCP-13 5362.5 1156.6 23.4 0.46096 0.3594 0.29028 0.23642 0.19935 0.16991 CCP-10 5351.35 647 20.1 0.5337 0.3953 0.3081 0.2441 0.2062 0.1755 CCP-11 5355.25 520.5 20.3 0.55444 0.42419 0.33775 0.26197 0.2083 0.18028

CCP-9 5344.7 472.9 20.2 0.5182 0.3861 0.3274 0.2596 0.2227 0.195 CCP-12 5357.6 461 20.1 0.51839 0.38533 0.31494 0.25148 0.21271 0.19975

14 5155.1 296 21.35 0.705 0.4789 0.3662 0.2771 0.2271 0.2016

CCP-4 5155.65 158.7 18.2 0.6445 0.49714 0.3712 0.2857 0.23302 0.21023 5 5146.1 244 27.39 0.69344 0.48212 0.38476 0.27972 0.23052 0.20661 27 5169.1 61 21.21 0.72629 0.49569 0.39853 0.30138 0.25044 0.22662 CCP-8 5270.8 56.8 18.2 0.71188 0.51397 0.40198 0.31055 0.25918 0.23918 17 5158.1 15.7 14.8 0.78638 0.5719 0.47998 0.36478 0.31189 0.28715 4 5145.15 43.2 23.71 0.77521 0.57596 0.44579 0.33203 0.27511 0.2441 CCP-6 5169.3 31.7 21.1 0.72038 0.59224 0.4619 0.34278 0.27944 0.24914

(19)

14

b. Normalize core sample using Leverett J-Function Method :

- Calculate J-Function value for each sample with the following formula, 𝐽(𝑆𝑤) = 0.261645𝑃𝑐

𝜎 √𝑘

𝜙 … ( 18 )

2 4 10 40 100 200

1.25 2.5 6.25 25 62.5 125

Sample Number

Depth

Feet Perm (mD) Porosity

Per Cent RQI phi_z DRT

CCP-15 5374.7 1658.8 23.3 0.56314 0.41656 0.27412 0.20362 0.16879 0.14864 2.649407131 0.303780965 15

CCP-14 5363.8 1210 23.3 0.5158 0.3864 0.3174 0.2346 0.1854 0.1512 2.262790635 0.303780965 15

CCP-13 5362.5 1156.6 23.4 0.46096 0.3594 0.29028 0.23642 0.19935 0.16991 2.207564052 0.305483029 15

CCP-10 5351.35 647 20.1 0.5337 0.3953 0.3081 0.2441 0.2062 0.1755 1.781491521 0.251564456 15

CCP-11 5355.25 520.5 20.3 0.55444 0.42419 0.33775 0.26197 0.2083 0.18028 1.589981225 0.254705144 14

CCP-9 5344.7 472.9 20.2 0.5182 0.3861 0.3274 0.2596 0.2227 0.195 1.519282797 0.253132832 14

CCP-12 5357.6 461 20.1 0.51839 0.38533 0.31494 0.25148 0.21271 0.19975 1.503772305 0.251564456 14

14 5155.1 296 21.35 0.705 0.4789 0.3662 0.2771 0.2271 0.2016 1.169167041 0.271455817 14

CCP-4 5155.65 158.7 18.2 0.6445 0.49714 0.3712 0.2857 0.23302 0.21023 0.927219203 0.222493888 13

5 5146.1 244 27.39 0.69344 0.48212 0.38476 0.27972 0.23052 0.20661 0.93719194 0.377220768 12

27 5169.1 61 21.21 0.72629 0.49569 0.39853 0.30138 0.25044 0.22662 0.532505664 0.269196599 12

CCP-8 5270.8 56.8 18.2 0.71188 0.51397 0.40198 0.31055 0.25918 0.23918 0.554712716 0.222493888 12

17 5158.1 15.7 14.8 0.78638 0.5719 0.47998 0.36478 0.31189 0.28715 0.323406405 0.17370892 12

4 5145.15 43.2 23.71 0.77521 0.57596 0.44579 0.33203 0.27511 0.2441 0.423843712 0.310787783 11

CCP-6 5169.3 31.7 21.1 0.72038 0.59224 0.4619 0.34278 0.27944 0.24914 0.384873537 0.267427123 11

BRINE SATURATION AT VARIOUS PRESSURE

Brine Saturation, Fraction Pressure, PSI [Reservoir]

Pressure, PSI [LAB]

Table 5. Rock Typing using HFU Method on SCAL Data

Sample DRT Depth Feet Perm (mD) Porosity

CCP-15 15 5374.7 1658.8 23.3 0.76 1.52 3.80 15.22 38.05 76.10

CCP-14 15 5363.8 1210 23.3 0.65 1.30 3.25 13.00 32.50 64.99

CCP-13 15 5362.5 1156.6 23.4 0.63 1.27 3.17 12.68 31.70 63.41

CCP-10 15 5351.35 647 20.1 0.51 1.02 2.56 10.23 25.58 51.17

CCP-11 14 5355.25 520.5 20.3 0.46 0.91 2.28 9.13 22.83 45.67

CCP-9 14 5344.7 472.9 20.2 0.44 0.87 2.18 8.73 21.82 43.64

CCP-12 14 5357.6 461 20.1 0.43 0.86 2.16 8.64 21.60 43.19

14 14 5155.1 296 21.35 0.34 0.67 1.68 6.72 16.79 33.58

CCP-4 13 5155.65 158.7 18.2 0.27 0.53 1.33 5.33 13.32 26.63

5 12 5146.1 244 27.39 0.27 0.54 1.35 5.38 13.46 26.92

27 12 5169.1 61 21.21 0.15 0.31 0.76 3.06 7.65 15.29

CCP-8 12 5270.8 56.8 18.2 0.16 0.32 0.80 3.19 7.97 15.93

17 12 5158.1 15.7 14.8 0.09 0.19 0.46 1.86 4.64 9.29

4 11 5145.15 43.2 23.71 0.12 0.24 0.61 2.43 6.09 12.17

CCP-6 11 5169.3 31.7 21.1 0.11 0.22 0.55 2.21 5.53 11.05

Rock Typing by J-Function Method

J(Sw)

Table 6. Rock Typing using J-Function Method on SCAL Data

(20)

15

c. Plot Capillary pressure vs water saturation of each RT HFU:

Figure 4. Plot Pc vs Sw d. Plot J-Function vs Sw for all sample

Figure 5. J-Function vs Sw Plot for All sample

Gambar

Figure 1 Drainage and Imbibition Capillary Pressure Curve (Ganat, 2020)  1.1.4.  Relative Permeability
Table 3. Summary Plot RQI vs phi_z
Figure 3.   Crossplot Permeability vs Porosity (using HFU Method)
Figure 2.   Plot RQI vvs Phi(z) for Determining Rock Type
+7

Referensi

Dokumen terkait