• Tidak ada hasil yang ditemukan

for Detector Improvement and High-Precision Modeling of Binary Black Hole Ringdown Waveform

N/A
N/A
Protected

Academic year: 2023

Membagikan "for Detector Improvement and High-Precision Modeling of Binary Black Hole Ringdown Waveform"

Copied!
230
0
0

Teks penuh

In addition, I was deeply impressed by his natural and humorous attitude towards life and it is a great honor to allow him to be one of my best men at my wedding. We give examples of different couplings, discuss in detail one particular case of coherent coupling and show its advantages in optomechanical experiments.

INTRODUCTION

Preface

Linear quantum measurement device for gravitational wave detection In the early days of GW detection, excitations of mechanical oscillators (resonantIn the early days of GW detection, excitations of mechanical oscillators (resonant

  • Optomechanics and the interaction classification
  • Novel schemes to bypass bandwidth-sensitivity trade-off
  • Matter-wave interferometer

Conventionally, the coupling between the optical and mechanical degrees of freedom is classified based on an intuitive physical picture of the setup. However, EQL limits the useful bandwidth of the detector according to the gain-bandwidth trade-off.

Modeling of BBH ringdown gravitational waves

Gwtc-1: A Gravitational Wave Transient Catalog of Compact Binary Mergers Observed by Ligo and Virgo During the First and Second Observing Runs. Testing general relativity with binary black holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog, 10 2020.

CLASSIFICATION OF OPTOMECHANICAL INTERACTION AND THE DISCOVERY OF COHERENT COUPLING

Introduction

However, this Hamiltonian would have two different forms based on the parameters of the system. Such a Hamiltonian is dispersive: the resonant frequencies of the modulations are modulated by the mechanical oscillations.

Classification of optomechanical couplings

CoherentAAAB83icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLYjcsK9gGdoWTSO21oHkOSEcrQ33DjQhG3 K21sbm3vlHcre/sHh0fV45OOUZmm0KaKK92LiQHOJLQtsxx6qQY iYg7deNKc+90n0IYp+WinKUSCjCRLGCXWSWGoBW6qMWiQdlCt+XV/AbxOgoLUUIHWoMVDoSTiXxDoZhvSxDoZQVSQVSQSQSQSQSQSQVSXSQSQVSQS I+o5KIsBE+eLmGb5wyhAnSrsnLV6ovxM5EcZMRewmBbFjs+rNxf+8fmaT2yhnMs0 sSLpclGQcW4XnBeAh00AtnzpCqGbuVkzHRBNqXU0VV0Kw+NZVZT10V0V0KwXzBqd10V0V0KwXzBqd10VV0KwXzBqd1000V0KwXzBt1 B71EJtRFGKntErevMy78V79z6WoyWvyJyiP/A+fwDNr5GF< latexit sha1_base64="/B5lTSchtZwowtf7beuCcxtPubw =">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLYjcsK9gGdoWTSO21oHkOSEcrQ33DjQhG3/ow7/2Hggbczmfm/2Hggbczmf3dvvfcfwfvfwfwfwfwfm Hcre/sHh0fV45OOUZmm0KaKK92LiQHOJLQtsxx6qQYiYg7deNKc+90 n0IYp+WinKUSCjCRLGCXWSWGoBW6qMWiQdlCt+XV/AbxOgoLUUIHWoPoVDhXNhXNhMtSToXyBy5SETtSToXyBy5SEToBy5KiWBy5SetByXoBy5SetByXoS eLmGb5wyhAnSrsnLV6ovxM5EcZMRewmBbFjs+rNxf+8fmaT2yhnMs0sSLpclGQc W4XnBeAh00AtnzpCqGbuVkzHRBNqXU0VV0Kw+uV10rmXRFGZT4G10rmxbzt100000000000000000007 KntErevMy78V79z6WoyWvyJyiP/A+fwDNr5GF AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjMi6LLYjcsK9gGdoWTSO21oHkOSEcrQ33DjQhG3/ow7 /8a0nYW2Hgg2DNsHebhffmhfhfcfmhfhfcfmhfcfm V45OOUZmm0KaKK92LiQHOJLQtsxx6qQYiYg7deNKc+90n0IYp+WinKUSCjCRLGCXWSWGoBW6qMWiQdlCt+XV/AbxOgoLUUIHWoPoVDhXNhMtSTozpB35qoXixoG5SETsKiXxoG5MdSkIwSk YV5SQVXxOyMds5KVSXoGWY5SQVXxOyG AnSrsnLV6ovxM5EcZMRewmBbFjs+rNxf+8fmaT2yhnMs0sSLpclGQcW4XnBeAh00AtnzpCqGbuVkzHRBNqXU0VV0Kw+uV10rmqB44/XNXcadqEZTJErfGn8V10rmqB44/XNXcad qEztJErfGtJV7KZV7KtJV1ZV1ZV1ZZV10000t7 V79z6WoyWvyJyiP/A+fwDNr5GF AAAB83ICBVDLSGMXFM3UV62VQKS3WSK4KJMI6LLYJCSK9GGDOWTSO21OHKOSECRQ3 3DJQHG3/OW7/8A0NYW2HGGCZRMHE3PILDNJFF/BK21SBM3VLHCRE/SHH0FV45OCOLKKK2MMM2KMM2LEK2KMM2LEK2LEK2LEK2LEK2LEKK2KM2KM2KM2KK2LEKK2LEKK2LEKK2KK2KK2LEKHL iqhojlqtsxx6qqyiyg7denkc+90n0iyp+winkuscjcrlgcxwsobw6qmwiqdlct+xv/abxogoluuihwopovdhxnhmtstozpb35qo5xoyyihwsxmdksetsgi+o5kisbe+elmgb5wyhansb ZMREWMBBFJS+RNXF+8FMAT2YHNMS0SLSPCLGQCW4XNBEAH00ATNZPCQGBUVKZHRBNQXU 0VV0KW+UV10RMQB44/XNCAD0UDZXSGZTELCTANAQB71EJTRFGKKNEVMY788 +fwdnr5gf .

