128
DAFTAR PUSTAKA
Altman, N., dan Krzywinski, M., 2015, Simple linear regression. Nature Methods, Nature Research Journals, 12(11), 999–1000. DOI:10.1038/nmeth.3627 Bittencourt, L.F., Immich, R., Sakellariou, R., Fonseca, N.L.S., Madeira,E.R.M.,
Curado, M. dan Rana, O., 2018, The Internet of Things, Fog and Cloud Continuum: Integration and Challenges. Internet of Things,
https://doi.org/10.1016/j.iot.2018.09.005
Binamarga, 1997. Manual Kapasitas Jalan Indonesia (MKJI), Indonesian Highway Capacity Manual (IHCM). Departemen Pekerjaan Umum, Jakarta,
Indonesia
Botta, A., De Donato, W., Persico, V., dan Pescapé, A., 2016, Integration of cloud computing and internet of things: a survey. Future generation computer systems, 56, 684-700.
https://doi.org/10.1016/j.future.2015.09.021
Du, K., dan Swamy, M. N. S., 2016, Search and optimization by metaheuristics.
Techniques and Algorithms Inspired by Nature, Springer International Publishing Switzerland, Birkhauser Basel, Switzerland,
https://doi.org/10.1007/978-3-319-41192-7_3.
Diaby, T., dan Rad, B.B., 2017. Cloud computing: a review of the concepts and deployment models. International Journal of Information Technology and Computer Science, 9(6), 50-58, DOI: 10.5815/ijitcs.2017.06.07
Fardbastani, M.A., dan Sharifi, M., 2019, Scalable complex event processing using adaptive load balancing, Journal of Systems and Software, 149, 305- 317. https://doi.org/10.1016/j.jss.2018.12.012
Fojtik, R., 2011, Extreme programming in development of specific software, Procedia Computer Science, 3, 1464-1468.
https://doi.org/10.1016/j.procs.2011.01.032
Fosu, G.O., Akweittey, E., Opong, J. M., dan Otoo, M. E., 2020. Vehicular traffic models for speed-density-flow relationship. Journal of Mathematical Modeling, 1-15. DOI: 10.22124/jmm.2020.15409.1370
Fred, L., dan Scott, S.W., 2013. Principles of Highway Engineering and Traffic Analysis, John Wiley & Sons, Inc, New York
Ruiz, RJ., Ramirez-Gonzalez, G., Williams, J. M., Liu, H., Khanna, R. dan Pisharody, G., 2017, Internet of things: A scientometric review. Symmetry, 9(12), 301. https://doi.org/10.3390/sym9120301
129 Goldberg, D.E. and Holland, J. H., 1988, Genetic Algorithms and Machine
Learning. Machine Learning, 3, 95-99. Retrieved from
https://link.springer.com/content/pdf/10.1023%2FA%3A1022602019183.pd f
Hamad, K., dan Kikuchi, S., 2002, Developing a measure of traffic congestion:
Fuzzy inference approach, Transportation Research Record, (1802), 77-85.
https://doi.org/10.3141/1802-10
Hassanat, A.B., Prasath, V. B., Abbadi, M. A., Abu-Qdari, S. A., dan Faris, H.
(2018). An improved genetic algorithm with a new initialization mechanism based on regression techniques. Information, 9(7), 167.
https://doi.org/10.3390/info9070167
Hossain, S.K.A., Rahman, A.M., dan Hossain, M.A., 2018, Edge computing framework for enabling situation awareness in IoT based smart city, Journal of Parallel and Distributed Computing, 122, 226-237.
https://doi.org/10.1016/j.jpdc.2018.08.009
Ibrahim, F.A.M. dan Hemayed, E.E. , 2019, Trusted Cloud Computing Architectures for infrastructure as a service: Survey and systematic literature review, Computers and Security, 82, 196-226. |
https://doi.org/10.1016/j.cose.2018.12.014
Jong, J. C. dan Schonfeld, P. (2001). Genetic algorithm for selecting and
scheduling interdependent projects. Journal of waterway, port, coastal, and ocean engineering, 127(1), 45-52.
Kashyap, M., Sharma, V. dan Gupta, N., 2018, Taking MQTT and NodeMcu to IOT: Communication in Internet of Things, Procedia Computer Science, 132, 1611-1618. https://doi.org/10.1016/j.procs.2018.05.126
Kiraly, A. dan Abonyi, J., 2015, Redesign of the supply of mobile mechanics based on a novel genetic optimization algorithm using Google Maps API, Engineering Applications of Artificial Intelligence, 38, 122-130.
https://do1.org/10.1016/j.engappai.2014.10.015
Kramer, O., 2017, Genetic algorithm essentials (Vol. 679), Studies in
Computational Intelligence Springer, DOI:10.1007/978-3-319-52156-5 Liu, J., Li, J., Zhang, L., Dai, F., Zhang, Y., Meng, X. dan Shen, J., 2018, Secure
intelligent traffic light control using fog computing, Future Generation Computer Systems, 78, 817-824.
