64 Institut Teknologi Nasional
DAFTAR PUSTAKA
Abdullah, M., 2009. Pengantar Nanosains. Bdg. ID Inst. Teknol. Bdg.
Ahmad, A., Senapati, S., Khan, M.I., Kumar, R., Sastry, M., 2003. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 19, 3550–3553.
https://doi.org/10.1021/la026772l
Ankamwar, B., 1900. Biosynthesis of Gold Nanoparticles (Green-gold) Using Leaf Extract of Terminalia Catappa. E-J. Chem. 7, 745120.
https://doi.org/10.1155/2010/745120
Ankamwar, B., Damle, C., Ahmad, A., Sastry, M., 2005. Biosynthesis of Gold and Silver Nanoparticles Using <I>Emblica Officinalis</I> Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. J. Nanosci.
Nanotechnol. 5, 1665–1671. https://doi.org/10.1166/jnn.2005.184
Arifin, B., Ibrahim, S., 2018. STRUKTUR, BIOAKTIVITAS DAN
ANTIOKSIDAN FLAVONOID. J. Zarah 6, 21–29.
https://doi.org/10.31629/zarah.v6i1.313
Arulkumar, S., Sabesan, M., 2010. Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int.
J. Res. Pharm. Sci. 1, 417–420.
Baruwati, B., Varma, R., 2009. High Value Products from Waste: Grape Pomace Extract—A Three-in-One Package for the Synthesis of Metal Nanoparticles.
ChemSusChem 2, 1041–1044. https://doi.org/10.1002/cssc.200900220 Bifunctional, R.B., Yu Chen, Hsien, Chang Chang, Nat, HeLa, n.d. 1 The Nano-
particles (NPs) for Cancer Diagnosis and Photo-thermal Therapy (PTT) Int.
J. Cancer, 2007, 120: /11/23 Reporter: Kuang-Yu Chen. - ppt download [WWW Document]. URL https://slideplayer.com/slide/5929017/ (accessed 8.25.20).
Boruah, S.K., 2012. Green Synthesis Of Gold Nanoparticles Using Camellia Sinensis And Kinetics Of The Reaction. Adv. Mater. Lett. 3, 481–486.
https://doi.org/10.5185/amlett.2012.icnano.103
Brown, S., Sarikaya, M., Johnson, E., 2000. A genetic analysis of crystal growth 1 1Edited by M. Gottesman. J. Mol. Biol. 299, 725–735.
https://doi.org/10.1006/jmbi.2000.3682
65 Institut Teknologi Nasional
Cabrera, C., Artacho, R., Giménez, R., 2006. Beneficial Effects of Green Tea—A
Review. J. Am. Coll. Nutr. 25, 79–99.
https://doi.org/10.1080/07315724.2006.10719518
Chen, D.-H., Chen, C.-J., 2002. Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem. 12, 1557–1562. https://doi.org/10.1039/b110749f
Chin, S.F., Azman, A., Pang, S.C., 2014. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method [WWW Document]. J.
Nanomater. https://doi.org/10.1155/2014/763736
Contreras-Trigo, B., Díaz-García, V., Guzmán-Gutierrez, E., Sanhueza, I., Coelho, P., Godoy, S., Torres, S., Oyarzún, P., 2018. Slight pH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. Sensors 18, 2246. https://doi.org/10.3390/s18072246 Cozzoli, P.D., Comparelli, R., Fanizza, E., Curri, M.L., Agostiano, A., Laub, D.,
2004. Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO 2
Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution. J. Am. Chem. Soc. 126, 3868–3879.
https://doi.org/10.1021/ja0395846
Das, R.K., Borthakur, B.B., Bora, U., 2010. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater. Lett. 64, 1445–1447.
https://doi.org/10.1016/j.matlet.2010.03.051
Das, S.K., Das, A.R., Guha, A.K., 2009. Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management. Langmuir 25, 8192–8199.
https://doi.org/10.1021/la900585p
De Corte, S., Hennebel, T., Verschuere, S., Cuvelier, C., Verstraete, W., Boon, N., 2011. Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow reduction process. J. Chem. Technol. Biotechnol. 86, 547–553. https://doi.org/10.1002/jctb.2549
Feng, Y., Lin, X., Wang, Yiming, Wang, Yong, Hua, J., 2008. Diversity of Aurum bioreduction by Rhodobacter capsulatus. Mater. Lett. 62, 4299–4302.
https://doi.org/10.1016/j.matlet.2008.07.008
Fernandez, B.R., 2011. Sintesis Nanopartikel. Padang Univ. Andalas.
G. Fouda, M.M., 2012. Antibacterial Modification of Textiles Using Nanotechnology, in: Bobbarala, V. (Ed.), A Search for Antibacterial Agents.
InTech. https://doi.org/10.5772/45653
66 Institut Teknologi Nasional
Garcia, A., Oh, S., Engler, C.R., 1989. Cellulase immobilization on Fe3O4 and characterization. Biotechnol. Bioeng. 33, 321–326.
https://doi.org/10.1002/bit.260330311
Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P., Yacaman, M.J., n.d. Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett 5.
