• Tidak ada hasil yang ditemukan

Daftar Pustaka

N/A
N/A
Protected

Academic year: 2023

Membagikan "Daftar Pustaka"

Copied!
7
0
0

Teks penuh

(1)

64 Institut Teknologi Nasional

DAFTAR PUSTAKA

Abdullah, M., 2009. Pengantar Nanosains. Bdg. ID Inst. Teknol. Bdg.

Ahmad, A., Senapati, S., Khan, M.I., Kumar, R., Sastry, M., 2003. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 19, 3550–3553.

https://doi.org/10.1021/la026772l

Ankamwar, B., 1900. Biosynthesis of Gold Nanoparticles (Green-gold) Using Leaf Extract of Terminalia Catappa. E-J. Chem. 7, 745120.

https://doi.org/10.1155/2010/745120

Ankamwar, B., Damle, C., Ahmad, A., Sastry, M., 2005. Biosynthesis of Gold and Silver Nanoparticles Using <I>Emblica Officinalis</I> Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. J. Nanosci.

Nanotechnol. 5, 1665–1671. https://doi.org/10.1166/jnn.2005.184

Arifin, B., Ibrahim, S., 2018. STRUKTUR, BIOAKTIVITAS DAN

ANTIOKSIDAN FLAVONOID. J. Zarah 6, 21–29.

https://doi.org/10.31629/zarah.v6i1.313

Arulkumar, S., Sabesan, M., 2010. Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int.

J. Res. Pharm. Sci. 1, 417–420.

Baruwati, B., Varma, R., 2009. High Value Products from Waste: Grape Pomace Extract—A Three-in-One Package for the Synthesis of Metal Nanoparticles.

ChemSusChem 2, 1041–1044. https://doi.org/10.1002/cssc.200900220 Bifunctional, R.B., Yu Chen, Hsien, Chang Chang, Nat, HeLa, n.d. 1 The Nano-

particles (NPs) for Cancer Diagnosis and Photo-thermal Therapy (PTT) Int.

J. Cancer, 2007, 120: /11/23 Reporter: Kuang-Yu Chen. - ppt download [WWW Document]. URL https://slideplayer.com/slide/5929017/ (accessed 8.25.20).

Boruah, S.K., 2012. Green Synthesis Of Gold Nanoparticles Using Camellia Sinensis And Kinetics Of The Reaction. Adv. Mater. Lett. 3, 481–486.

https://doi.org/10.5185/amlett.2012.icnano.103

Brown, S., Sarikaya, M., Johnson, E., 2000. A genetic analysis of crystal growth 1 1Edited by M. Gottesman. J. Mol. Biol. 299, 725–735.

https://doi.org/10.1006/jmbi.2000.3682

(2)

65 Institut Teknologi Nasional

Cabrera, C., Artacho, R., Giménez, R., 2006. Beneficial Effects of Green Tea—A

Review. J. Am. Coll. Nutr. 25, 79–99.

https://doi.org/10.1080/07315724.2006.10719518

Chen, D.-H., Chen, C.-J., 2002. Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem. 12, 1557–1562. https://doi.org/10.1039/b110749f

Chin, S.F., Azman, A., Pang, S.C., 2014. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method [WWW Document]. J.

Nanomater. https://doi.org/10.1155/2014/763736

Contreras-Trigo, B., Díaz-García, V., Guzmán-Gutierrez, E., Sanhueza, I., Coelho, P., Godoy, S., Torres, S., Oyarzún, P., 2018. Slight pH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. Sensors 18, 2246. https://doi.org/10.3390/s18072246 Cozzoli, P.D., Comparelli, R., Fanizza, E., Curri, M.L., Agostiano, A., Laub, D.,

2004. Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO 2

Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution. J. Am. Chem. Soc. 126, 3868–3879.

https://doi.org/10.1021/ja0395846

Das, R.K., Borthakur, B.B., Bora, U., 2010. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater. Lett. 64, 1445–1447.

https://doi.org/10.1016/j.matlet.2010.03.051

Das, S.K., Das, A.R., Guha, A.K., 2009. Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management. Langmuir 25, 8192–8199.

https://doi.org/10.1021/la900585p

De Corte, S., Hennebel, T., Verschuere, S., Cuvelier, C., Verstraete, W., Boon, N., 2011. Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow reduction process. J. Chem. Technol. Biotechnol. 86, 547–553. https://doi.org/10.1002/jctb.2549

Feng, Y., Lin, X., Wang, Yiming, Wang, Yong, Hua, J., 2008. Diversity of Aurum bioreduction by Rhodobacter capsulatus. Mater. Lett. 62, 4299–4302.

https://doi.org/10.1016/j.matlet.2008.07.008

Fernandez, B.R., 2011. Sintesis Nanopartikel. Padang Univ. Andalas.

G. Fouda, M.M., 2012. Antibacterial Modification of Textiles Using Nanotechnology, in: Bobbarala, V. (Ed.), A Search for Antibacterial Agents.