Figure 2.1: The comparison between coherent coupling and dispersive coupling:
Figure 2.1: The comparison between coherent coupling and dispersive coupling:

Example of different couplings

  • Dispersive coupling
  • Dissipative coupling
  • Coherent coupling
  • Coexisting coupling

BSAAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuhKim5cVrQXaIeSSTNtbC5DkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0o 4M9b3v73Cyura+kZxs7S1vbO7V94/aBqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c203nqi2jAlH+w4oaHAA8liRrB1VrOrBbq+75UrftWfCS1DkEMFctV75a9uX5FUUGkJx8Z0Aj+x NK7 SqPowhHc AynEMAF1OAW6tAAAo/wDK/w5invxXv3PuatBS+fOYQ/8j5/ANz5jqI=AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuhKim5cVrQXaIeSSTNtbC5DkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0o4 M9b3v73Cyura+kZ xs7S1vbO7V94/aBqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c203nqi2jAlH+w4oaHAA8liRrB1VrOrBbq+75UrftWfCS1DkEMFctV75a9uX5FUUGkJx8Z0Aj+xy Ya1ZYTTSambGppgMsID2nE osaAmzGbbTtCJc/ooVto9adHM/T2RYWHMWESuU2A7NIu1qflfrZPa+DLMmExSSyWZfxSnHFmFpqejPtOUWD52gIlmbldEhlhjYl1AJRdCsHjyMjTPqoHju/NK7SqPowhHcA ynEMAF1OAW6tAAAo/wDK/w5 invxXv3PuatBS+fOYQ/8j5/ANz5jqI=AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuhKim5cVrQXaIeSSTNtbC5DkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0o4 M9b3v73Cyura+ kZxs7S1vbO7V94/aBqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c203nqi2jAlH+w4oaHAA8liRrB1VrOrBbq+75UrftWfCS1DkEMFctV75a9uX5FUUGkJx8Z0Aj+xy Ya1ZYTTSambGppgMsID2 nEosaAmzGbbTtCJc/ooVto9adHM/T2RYWHMWESuU2A7NIu1qflfrZPa+DLMmExSSyWZfxSnHFmFpqejPtOUWD52gIlmbldEhlhjYl1AJRdCsHjyMjTPqoHju/NK7SqPowhHcA ynEMAF1OAW6tAAAo/wDK/ w5invxXv3PuatBS+fOYQ/8j5/ANz5jqI=AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozIuhKim5cVrQXaIeSSTNtbC5DkhHK0Hdw40IRt76PO9/GtJ2Ftv4Q+PjPOeScP0o4 M9b3 v73Cyura+kZxs7S1vbO7V94/aBqVakIbRHGl2xE2lDNJG5ZZTtuJplhEnLai0c203nqi2jAlH+w4oaHAA8liRrB1VrOrBbq+75UrftWfCS1DkEMFctV75a9uX5FUUGkJx8Z0Aj+xy