He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., Gu, N., 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett.
61, 3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018
He, S., Zhang, Y., Guo, Z., Gu, N., 2008. Biological Synthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 24, 476–
480. https://doi.org/10.1021/bp0703174
Horikoshi, S., Serpone, N., 2013. Microwaves in Nanoparticle Synthesis:
Fundamentals and Applications. pp. 1–24.
https://doi.org/10.1002/9783527648122.ch1
Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., Chen, C., 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf.
Nanotechnology 18, 105104. https://doi.org/10.1088/0957- 4484/18/10/105104
Huang, X., El-Sayed, M.A., 2010. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res.
1, 13–28. https://doi.org/10.1016/j.jare.2010.02.002
Islam, N.U., Jalil, K., Shahid, M., Rauf, A., Muhammad, N., Khan, A., Shah, M.R., Khan, M.A., 2019. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 12, 2914–2925.
https://doi.org/10.1016/j.arabjc.2015.06.025
Kalidindi, S.B., Sanyal, U., Jagirdar, B.R., 2010. Metal Nanoparticles via the Atom- Economy Green Approach. Inorg. Chem. 49, 3965–3967.
https://doi.org/10.1021/ic100431k
Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S., 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces 77, 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007 Karasulu, H.Y., 2008. Microemulsions as novel drug carriers: the formation,
stability, applications and toxicity. Expert Opin. Drug Deliv. 5, 119–135.
https://doi.org/10.1517/17425247.5.1.119
67 Institut Teknologi Nasional
Kasthuri, J., Veerapandian, S., Rajendiran, N., 2009. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B Biointerfaces 68, 55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021 Ketsa, S., Paull, R.E., 2011. Mangosteen ( Garcinia mangostana L.), in: Postharvest
Biology and Technology of Tropical and Subtropical Fruits. Elsevier, pp. 1–
32e. https://doi.org/10.1533/9780857092618.1
Konishi, Y., Tsukiyama, T., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., 2006.
Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81, 24–29.
https://doi.org/10.1016/j.hydromet.2005.09.006
Lawrence, M.J., Rees, G.D., 2012. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 64, 175–193.
https://doi.org/10.1016/j.addr.2012.09.018
Leonard, K., Ahmmad, B., Okamura, H., Kurawaki, J., 2011. In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids Surf. B Biointerfaces 82, 391–396.
https://doi.org/10.1016/j.colsurfb.2010.09.020
Malik, M.A., Wani, M.Y., Hashim, M.A., 2012. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab. J. Chem. 5, 397–417. https://doi.org/10.1016/j.arabjc.2010.09.027
Masoud, N., Partsch, T., de Jong, K.P., de Jongh, P.E., 2019. Thermal stability of oxide-supported gold nanoparticles. Gold Bull. 52, 105–114.
https://doi.org/10.1007/s13404-019-00259-9
Mathew Thomas Maliael. Gold nanoparticles applications and challenges, 2016.
URL https://www.slideshare.net/MathewThomasMaliael/gold-nanoparticles applications-and-challenges (accessed 9.5.20).
McEvoy, E., 2008. The Development and Application of Oil-in-Water Microemulsion Liquid and Electrokinetic Chromatography for Pharmaceutical Analysis (phd). Waterford Institute of Technology.
Mehta, S.K., Kaur, G., n.d. Microemulsions: Thermodynamic and Dynamic Properties. Thermodynamics.
Mittal, A.K., Chisti, Y., Banerjee, U.C., 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356.
https://doi.org/10.1016/j.biotechadv.2013.01.003
MRSEC Education Group. Citrate Synthesis of Gold Nanoparticles, n.d. URL https://education.mrsec.wisc.edu/citrate-synthesis-of-gold-nanoparticles/
(accessed 9.5.20).
68 Institut Teknologi Nasional
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., Kumar, R., 2001. Bioreduction of AuCl4− Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed.
40, 3585–3588. https://doi.org/10.1002/1521-
3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
Nair, B., Pradeep, T., 2002. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth Des.
2, 293–298. https://doi.org/10.1021/cg0255164
Najjar, R., 2012. Microemulsions - A Brief Introduction. Microemulsions - Introd.
Prop. Appl. https://doi.org/10.5772/36057
Narayanan, K.B., Sakthivel, N., 2008. Coriander leaf mediated biosynthesis of gold
nanoparticles. Mater. Lett. 62, 4588–4590.
https://doi.org/10.1016/j.matlet.2008.08.044
Nune, S.K., Chanda, N., Shukla, R., Katti, K., Kulkarni, R.R., Thilakavathy, S., Mekapothula, S., Kannan, R., Katti, K.V., 2009. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 19, 2912.
https://doi.org/10.1039/b822015h
Ovelando, R., Nabilla, M.A., Surest, A.H., n.d. FERMENTASI BUAH MARKISA (PASSIFLORA) MENJADI ASAM SITRAT 7.