InTech. https://doi.org/10.5772/45653

(3)

66 Institut Teknologi Nasional

Garcia, A., Oh, S., Engler, C.R., 1989. Cellulase immobilization on Fe3O4 and characterization. Biotechnol. Bioeng. 33, 321–326.

https://doi.org/10.1002/bit.260330311

Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P., Yacaman, M.J., n.d. Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett 5.

He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., Gu, N., 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett.

61, 3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018

He, S., Zhang, Y., Guo, Z., Gu, N., 2008. Biological Synthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 24, 476–

480. https://doi.org/10.1021/bp0703174

Horikoshi, S., Serpone, N., 2013. Microwaves in Nanoparticle Synthesis:

Fundamentals and Applications. pp. 1–24.

https://doi.org/10.1002/9783527648122.ch1

Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., Chen, C., 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf.

Nanotechnology 18, 105104. https://doi.org/10.1088/0957- 4484/18/10/105104

Huang, X., El-Sayed, M.A., 2010. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res.

1, 13–28. https://doi.org/10.1016/j.jare.2010.02.002

Islam, N.U., Jalil, K., Shahid, M., Rauf, A., Muhammad, N., Khan, A., Shah, M.R., Khan, M.A., 2019. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 12, 2914–2925.

https://doi.org/10.1016/j.arabjc.2015.06.025

Kalidindi, S.B., Sanyal, U., Jagirdar, B.R., 2010. Metal Nanoparticles via the Atom- Economy Green Approach. Inorg. Chem. 49, 3965–3967.

https://doi.org/10.1021/ic100431k

Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S., 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces 77, 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007 Karasulu, H.Y., 2008. Microemulsions as novel drug carriers: the formation,

stability, applications and toxicity. Expert Opin. Drug Deliv. 5, 119–135.

https://doi.org/10.1517/17425247.5.1.119

(4)

67 Institut Teknologi Nasional

Kasthuri, J., Veerapandian, S., Rajendiran, N., 2009. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B Biointerfaces 68, 55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021 Ketsa, S., Paull, R.E., 2011. Mangosteen ( Garcinia mangostana L.), in: Postharvest

Biology and Technology of Tropical and Subtropical Fruits. Elsevier, pp. 1–

32e. https://doi.org/10.1533/9780857092618.1

Konishi, Y., Tsukiyama, T., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., 2006.

Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81, 24–29.

https://doi.org/10.1016/j.hydromet.2005.09.006

Lawrence, M.J., Rees, G.D., 2012. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 64, 175–193.

https://doi.org/10.1016/j.addr.2012.09.018

Leonard, K., Ahmmad, B., Okamura, H., Kurawaki, J., 2011. In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids Surf. B Biointerfaces 82, 391–396.

https://doi.org/10.1016/j.colsurfb.2010.09.020

Malik, M.A., Wani, M.Y., Hashim, M.A., 2012. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab. J. Chem. 5, 397–417. https://doi.org/10.1016/j.arabjc.2010.09.027

Masoud, N., Partsch, T., de Jong, K.P., de Jongh, P.E., 2019. Thermal stability of oxide-supported gold nanoparticles. Gold Bull. 52, 105–114.

https://doi.org/10.1007/s13404-019-00259-9

Mathew Thomas Maliael. Gold nanoparticles applications and challenges, 2016.

URL https://www.slideshare.net/MathewThomasMaliael/gold-nanoparticles applications-and-challenges (accessed 9.5.20).

McEvoy, E., 2008. The Development and Application of Oil-in-Water Microemulsion Liquid and Electrokinetic Chromatography for Pharmaceutical Analysis (phd). Waterford Institute of Technology.

Mehta, S.K., Kaur, G., n.d. Microemulsions: Thermodynamic and Dynamic Properties. Thermodynamics.

Mittal, A.K., Chisti, Y., Banerjee, U.C., 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356.

https://doi.org/10.1016/j.biotechadv.2013.01.003

MRSEC Education Group. Citrate Synthesis of Gold Nanoparticles, n.d. URL https://education.mrsec.wisc.edu/citrate-synthesis-of-gold-nanoparticles/

(accessed 9.5.20).

(5)

68 Institut Teknologi Nasional

Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., Kumar, R., 2001. Bioreduction of AuCl4− Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed.

40, 3585–3588. https://doi.org/10.1002/1521-

3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K

Nair, B., Pradeep, T., 2002. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth Des.

2, 293–298. https://doi.org/10.1021/cg0255164

Najjar, R., 2012. Microemulsions - A Brief Introduction. Microemulsions - Introd.

Prop. Appl. https://doi.org/10.5772/36057

Narayanan, K.B., Sakthivel, N., 2008. Coriander leaf mediated biosynthesis of gold

nanoparticles. Mater. Lett. 62, 4588–4590.

https://doi.org/10.1016/j.matlet.2008.08.044

Nune, S.K., Chanda, N., Shukla, R., Katti, K., Kulkarni, R.R., Thilakavathy, S., Mekapothula, S., Kannan, R., Katti, K.V., 2009. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 19, 2912.

https://doi.org/10.1039/b822015h

Ovelando, R., Nabilla, M.A., Surest, A.H., n.d. FERMENTASI BUAH MARKISA (PASSIFLORA) MENJADI ASAM SITRAT 7.