Ya1ZYTTSamb GppgMsID2nEosaAmzGbbTtCJc/ooVto9adHM/T2RYWHMWESuU2A7NIu1qflfrZPa+DLMmExSSyWZfxSnHFmFpqejPtOUWD52gIlmbldEhlhjYl1AJRdCsHjyMjTPqoHju/NK7SqPowhHcA ynEMAF1OAW6tA AAo/wDK/w5invxXv3PuatBS+fOYQ/8j5/ANz5jqI=. PRMAAAB7nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdCTFLx4EapYW2iXkk2zbWiSXZJZoZT+CC8eFPHq7/HmvzFt96CtLwQe3pkhM2+ USm HR97+9wsrq2vpGcbO0tb2zu1feP3i0SWYYb7BEJqYVUcul0LyBAiVvpYZTFUnejIbX03rziRsrEv2Ao5SHiva1iAWj6KxmxyhSv7/tlit+1Z+JLEOQQwVy1bvlr04vYZniGpmk1rYDP8V wTA0KJ vmk1MksTykb0j5vO9RUcRuOZ+tOyIlzeiROjHsaycz9PTGmytqRilynojiwi7Wp+V+tnWF8GY6FTjPkms0/ijNJMCHT20lPGM5QjhxQZoTblbABNZShS6jkQggWT16Gx7Nq4PjuvFK7yuMowhE cwykEcAE1 uIE6NIDBEJ7hFd681Hvx3r2PeWvBy2cO4Y+8zx+MaY8GAAAB7nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdCTFLx4EapYW2iXkk2zbWiSXZJZoZT+CC8eFPHq7/HmvzFt96CtLwQe3pkhM2+USmHR97+9wsrq2vpGc bO 0tb2zu1feP3i0SWYYb7BEJqYVUcul0LyBAiVvpYZTFUnejIbX03rziRsrEv2Ao5SHiva1iAWj6KxmxyhSv7/tlit+1Z+JLEOQQwVy1bvlr04vYZniGpmk1rYDP8VwTA0KJvmk1MksTykb0 j5vO9 RUcRuOZ+tOyIlzeiROjHsaycz9PTGmytqRilynojiwi7Wp+V+tnWF8GY6FTjPkms0/ijNJMCHT20lPGM5QjhxQZoTblbABNZShS6jkQggWT16Gx7Nq4PjuvFK7yuMowhEcwykEcAE1uIE6NIDBEJ7 hFd681Hv x3r2PeWvBy2cO4Y+8zx+MaY8GAAAB7nicbZBNSwMxEIZn61etX1WPXoJF8FR2RdCTFLx4EapYW2iXkk2zbWiSXZJ ZoZT+CC8eFPHq7/ HmvzFt96CtLwQe3pkhM2+USmHR97+9wsrq2vpGcbO0tb2zu1feP3i0SWYYb7BEJqYVUcul0LyBAiVvpYZTFUnejIbX03rziRsrEv2Ao5SHiva1iAWj6KxmxyhSv7/tlit +1Z+JLEOQQwV y1bvlr04vYZniGpmk1rYDP8VwTA0KJvmk1MksTykb0j5vO9RUcRuOZ+tOyIlzeiROjHsaycz9PTGmytqRilynojiwi7Wp+V+tnWF8GY6FTjPkms0/ijNJMCHT20lPGM5QjhxQZoTblbAB NZShS6jkQ ggWT16Gx7Nq4PjuvFK7yuMowhEcwykEcAE1uIE6NIDBEJ7hFd681Hvx3r2PeWvBy2cO4Y+8zx+MaY8GAAAB7nicbZ BNSwMxEIZ n61et nejIbX03rziRsrEv2Ao5SHiva1iAWj6KxmxyhSv7/tlit+ 1Z +JLEOQQwVy1bvlr04vYZniGpmk1rYDP8VwTA0KJvmk1MksTykb0j5vO9RUcRuOZ+tOyIlzeiROjHsaycz9PTGmytqRilynojiwi7Wp+V+tnWF8GY6FTjPkms0/ijNJMCHT20lPGM5QjhxQZo TblbABNZSh S6jkQggWT16Gx7Nq4PjuvFK7yuMowhEcwykEcAE1uIE6NIDBEJ7hFd681Hvx3r2PeWvBy2cO4Y+8zx+MaY8G.

