• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA

N/A
N/A
Protected

Academic year: 2023

Membagikan "DAFTAR PUSTAKA"

Copied!
3
0
0

Teks penuh

(1)

38

DAFTAR PUSTAKA

Andana, A., Widyati, R., & Irzal, M. (2018). Pengenalan Citra Tulisan Tangan Dengan Metode Backpropagation. Jurnal Matematika Terapan, 2(Vol 2 No 1 (2018): JMT (Jurnal Matematika dan Terapan)), 36–44. Retrieved from

http://journal.unj.ac.id/unj/index.php/jmt/article/view/7166

Angeline, R., Kavithvajen, K., Balaji, T., Saji, M., & Sushmitha, S. R. (2019). CNN Integrated With HOG For Efficient Face Recognition. International Journal of Recent Technology and Engineering (IJRTE), 7(6), 1657–1661.

Caraka, B., Sumbodo, B. A. A., & Candradewi, I. (2017). Klasifikasi Sel Darah Putih Menggunakan Metode Support Vector Machine (SVM) Berbasis Pengolahan Citra Digital. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 7(1), 25. https://doi.org/10.22146/ijeis.15420

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2018). AutoAugment:

Learning Augmentation Policies from Data. (Section 3). Retrieved from http://arxiv.org/abs/1805.09501

Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., & Philbrick, K. (2017). Toolkits and Libraries for Deep Learning. Journal of Digital Imaging, 30(4), 400–405.

https://doi.org/10.1007/s10278-017-9965-6

Faruq, Z. H. (2018). Analisis Darah Lisis Terhadap Nilai Trombosit Menggunakan Metode Electrical Impedance. 2(1), 11–13.

Fauzi, J. F., Tolle, H., & Dewi, R. K. (2018). Implementasi Metode RGB To HSV pada Aplikasi Pengenalan Mata Uang Kertas Berbasis Android untuk Tuna Netra.

Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(6), 2319–2325.

Fitryadi, K., & Sutikno. (2016). Pengenalan Jenis Golongan Darah Menggunakan Jaringan Syaraf Tiruan Perceptron. Jurnal Masyarakat Informatika, 7(1), 1–10.

https://doi.org/10.2466/pr0.90.1.31-34

Goel, R., Kumar, V., Srivastava, S., & Sinha, A. K. (2017). A Review of Feature Extraction Techniques for Image Analysis. International Journal of Advanced Research in Computer and Communication Engineering, 6(2), 153–155.

https://doi.org/10.17148/ijarcce

Khasanah, M. N., Harjoko, A., & Candradewi, I. (2017). Klasifikasi Sel Darah Putih Berdasarkan Ciri Warna dan Bentuk dengan Metode K-Nearest Neighbor (K-NN).

(2)

39

IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 6(2), 151.

https://doi.org/10.22146/ijeis.15254

Liang, G., Hong, H., Xie, W., & Zheng, L. (2018). Combining Convolutional Neural Network With Recursive Neural Network for Blood Cell Image Classification.

IEEE Access, 6, 36188–36197. https://doi.org/10.1109/ACCESS.2018.2846685 Macon, B., Solan, M., & Lamoreux, K. (2017). Blood Cell Disorders: Symptoms,

Types, and Causes. Retrieved February 22, 2019, from 2017-06-19 website:

https://www.healthline.com/health/blood-cell-disorders

Majaj, N. J., & Pelli, D. G. (2018). Deep learning—Using machine learning to study biological vision. Journal of Vision, 18(13), 2. https://doi.org/10.1167/18.13.2 Medhi, S., Ahmed, C., & Gayan, R. (2016). A Study on Feature Extraction Techniques

in Image Processing. Internasional Journal of Computer Sciences and

Engineering, 4(7), 89–93. https://doi.org/10.1016/B978-1-84334-596-1.50008-0 Mooney, P. (2018). Blood Cell Images | Kaggle. Retrieved February 21, 2019, from

2018-04-21 website: https://www.kaggle.com/paultimothymooney/blood-cells Nasir, M., Suciati, N., & Wijaya, A. Y. (2017). Kombinasi Fitur Tekstur Local Binary

Pattern yang Invariant Terhadap Rotasi dengan Fitur Warna Berbasis Ruang Warna HSV untuk Temu. 7, 42–51.

Nurfita, R. (2018). Implementasi Deep Learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari. Universitas Muhammadiyah Surakarta.

Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. Retrieved from

http://arxiv.org/abs/1712.04621

Priyanka C. Dighe, S. K. G. (2014). Survey on Image Resizing Techniques.

International Journal of Science and Research (IJSR), 3(12), 1444–1448.

Retrieved from https://www.ijsr.net/archive/v3i12/U1VCMTQ3MjI=.pdf

Pujoseno, J. (2018). Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Alat Tulis (Universitas Islam Indonesia). Retrieved from http://e-journal.uajy.ac.id/14649/1/JURNAL.pdf

Putra, I. W. S. E. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) Pada Caltech 101. Jurnal Teknik ITS, 5(1), 76. Retrieved from http://repository.its.ac.id/48842/

Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29, 2352–2449.

(3)

40

https://doi.org/10.1162/NECO_a_00990

Safinaz, S. (2014). An Efficient Algorithm for Image Scaling with High Boost Filtering.

Internasional Journal of Scientific and Research Publications, 4(5), 1–9. Retrieved from papers://b6c7d293-c492-48a4-91d5-8fae456be1fa/Paper/p12771

Santoso, A., & Ariyanto, G. (2018). Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah. Emitor: Jurnal Teknik Elektro, 18(01), 15–21.

Shafira, T. (2018). Implementasi Convolutional Neural Network Untuk Klasifikasi Citra Tomat Menggunakan KERAS (Universitas Islam Indonesia). Retrieved from

http://e-journal.uajy.ac.id/14649/1/JURNAL.pdf

Shahin, A. I., Guo, Y., Amin, K. M., & Sharawi, A. A. (2019). White blood cells identification system based on convolutional deep neural learning networks.

Computer Methods and Programs in Biomedicine, 168, 69–80.

https://doi.org/10.1016/j.cmpb.2017.11.015

Sinaga, A. S. R. (2017). Implementasi teknik threshoding pada segmentasi citra digital.

Jurnal Manajemen Dan Informatika Pelita Nusantara, 1(Volume 1 No 2 Desember 2017), 48–51.

Sugiartha, I. G. R. A., Sudarma, M., & Widyantara, I. M. O. (2017). Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered-Based Retrieval of Images (CLUE).

Majalah Ilmiah Teknologi Elektro, 16(1), 85.

https://doi.org/10.24843/mite.1601.12

Tiwari, P., Qian, J., Li, Q., Wang, B., Gupta, D., Khanna, A., … Hugo, C. V. (2018).

Detection of subtype blood cells using deep learning. Cognitive Systems Research, 52(September), 1036–1044. https://doi.org/10.1016/j.cogsys.2018.08.022

Wibisono, K. A., & Ibadillah, A. F. (2017). Implementasi Metode Feature Extraction pada Klasifikasi Kualitas Daun Tembakau Madura. 10(2), 71–78.

Zhang, Q. (2018). Convolutional Neural Networks. ICECTT 2018, 434–439.

Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 14(8). https://doi.org/10.1109/TNNLS.2018.2876865

Zhu, Q., Li, X., Conesa, A., & Pereira, C. (2018). GRAM-CNN: A deep learning approach with local context for named entity recognition in biomedical text.

Bioinformatics, 34(9), 1547–1554. https://doi.org/10.1093/bioinformatics/btx815

Referensi

Dokumen terkait