Pan, X., 2010. Water -in -oil microemulsions: Counterion effects in AOT systems and new fluorocarbon-based microemulsion gels. Dr. Diss. Available Proquest 1–136.

Parapat, R., Wijaya, M., Schwarze, M., Selve, S., Willinger, M.G., Schomäcker, R., 2012. Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: Preparation of highly active and stable supported Pt catalysts in microemulsions. Nanoscale 5.

https://doi.org/10.1039/c2nr32122j

Philip, D., 2009a. Honey mediated green synthesis of gold nanoparticles.

Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 73, 650–653.

https://doi.org/10.1016/j.saa.2009.03.007

Philip, D., 2009b. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 73, 374–

381. https://doi.org/10.1016/j.saa.2009.02.037

(6)

69 Institut Teknologi Nasional

Premkumar, T., Geckeler, K.E., 2010. Cucurbit[7]uril as a Tool in the Green Synthesis of Gold Nanoparticles. Chem. - Asian J. 5, 2468–2476.

https://doi.org/10.1002/asia.201000338

Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H., Zou, G., 2006. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 29–30, 3548–3552.

https://doi.org/10.1016/j.matlet.2006.03.055

Rai, A., Singh, A., Ahmad, A., Sastry, M., 2006. Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir 22, 736–741. https://doi.org/10.1021/la052055q Roza, I., Evawati, E., Fadri, R., Gusmalini, G., 2017. TOTAL FENOL DAN

AKTIVITAS ANTIOKSIDAN BUBUK KULIT MANGGIS (Garcinia mangostana L.) DARI BUAH SEGAR DENGAN VARIASI LAMA PENYIMPANAN YANG DIOLAH SECARA MEKANIS. J. Teknol. Pertan.

Andalas 21, 110. https://doi.org/10.25077/jtpa.21.2.110-116.2017

Sahu, G.K., Sharma, H., Gupta, A., Kaur, C.D., Sahu, G.K., Sharma, H., Gupta, A., Kaur, C.D., 2015. Advancements in Microemulsion Based Drug Delivery Systems for Better Therapeutic Effects. Int. J. Pharm. Sci. Dev. Res. 1, 008–

015. https://doi.org/10.17352/ijpsdr.000003

Sardar, R., Park, J.-W., Shumaker-Parry, J.S., 2007. Polymer-Induced Synthesis of Stable Gold and Silver Nanoparticles and Subsequent Ligand Exchange in Water. Langmuir 23, 11883–11889. https://doi.org/10.1021/la702359g Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., 2003. Bioreduction of

chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822.

https://doi.org/10.1039/b303808b

Sharma, D.R., n.d. Surfactants: Basics and Versatility in Food Industries.

Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea- Torresde, J.L., Pal, T., 2007. Synthesis of Plant-Mediated Gold Nanoparticles and Catalytic Role of Biomatrix-Embedded Nanomaterials. Environ. Sci. Technol. 41, 5137–5142.

https://doi.org/10.1021/es062929a

Shukla, R., Nune, S.K., Chanda, N., Katti, K., Mekapothula, S., Kulkarni, R.R., Welshons, W.V., Kannan, R., Katti, K.V., 2008. Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small 4, 1425–1436.

https://doi.org/10.1002/smll.200800525

(7)

70 Institut Teknologi Nasional

Singaravelu, G., Arockiamary, J.S., Kumar, V.G., Govindaraju, K., 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces 57, 97–101.

https://doi.org/10.1016/j.colsurfb.2007.01.010

Singh, S., D’Britto, V., Prabhune, A.A., Ramana, C.V., Dhawan, A., Prasad, B.L.V., 2010. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34, 294–301.

https://doi.org/10.1039/B9NJ00277D

Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M., Xia, Y., 2008.

Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res.

41, 1587–1595. https://doi.org/10.1021/ar800018v

Subramanian, A., 2010. Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int. J. Res. Pharm.

Sci. 1.

Sujitha, M.V., Kannan, S., 2013. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 102, 15–

23. https://doi.org/10.1016/j.saa.2012.09.042

UNIMUS.10.BABII.pdf, n.d.

http://repository.unimus.ac.id/3175/4/10.%20BAB%20II.pdf. Accessed 6 Sept. 2020.

Xie, J., Lee, J.Y., Wang, Ting, Y.P., 2007. High-Yield Synthesis of Complex Gold Nanostructures in a Fungal System. J. Phys. Chem. C 111, 16858–16865.

https://doi.org/10.1021/jp0752668

Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N.B., Bt Mohamad, S.E., Yew, Y.P., 2016. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. J. Nanomater.

2016, 1–7. https://doi.org/10.1155/2016/8489094

Yarce, C., n.d. The HLB SYSTEM a time-saving guide to emulsifier selection ANTICIPATING NEEDS.

Referensi

Dokumen terkait

This study was conducted to identify the flavonoid content of the hydrodynamic-cavitation extract from Citrus reticulata peels and to explore the potential of citrus

Lastly, the seventh paper tested bio-briquettes made from Musa acuminata Colla, Musa acuminata, and Musa balbisiana silk, and Citrus reticulata and Citrus sinensis peels.. The editors