Figure 2.3: On-chip optomechanical coupling between the curved input waveguide and the optical racetrack cavity, adapted from FIG
Figure 2.3: On-chip optomechanical coupling between the curved input waveguide and the optical racetrack cavity, adapted from FIG

Purely coherent coupling in a ring cavity system

  • Cavity modes and the Hamiltonian
  • Application: Enhanced cooling

ˆ cAAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lMl20y7dbOLuKLuRi8BW4B000F800008686666666868686666666668686686868886668686868686868686868686868 LEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqylo0FrHqBqiZ4JK1DDeCdRPFMAoE6wST29zvPDGleSwfzDRhfoQjyUNO0Vip2x+jIXRQH1SqVSimL65GH1SwSimL60V6V1SqVSiL6VQH1SqSimL6V6GN1SqVSiL6V6V6 J8TNUhlPBZuV+qlmCdIIj1rNUYsS0n83vnZFzqwxJGCtb0u7P1d8TGUZaT6PAdkZoxnrZy8X/vF5qwms/4zJJDZN0sShMBTExyZ8NFJWq25Ej lbTrNc/y+8tq46aIowSncAYX4MEVNOAOmtACCgKe4RXenEfnxXl3Phata04xcwJ/4Hz+AEtuj3c=AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lMl20y7dbOLuRiihf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqylo0FrHqBqiZ4JK1DDeCdRPFMAoE6wST29zvPDGleSwfzDRhfoQjyUNO0Vip2x+jIXRQH1Sqbs2dg6wSryBVKNAcVL76w5imEZOGCtS657mJ8TNUhlPBZuV+qlmCdIIj1rNUYsS0n83vnZFzqwxJGCtb0u7P1d8TGUZaT6PAdkZoxnrZy8X/vF5qwms/4zJJDZN0sShMBTExyZ8nQ64YNWJqCVLF7a2EjlEhNTaisg3BW355lbTrNc/y+8tq46aIowSncAYX4MEVNOAOmtACCgKe4RXenEfnxXl3Phata04xcwJ/4Hz+AEtuj3c=AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGC/YA2lMl20y7dbOLuRiihf8KLB0W8+ne8 +W/ctDlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqylo0FrHqBqiZ4JK1DDeCdRPFMAoE6wST29zvPDGleSwfzDRhfoQjyUNO00VSQVQV20JUNO00VBQVBQJYUNO00VBQVB200VBQJYUNO0VBQV2 76w5imEZOGCtS657mJ8TNUhlPBZuV+qlmCdIIj1rNUYsS0n83vnZFzqwxJGCtb0u7P1d8TGUZaT6PAdkZoxnrZy8X/vF5qwms/VF5qwms/4zW8F5qwms/4zV8F5qwms/4zV8F5Qwms 2EjlEhNTaisg3BW355lbTrNc/y+8tq46aIowSncAYX4MEVNOAOmtACCgKe4RXenEfnxXl3Phata04xcwJ/4Hz+AEtuj3c= 2. MAAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MWLUNF+QBvKZjtpl24LNH74X WHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHwzq7efUGkey0czSdCP6FDykDNqrPVw13fciqw75Y+13f6fDykDNqrPVw13fcwqjXR+ buemxg/o8pwJnBa6qUaE8rGdIhdi5JGqP1svuqUnFlnQMJY2ScNmbu/JzIaaT2JAtsZUTPSy7WZ+V+tm5rwys+4TFKDki0+ClNBTExmd5MBTHWgSDKV2FQVQVQVQVQVQVQVQVQVQVQNBTExmd5MBTHQVgdKV2 z/ L9ZaV+ncdRhBM4hXPwoAZ1uIUGNIHBEJ7hFd4c4bw4787HorXg5DPH8EfO5w/InY10