https://doi.org/10.1016/}.future.2017.02.017
130 Marsland, S., 2015, Machine Learning An Algorithmic Perspective, Taylor &
Francis, , Chapman & Hall/CRC Book
Mishra, S., Bhattacharya, D. dan Gupta, A., 2018, Congestion Adaptive Traffic Light Control and Notification Architecture Using Google Maps APIs, Data, 3(4), 67. https://doi.org/10.3390/data3040067
Mishra, S., Bhattacharya, D., Gupta, A. dan Singh, V. R., 2018, Adaptive Traffic Light Cycle Time Controller Using Microcontrollers and Crowdsource Data of Google APIs for Developing Countries, ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(4/W7), 83-90. https://doi.org/10.5194/isprs-annals-I V-4-W7-83-2018 Mohan, N., dan Kangasharju, J., 2017, Edge-Fog cloud: A distributed cloud for
Internet of Things computations, 2016 Cloudification of the Internet of Things, CIoT 2016, 1-6. https://doi.org/10.1109/CIOT.2016.7872914 Mokshin, A.V., Mokshin, V.V. dan Sharnin, L.M., 2019, Adaptive genetic
algorithms used to analyze behavior of complex system, Communications in Nonlinear Science and Numerical Simulation, 71, 174-186.
https://doi.org/10.1016/cnsns.2018.11.014
Odeh, S.M., Mora, A.M., Moreno, M.N. dan Merelo, J.J., 2015, A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System, Advances in Fuzzy Systems, 2015, 1-11. https://doi.org/10.1155/2015/378156 Pereira, R.I.S., Dupont, I.M., Carvalho, P.C.M. dan Juca, S.C.S., 2018, IoT
embedded linux system based on Raspberry Pi applied to real-time cloud monitoring of a decentralized photovoltaic plant, Measurement: Journal of the International Measurement Confederation, 114, 286-297.
https://doi.org/10.1016/j.measurement.2017.09.033
Petroski, F., Vashisht, S., Edoardo, M., Joel, C., Kenneth, L. dan Jeff, O.S., 2017, Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning, arXiv preprint arXiv:1712.06567.
Prehofer, C. dan Gerostathopoulos, I., 2017, Modeling RESTful Web of Things Services: Concepts and Tools, Managing the Web of Things: Linking the Real World to the Web (1st ed.). Elsevier Inc.
https://doi.org/10.1016/B978-0-12-809764-9.00004-4
Quek, W.L. dan Chew, L.Y., 2014, Mechanism of traffic jams at speed bottlenecks, Procedia Computer Science, 29, 289-298.
https://doi.org/10.1016/j.procs.2014.05.026
131 Samra, H.A.A., 2018, Factors Affecting Road Capacity Under non-Ideal
Conditions in Egypt, 7(October), 1-13. https://doi.org/10.20286/nova-jeas- 070102
Shang, W. dan Droms, R., 2016, Challenges in loT Networking via TCP / IP Architecture, Technical Report NDN-0038. NDN Project.
Souza, D.A.M., Yokoyama, R.S., Maia, G., Loureiro, A. dan Villas, L., 2016, Real-time path planning to prevent traffic jam through an intelligent transportation system, Proceedings - IEEE Symposium on Computers and Communications, 2016—Augus, 726—731. |
https://doi.org/10.1109/ISCC.2016.7543822
Suryono S., Khuriati A. dan Mantoro, T., 2019, A Fuzzy Rule-based Fog-Cloud Computing for Solar Panel Disturbance Investigation. Cogent Engineering, https://doi.org/10.1080/23311916.2019.1624287
Tao, F., Zhang, M. dan Nee, A.Y.C., 2019, Digital Twin and Cloud, Fog, Edge Computing, Digital Twin Driven Smart Manufacturing, 203—217.
https://doi.org/10.1016/B978-0-12-817630-6.00010-2
Taylor, R.H., Rose, F., Toher, C., Levy, O., Yang, K., Nardelli, B.M. dan Curtarolo, S., 2014, A RESTful API for exchanging materials data in the AFLOWLIB.org consortium, Computational Materials Science, 93, 178-192.
https://do1.org/10.1016/}.commatsc1.2014.05.014
Utama, D.N., Zaki, F.A., Munjeri, I.J. dan Putri, N.U., 2017, A water flow algorithm based optimization model for road traffic engineering, 2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016, 591-596. |
https://doi.org/10.1109/ICACSIS.2016.7
Gen, M., dan Lin, L., 2007, Genetic Algorithms. Encyclopedia of Computer Science and Engineering, Wiley Encyclopedia of Computer Science and Engineering
Wilkening, F., 1981, Integrating velocity, time, and distance information: A developmental study, Cognitive Psychology, 13(2), 231-247.
https://doi.org/10.1016/0010-0285(81)90009-8
Xu, M. dan Tian, W., 2017, RESEARCH ARTICLE A survey on load balancing algorithms for virtual machines placement in cloud computing,
1-16. https://doi.org/10.1002/cpe.4123
Gaddam, H. K., dan Rao, K. R., 2019. Speed–density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation,
132 Journal of modern transportation, 27(1), 61-74.
https://doi.org/10.1007/s40534-018-0177-7.
Yen, G. G. (2006). Constraint Handling in Genetic Algorithm for Optimization.
Advances in Computational Intelligence. Theory and Applications, 145-170.
Zhu, L., dan Gonder, J.D., 2018, A driving cycle detection approach using map service API, Transportation Research Part C: Emerging Technologies, 92 (November 02016), 349-363.
https://doi.org/ 10.1016/j.tre.2018.05.010
133 LAMPIRAN FOTO-FOTO
FOTO-FOTO KEGIATAN
134 FOTO ALAT-ALAT
135