• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA

N/A
N/A
Protected

Academic year: 2023

Membagikan "DAFTAR PUSTAKA"

Copied!
8
0
0

Teks penuh

(1)

128

DAFTAR PUSTAKA

Altman, N., dan Krzywinski, M., 2015, Simple linear regression. Nature Methods, Nature Research Journals, 12(11), 999–1000. DOI:10.1038/nmeth.3627 Bittencourt, L.F., Immich, R., Sakellariou, R., Fonseca, N.L.S., Madeira,E.R.M.,

Curado, M. dan Rana, O., 2018, The Internet of Things, Fog and Cloud Continuum: Integration and Challenges. Internet of Things,

https://doi.org/10.1016/j.iot.2018.09.005

Binamarga, 1997. Manual Kapasitas Jalan Indonesia (MKJI), Indonesian Highway Capacity Manual (IHCM). Departemen Pekerjaan Umum, Jakarta,

Indonesia

Botta, A., De Donato, W., Persico, V., dan Pescapé, A., 2016, Integration of cloud computing and internet of things: a survey. Future generation computer systems, 56, 684-700.

https://doi.org/10.1016/j.future.2015.09.021

Du, K., dan Swamy, M. N. S., 2016, Search and optimization by metaheuristics.

Techniques and Algorithms Inspired by Nature, Springer International Publishing Switzerland, Birkhauser Basel, Switzerland,

https://doi.org/10.1007/978-3-319-41192-7_3.

Diaby, T., dan Rad, B.B., 2017. Cloud computing: a review of the concepts and deployment models. International Journal of Information Technology and Computer Science, 9(6), 50-58, DOI: 10.5815/ijitcs.2017.06.07

Fardbastani, M.A., dan Sharifi, M., 2019, Scalable complex event processing using adaptive load balancing, Journal of Systems and Software, 149, 305- 317. https://doi.org/10.1016/j.jss.2018.12.012

Fojtik, R., 2011, Extreme programming in development of specific software, Procedia Computer Science, 3, 1464-1468.

https://doi.org/10.1016/j.procs.2011.01.032

Fosu, G.O., Akweittey, E., Opong, J. M., dan Otoo, M. E., 2020. Vehicular traffic models for speed-density-flow relationship. Journal of Mathematical Modeling, 1-15. DOI: 10.22124/jmm.2020.15409.1370

Fred, L., dan Scott, S.W., 2013. Principles of Highway Engineering and Traffic Analysis, John Wiley & Sons, Inc, New York

Ruiz, RJ., Ramirez-Gonzalez, G., Williams, J. M., Liu, H., Khanna, R. dan Pisharody, G., 2017, Internet of things: A scientometric review. Symmetry, 9(12), 301. https://doi.org/10.3390/sym9120301

(2)

129 Goldberg, D.E. and Holland, J. H., 1988, Genetic Algorithms and Machine

Learning. Machine Learning, 3, 95-99. Retrieved from

https://link.springer.com/content/pdf/10.1023%2FA%3A1022602019183.pd f

Hamad, K., dan Kikuchi, S., 2002, Developing a measure of traffic congestion:

Fuzzy inference approach, Transportation Research Record, (1802), 77-85.

https://doi.org/10.3141/1802-10

Hassanat, A.B., Prasath, V. B., Abbadi, M. A., Abu-Qdari, S. A., dan Faris, H.

(2018). An improved genetic algorithm with a new initialization mechanism based on regression techniques. Information, 9(7), 167.

https://doi.org/10.3390/info9070167

Hossain, S.K.A., Rahman, A.M., dan Hossain, M.A., 2018, Edge computing framework for enabling situation awareness in IoT based smart city, Journal of Parallel and Distributed Computing, 122, 226-237.

https://doi.org/10.1016/j.jpdc.2018.08.009

Ibrahim, F.A.M. dan Hemayed, E.E. , 2019, Trusted Cloud Computing Architectures for infrastructure as a service: Survey and systematic literature review, Computers and Security, 82, 196-226. |

https://doi.org/10.1016/j.cose.2018.12.014

Jong, J. C. dan Schonfeld, P. (2001). Genetic algorithm for selecting and

scheduling interdependent projects. Journal of waterway, port, coastal, and ocean engineering, 127(1), 45-52.

Kashyap, M., Sharma, V. dan Gupta, N., 2018, Taking MQTT and NodeMcu to IOT: Communication in Internet of Things, Procedia Computer Science, 132, 1611-1618. https://doi.org/10.1016/j.procs.2018.05.126

Kiraly, A. dan Abonyi, J., 2015, Redesign of the supply of mobile mechanics based on a novel genetic optimization algorithm using Google Maps API, Engineering Applications of Artificial Intelligence, 38, 122-130.

https://do1.org/10.1016/j.engappai.2014.10.015

Kramer, O., 2017, Genetic algorithm essentials (Vol. 679), Studies in

Computational Intelligence Springer, DOI:10.1007/978-3-319-52156-5 Liu, J., Li, J., Zhang, L., Dai, F., Zhang, Y., Meng, X. dan Shen, J., 2018, Secure

intelligent traffic light control using fog computing, Future Generation Computer Systems, 78, 817-824.

https://doi.org/10.1016/}.future.2017.02.017

(3)

130 Marsland, S., 2015, Machine Learning An Algorithmic Perspective, Taylor &

Francis, , Chapman & Hall/CRC Book

Mishra, S., Bhattacharya, D. dan Gupta, A., 2018, Congestion Adaptive Traffic Light Control and Notification Architecture Using Google Maps APIs, Data, 3(4), 67. https://doi.org/10.3390/data3040067