Figure 2.6: Ring cavity configuration and field labeling. Here 𝑀 0 is the front mir- mir-ror with amplitude reflectivity 𝑟 0 and transmittance 𝑡 0 , 𝑀 1 , 2 are two fixed totally reflective end mirror, 𝑀 is the movable membrane with amplitude reflectivity
Figure 2.6: Ring cavity configuration and field labeling. Here 𝑀 0 is the front mir- mir-ror with amplitude reflectivity 𝑟 0 and transmittance 𝑡 0 , 𝑀 1 , 2 are two fixed totally reflective end mirror, 𝑀 is the movable membrane with amplitude reflectivity

Discussion

Appendix: Dispersive Hamiltonian

Appendix: Optoacoustic Hamiltonian

  • Input-output relation
  • Resonance structure
  • Electric field standing wave distribution
  • Conservative cavity Hamiltonian

The origin of this 𝑧-coordinate. is the front mirror 𝑀0 and it increases clockwise along the optical axis of the ring cavity. It becomes 𝑧𝑥 =𝐿/2+𝑥at the instantaneous position of the membrane and finally becomes 𝑧= 𝐿when the front mirror is reached again.

Appendix: Optomechanical cooling limit in the ring cavity system .1 Coupled optical and mechanical equations of motion.1Coupled optical and mechanical equations of motion

  • Sideband feature and optical damping
  • Quantum limit of mechanical occupation number

To obtain the mechanical occupation number, we need to calculate the second-order correlation function of mechanical operators. Based on all derivations above, under conditionΩ𝑚 𝛾, the mechanical occupation number defined in Eq.

PT-SYMMETRIC AMPLIFIER: BROADBAND SENSITIVITY IMPROVEMENT VIA COHERENT QUANTUM FEEDBACK

Introduction

SYMMETRICAL AMPLIFIER: BROADBAND SENSITIVITY ENHANCEMENT VIA COHERENT QUANTUM FEEDBACK . interferometer type [6]) use optical resonators to increase the interaction between the space-time voltage and the laser light field. 22] (Fig. 3.1), an additional coherent quantum feedback controller [34, 35] (activated by an unstable optomechanical oscillator) is attached to a laser interferometer to provide an "anomalous dispersion" whose negative group time delay cancels the positive group time delay in the interferometer, which achieves broadband signal amplification without increasing noise.

Figure 3.1: Coherent quantum feedback for laser interferometer GW detectors. The feedback controller (parametric amplifier) is achieved by the filter cavity pumped at 𝜔 0 + 𝜔 𝑚 and the movable mirror with oscillation frequency 𝜔 𝑚
Figure 3.1: Coherent quantum feedback for laser interferometer GW detectors. The feedback controller (parametric amplifier) is achieved by the filter cavity pumped at 𝜔 0 + 𝜔 𝑚 and the movable mirror with oscillation frequency 𝜔 𝑚

PT-symmetric amplifier .1 Theoretical model.1Theoretical model

  • Connection to EP, PT-symmetry, and multi-mode generalization
  • Effect of Decoherence

