• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA

N/A
N/A
Protected

Academic year: 2023

Membagikan "DAFTAR PUSTAKA"

Copied!
3
0
0

Teks penuh

(1)

57

DAFTAR PUSTAKA

Aldalur, E., Veiga, F., Suárez, A., Bilbao, J., & Lamikiz, A. (2020). High deposition wire arc additive manufacturing of mild steel: Strategies and heat input effect on microstructure and mechanical properties. Journal of Manufacturing Processes, 58(September), 615–626.

https://doi.org/10.1016/j.jmapro.2020.08.060

Artaza T, Su´arez A, Murua M, Garcia J, Tabernero I, Lamikiz A. Wire arc additive manufacturing of Mn4Ni2CrMo conference steel : comparison of mechanical and metallographic properties of PAW and GMAW. Procedia Manuf 2019;41:1071–8. https://doi.org/10.1016/j.promfg.2019.10.035.

Brandl, E., Baufeld, B., & Leyens, C. (2010). Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Physics Procedia, 5(Part B):595-606.

Busachi, A.; Erkoyuncu, J.; Colegrove, P.; Martina, F.; Watts, C.; Drake, R. A review of Additive Manufacturing technology and Cost Estimation techniques for the defence sector.CIRP J. Manuf. Sci.

Technol.2017,19,117–128. [CrossRef]

Cary, H.B., 1994, Modern Welding Technology, Prentice Hall, Englewood Cliffs, New Jersey.

Callister Jr., William D. (2014), “Materials Science and Engineering: Ninth Edition” New York: John Wiley & Sons Inc.

Geels, K, 2006, Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, USA: ASTM International.

Haden CV, Zeng G, Carter FM, Ruhl C, Krick BA, Harlow DG. Wire and arc additive manufactured steel: tensile and wear properties. Addit Manuf 2017;16:115–23. https://doi.org/10.1016/j.addma.2017.05.010.

Haselhuhn AS, Wijnen B, Anzalone GC et al (2015) In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J Mater

(2)

58 Process Technol 226:50–59 https://doi.org/10.1016/j.jmatprotec.2015.06.038

Hoefer, K.; Haelsig, A.; Mayr, P. Arc-based additive manufacturing of steel components—Comparison of wire-and powder-based variants.Weld.

World2018,62, 243–247. [CrossRef]

Jufri, Moh, Nur Subeki, Arizal Asfat. 2017. “EFEK KECEPATAN PENGELASAN TERHADAP SIFAT MEKANIK HASIL PENGELASAN FCAW PADA PLAT BAJA A36” Seminar Nasional Teknologi dan Rekayasa (SENTRA); ISSN 2527-6042

Li C, Gu H, Wang W, Wang S, Ren L, Wang Z. Effect of heat input on formability, microstructure, and properties of Al–7Si–0.6Mg alloys deposited by CMT-WAAM process. Appl Sci 2020;10:70.

https://doi.org/10.3390/app10010070.

Maret, Rishi Nur, Syarippuddin, Ferry Budhi Susetyo. 2019. “PENGARUH KECEPATAN PENGELASAN MIG PADA PIPA SC-80 TERHADAP STRUKTUR MIKRO DAN KEKERASAN DENGAN POSISI PENGELASAN 1G”. Jurnal Kajian Teknik Mesin Vol. 4 No. 2; ISSN 2406-9671

Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci 2020; 107:100590. https://doi.org/10.1016/j.pmatsci.2019.100590.

Pan Z, Ding D, Wu B, Cuiuri D, Li H, Norrish J. Arc welding processes for additive manufacturing: a review. Trans Intell Weld Manuf 2018;1:3–24.

https://doi.org/ 10.1007/978-981-10-5355-9_1

Perdana, Doni, dan Bazy Syarif. 2015. Jurnal: Analisis Pengaruh Jenis Pengelasan SMAW dan FCAW Terhadap Sifat Mekanis Baja ASTM A36 Pada Konstruksi Landside Upper Leg. Teknik Mesin: Universitas Maarif Hasyim Sidoarjo.

Ratnasari, Dian. 2016. Pengaruh Voltage pada Gas Metal Arc Welding (GMAW) Terhadap Struktur Mikro dan Tegangan Lentur (Face And Root) EMS 45 Dengan Sambungan Kampuh V, Skripsi S1, UNNES. Semarang.

(3)

59 Shams, S, dkk. 2019. “PERFORMANCE ANALYSIS OF SMAW WELDING

AND GMAW-FCAW COMBINED WELDING FOR PIPELINE CONSTRUCTION JOBS AT SSGC”. Pakistan Journal of Science, ISSN:

2411-0930

Song, J., Peters. J., Noor, A., and Michaleris, P., 2003., “Sensitivity Analysis of The Thermomechanical Response of Welding Joints” Journal of Solids and Struktures 40, Hal 4167-4180.

Tampubolon, Palti Yosua, Untung Budiarto, Good Rindo. 2019. “Analisa Uji Tarik, Impak dan Mikrografi Baja ST 40 Dengan Metode Pengelasan FCAW Posisi 2G Variasi Arus Pengelasan”, Universitas Diponegoro;

Semarang.

Waqas, A., Qin, X., Xiong, J., Wang, H., & Zheng, C. (2019). Optimization of process parameters to improve the effective area of deposition in GMAW- based additive manufacturing and its mechanical and microstructural analysis. Metals, 9(7). https://doi.org/10.3390/met9070775

Wijoyo, Bayu Kartiko Aji. 2015. “Kajian Kekerasan dan Struktur Mikro Sambungan Las GMAW Baja Karbon Tinggi Dengan Variasi Masukan Arus Listrik”. Jurnal SIMETRIS, Vol 6; ISSN: 2252-4983.

Wiryosumarto, H., dan Okumura, T. (2000), “Teknologi Pengelasan Logam.

Cetakan Kedelapan”, PT Pradnya Paramita. Jakarta.

Wu B, Pan Z, Ding D, Cuiuri D, Li H, Xu J, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 2018;35:127–39.

https://doi.org/10.1016/j.jmapro.2018.08.001.

Referensi

Dokumen terkait

Dynamic transmission model use some mathematical model implemented to predict Aedes Aegypti mosquito growth from oviposition rate, virus incubation rate, pre adult

xi ABSTRAK Peran Perceived Social Support terhadap Posttraumatic Growth pada Remaja Wanita yang mengalami Kekerasan dalam Pacaran serta Tinjauannya dalam Islam Terdapat tren