Pan, X., 2010. Water -in -oil microemulsions: Counterion effects in AOT systems and new fluorocarbon-based microemulsion gels. Dr. Diss. Available Proquest 1–136.
Parapat, R., Wijaya, M., Schwarze, M., Selve, S., Willinger, M.G., Schomäcker, R., 2012. Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: Preparation of highly active and stable supported Pt catalysts in microemulsions. Nanoscale 5.
https://doi.org/10.1039/c2nr32122j
Philip, D., 2009a. Honey mediated green synthesis of gold nanoparticles.
Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 73, 650–653.
https://doi.org/10.1016/j.saa.2009.03.007
Philip, D., 2009b. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 73, 374–
381. https://doi.org/10.1016/j.saa.2009.02.037
69 Institut Teknologi Nasional
Premkumar, T., Geckeler, K.E., 2010. Cucurbit[7]uril as a Tool in the Green Synthesis of Gold Nanoparticles. Chem. - Asian J. 5, 2468–2476.
https://doi.org/10.1002/asia.201000338
Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H., Zou, G., 2006. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 29–30, 3548–3552.
https://doi.org/10.1016/j.matlet.2006.03.055
Rai, A., Singh, A., Ahmad, A., Sastry, M., 2006. Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir 22, 736–741. https://doi.org/10.1021/la052055q Roza, I., Evawati, E., Fadri, R., Gusmalini, G., 2017. TOTAL FENOL DAN
AKTIVITAS ANTIOKSIDAN BUBUK KULIT MANGGIS (Garcinia mangostana L.) DARI BUAH SEGAR DENGAN VARIASI LAMA PENYIMPANAN YANG DIOLAH SECARA MEKANIS. J. Teknol. Pertan.
Andalas 21, 110. https://doi.org/10.25077/jtpa.21.2.110-116.2017
Sahu, G.K., Sharma, H., Gupta, A., Kaur, C.D., Sahu, G.K., Sharma, H., Gupta, A., Kaur, C.D., 2015. Advancements in Microemulsion Based Drug Delivery Systems for Better Therapeutic Effects. Int. J. Pharm. Sci. Dev. Res. 1, 008–
015. https://doi.org/10.17352/ijpsdr.000003
Sardar, R., Park, J.-W., Shumaker-Parry, J.S., 2007. Polymer-Induced Synthesis of Stable Gold and Silver Nanoparticles and Subsequent Ligand Exchange in Water. Langmuir 23, 11883–11889. https://doi.org/10.1021/la702359g Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., 2003. Bioreduction of
chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822.
https://doi.org/10.1039/b303808b
Sharma, D.R., n.d. Surfactants: Basics and Versatility in Food Industries.
Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea- Torresde, J.L., Pal, T., 2007. Synthesis of Plant-Mediated Gold Nanoparticles and Catalytic Role of Biomatrix-Embedded Nanomaterials. Environ. Sci. Technol. 41, 5137–5142.
https://doi.org/10.1021/es062929a
Shukla, R., Nune, S.K., Chanda, N., Katti, K., Mekapothula, S., Kulkarni, R.R., Welshons, W.V., Kannan, R., Katti, K.V., 2008. Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small 4, 1425–1436.
https://doi.org/10.1002/smll.200800525
70 Institut Teknologi Nasional
Singaravelu, G., Arockiamary, J.S., Kumar, V.G., Govindaraju, K., 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces 57, 97–101.
https://doi.org/10.1016/j.colsurfb.2007.01.010
Singh, S., D’Britto, V., Prabhune, A.A., Ramana, C.V., Dhawan, A., Prasad, B.L.V., 2010. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34, 294–301.
https://doi.org/10.1039/B9NJ00277D
Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M., Xia, Y., 2008.
Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res.
41, 1587–1595. https://doi.org/10.1021/ar800018v
Subramanian, A., 2010. Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int. J. Res. Pharm.
Sci. 1.
Sujitha, M.V., Kannan, S., 2013. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 102, 15–
23. https://doi.org/10.1016/j.saa.2012.09.042
UNIMUS.10.BABII.pdf, n.d.
http://repository.unimus.ac.id/3175/4/10.%20BAB%20II.pdf. Accessed 6 Sept. 2020.
Xie, J., Lee, J.Y., Wang, Ting, Y.P., 2007. High-Yield Synthesis of Complex Gold Nanostructures in a Fungal System. J. Phys. Chem. C 111, 16858–16865.
https://doi.org/10.1021/jp0752668
Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N.B., Bt Mohamad, S.E., Yew, Y.P., 2016. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. J. Nanomater.
2016, 1–7. https://doi.org/10.1155/2016/8489094
Yarce, C., n.d. The HLB SYSTEM a time-saving guide to emulsifier selection ANTICIPATING NEEDS.