ˆAAACknicdVFNTxsxEHWWtkAoLV+3XqxGSJySXYRUxAnEpYceQCIBKVkh25lsTLy2Zc8iRav8B67wz/g3eJNVRUI7kqWn9+bNh4dbJT3G8WsjWvv0+cv6xmZ z6+v2t+87u3s9bwonoCuMMu6OMw9KauiiRAV31gHLuYJbPrms9NtHcF4afYNTC2nOMi1HUjAMVG8wZljO7ndacTueB/0Ikhq0SB1X97uNx8HQiCIHjUIx7/tJbDEtmUMpFMyag8KDZWLCMugHqFkOPi3n487oYWCGdGRceBrpn H3vKFnu/TTnITNnOParWkX+S+sXODpNS6ltgaDFotGoUBQNrXanQ+lAoJoGwISTYVYqxswxgeGHlipxnjmAiUrLqgvnRs1WiwVuSOdZVAGuVvi7wyEdI9qzTkcg023jso6dZJ1aXXJYWX3HfwwLsRkulaze5SPoHbeTgK9PWucn9c02 yA/ykxyRhPwi5+Q3uSJdIsgDeSLP5CU6iM6ii+hykRo1as8+WYrozxvg5cs7< latexit sha1_base64="c2NOelYXV+QcRHUd1TrXmF1qb0c=">AAACknicdVFNTxsxEHWWtkAoLV+3XqxGSJySXYRUxAnEpYceQCIBKVkh25lsTLy2Zc8iRav8B67wz/g3eJNVRUI7kqWn9+bNh4dbJT3G8WsjWvv0+cv6xmZz6 +v2t+87u3s9bwonoCuMMu6OMw9KauiiRAV31gHLuYJbPrms9NtHcF4afYNTC2nOMi1HUjAMVG8wZljO7ndacTueB/0Ikhq0SB1X97uNx8HQiCIHjUIx7/tJbDEtmUMpFMyag8KDZWLCMugHqFkOPi3n487oYWCGdGRceBrpnH3 vKFnu/TTnITNnOParWkX+S+sXODpNS6ltgaDFotGoUBQNrXanQ+lAoJoGwISTYVYqxswxgeGHlipxnjmAiUrLqgvnRs1WiwVuSOdZVAGuVvi7wyEdI9qzTkcg023jso6dZJ1aXXJYWX3HfwwLsRkulaze5SPoHbeTgK9PWucn9c02yA /ykxyRhPwi5+Q3uSJdIsgDeSLP5CU6iM6ii+hykRo1as8+WYrozxvg5cs7AAACknicdVFNTxsxEHWWtkAoLV+3XqxGSJySXYRUxAnEpYceQCIBKVkh25lsTLy2Zc8iRav8B67wz/g3eJNVRUI7kqWn9+bNh4dbJT3G8WsjWvv0+cv6xmZz6+v2t+87 u3s9bwonoCuMMu6OMw9KauiiRAV31gHLuYJbPrms9NtHcF4afYNTC2nOMi1HUjAMVG8wZljO7ndacTueB/0Ikhq0SB1X97uNx8HQiCIHjUIx7/tJbDEtmUMpFMyag8KDZWLCMugHqFkOPi3n487oYWCGdGRceBrpnH3vKFnu/TTnIT NnOParWkX+S+sXODpNS6ltgaDFotGoUBQNrXanQ+lAoJoGwISTYVYqxswxgeGHlipxnjmAiUrLqgvnRs1WiwVuSOdZVAGuVvi7wyEdI9qzTkcg023jso6dZJ1aXXJYWX3HfwwLsRkulaze5SPoHbeTgK9PWucn9c02yA/ykxyRhPwi5 +Q3uSJdIsgDeSLP5CU6iM6ii+hykRo1as8+WYrozxvg5cs7AAACknicdVFNTxsxEHWWtkAoLV+3XqxGSJySXYRUxAnEpYceQCIBKVkh25lsTLy2Zc8iRav8B67wz/g3eJNVRUI7kqWn9+bNh4dbJT3G8WsjWvv0+cv6xmZz6+v2t+87u3 