Mishra, S., Bhattacharya, D., Gupta, A. dan Singh, V. R., 2018, Adaptive Traffic Light Cycle Time Controller Using Microcontrollers and Crowdsource Data of Google APIs for Developing Countries, ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(4/W7), 83-90. https://doi.org/10.5194/isprs-annals-I V-4-W7-83-2018 Mohan, N., dan Kangasharju, J., 2017, Edge-Fog cloud: A distributed cloud for

Internet of Things computations, 2016 Cloudification of the Internet of Things, CIoT 2016, 1-6. https://doi.org/10.1109/CIOT.2016.7872914 Mokshin, A.V., Mokshin, V.V. dan Sharnin, L.M., 2019, Adaptive genetic

algorithms used to analyze behavior of complex system, Communications in Nonlinear Science and Numerical Simulation, 71, 174-186.

https://doi.org/10.1016/cnsns.2018.11.014

Odeh, S.M., Mora, A.M., Moreno, M.N. dan Merelo, J.J., 2015, A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System, Advances in Fuzzy Systems, 2015, 1-11. https://doi.org/10.1155/2015/378156 Pereira, R.I.S., Dupont, I.M., Carvalho, P.C.M. dan Juca, S.C.S., 2018, IoT

embedded linux system based on Raspberry Pi applied to real-time cloud monitoring of a decentralized photovoltaic plant, Measurement: Journal of the International Measurement Confederation, 114, 286-297.

https://doi.org/10.1016/j.measurement.2017.09.033

Petroski, F., Vashisht, S., Edoardo, M., Joel, C., Kenneth, L. dan Jeff, O.S., 2017, Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning, arXiv preprint arXiv:1712.06567.

Prehofer, C. dan Gerostathopoulos, I., 2017, Modeling RESTful Web of Things Services: Concepts and Tools, Managing the Web of Things: Linking the Real World to the Web (1st ed.). Elsevier Inc.

https://doi.org/10.1016/B978-0-12-809764-9.00004-4

Quek, W.L. dan Chew, L.Y., 2014, Mechanism of traffic jams at speed bottlenecks, Procedia Computer Science, 29, 289-298.

https://doi.org/10.1016/j.procs.2014.05.026

(4)

131 Samra, H.A.A., 2018, Factors Affecting Road Capacity Under non-Ideal

Conditions in Egypt, 7(October), 1-13. https://doi.org/10.20286/nova-jeas- 070102

Shang, W. dan Droms, R., 2016, Challenges in loT Networking via TCP / IP Architecture, Technical Report NDN-0038. NDN Project.

Souza, D.A.M., Yokoyama, R.S., Maia, G., Loureiro, A. dan Villas, L., 2016, Real-time path planning to prevent traffic jam through an intelligent transportation system, Proceedings - IEEE Symposium on Computers and Communications, 2016—Augus, 726—731. |

https://doi.org/10.1109/ISCC.2016.7543822

Suryono S., Khuriati A. dan Mantoro, T., 2019, A Fuzzy Rule-based Fog-Cloud Computing for Solar Panel Disturbance Investigation. Cogent Engineering, https://doi.org/10.1080/23311916.2019.1624287

Tao, F., Zhang, M. dan Nee, A.Y.C., 2019, Digital Twin and Cloud, Fog, Edge Computing, Digital Twin Driven Smart Manufacturing, 203—217.

https://doi.org/10.1016/B978-0-12-817630-6.00010-2

Taylor, R.H., Rose, F., Toher, C., Levy, O., Yang, K., Nardelli, B.M. dan Curtarolo, S., 2014, A RESTful API for exchanging materials data in the AFLOWLIB.org consortium, Computational Materials Science, 93, 178-192.

https://do1.org/10.1016/}.commatsc1.2014.05.014

Utama, D.N., Zaki, F.A., Munjeri, I.J. dan Putri, N.U., 2017, A water flow algorithm based optimization model for road traffic engineering, 2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016, 591-596. |

https://doi.org/10.1109/ICACSIS.2016.7

Gen, M., dan Lin, L., 2007, Genetic Algorithms. Encyclopedia of Computer Science and Engineering, Wiley Encyclopedia of Computer Science and Engineering

Wilkening, F., 1981, Integrating velocity, time, and distance information: A developmental study, Cognitive Psychology, 13(2), 231-247.

https://doi.org/10.1016/0010-0285(81)90009-8

Xu, M. dan Tian, W., 2017, RESEARCH ARTICLE A survey on load balancing algorithms for virtual machines placement in cloud computing,

1-16. https://doi.org/10.1002/cpe.4123

Gaddam, H. K., dan Rao, K. R., 2019. Speed–density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation,

(5)

132 Journal of modern transportation, 27(1), 61-74.

https://doi.org/10.1007/s40534-018-0177-7.

Yen, G. G. (2006). Constraint Handling in Genetic Algorithm for Optimization.

Advances in Computational Intelligence. Theory and Applications, 145-170.

Zhu, L., dan Gonder, J.D., 2018, A driving cycle detection approach using map service API, Transportation Research Part C: Emerging Technologies, 92 (November 02016), 349-363.

https://doi.org/ 10.1016/j.tre.2018.05.010

(6)

133 LAMPIRAN FOTO-FOTO

FOTO-FOTO KEGIATAN

(7)

134 FOTO ALAT-ALAT

(8)

135

Referensi

Dokumen terkait

60 Communications in Computer and Information Science Volume 998, 2019, Pages 54-63 9th International Conference on Computational and Information Technologies in Science, Engineering

48 Communications in Computer and Information Science Volume 998, 2019, Pages 1-10 9th International Conference on Computational and Information Technologies in Science, Engineering