s9bwonoCuMMu6OMw9KauiiRAV31gHLuYJbPrms9NtHcF4afYNTC2nOMi1HUjAMVG8wZljO7ndacTueB/0Ikhq0SB1X97uNx8HQiCIHjUIx7/tJbDEtmUMpFMyag8KDZWLCMugHqFkOPi3n487oYWCGdGRceBrpnH3vKFnu/TTnITNn OParWkX+S+sXODpNS6ltgaDFotGoUBQNrXanQ+lAoJoGwISTYVYqxswxgeGHlipxnjmAiUrLqgvnRs1WiwVuSOdZVAGuVvi7wyEdI9qzTkcg023jso6dZJ1aXXJYWX3HfwwLsRkulaze5SPoHbeTgK9PWucn9c02yA/ykxyRhPwi5+Q 3uSJdIsgDeSLP5CU6iM6ii+hykRo1as8+WYrozxvg5cs7. ˆAAACknicdVHLbhMxFHWGVwmvFtixsYgqsZrMDGUCXRV1w4JFkUhaKRlVtnMzMfCrfHYn8PvcLvcHYdQVQVQVQVQVQJVQVQVQVQVQVQVQVQJVQVQVQVQVQJVQJVQJVQJVQVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJVQJN +3SnpMkl+d6M7de/cfHDzsPnr85 Omzw6PnI29qJ2AojDluijMPSmoYokQFV9YBq7iCS744b/XLG3BeGv0VlxaKipVazqRgGKjRZM6wWV0f8pL4C2Z2Nzwe0f8pL43ZvNzv08pL43ZvNZvYa08pL43ZvYZvY08pL43ZZvY08pL43ZvNzZvNzv08pL43ZvYZvNzZvYz01000009 F91LmZTI2oK9AoFPN+nCYWi4Y5lELBqjupPVgmFqyE cYCaVeCLZj3uih4HZkpnxoWnka7Zfx0Nq7xfVjxkVgznfl9ryf9p4xpn74tGalsjaLFpNKOVRygSyg3LFpNKOVrSygSyg3LFpNKvSvvSygSyg3LFP4VVVSygYg3LfVvSvVQVgYg3LfVkWVQVYgYg3LfVkVVQVYgYg3LfVkWVQVYg pyXDmChiqbtwrlRq/1igZvSdRZVgPsV/u5wTOeI9rTfF8h0bFzZt4uyv1V3HF a233GLYSN2w6X+nIPeDkZZnAb85aR3drK92QF5ASCJTNFYQMYQFQMQFYQNQVQVQVNQVQVNQVQVYQVQVQVYQVQVQVYQVQVQVQVQVNQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQVQQVQVNQY Zel6QnYg+/waO/MuOAAACnicdVHLbhMxFHWGVwmvFtixsYgqsZrMDGUCXRV1w4JFkUhaKRlVtnMzMfHYln7CCBNKYd3nQLRVNkYd3nQVNkYdvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvkvvk kl+d6M7de/cfHDzsPnr85Omzw6PnI29qJ 2AojDLuijMPSmoYokQFV9YBq7iCS744b/XLG3BeGv0VlxaKipVazqRgGKjRZM6wWV0f9pL43Yc8OVDC2N9FN0ZFN0Z09FN0000000000000000000009 ZTI2oK9AoFPN+nCYWi4Y5lELBqjupPVgmFqyEcYCaVeCLZj3uih 4HZkpnxoWnka7Zfx0Nq7xfVjxkVgznfl9ryf9p4xpn74tGalsjaLFpNKsVRUPgb3EUSg4 ChiqbtwrlRq/1igZvSdRZVgPsV/u5wTOeI9rTfF8h0bFzZt4uyv1V3HFa233GLYSN2w6 X+nIPeDkZZnAb85aR3drK92QF5RV6TNyQlA3JGPYT/yQlA3JGPfyQnFoQlA3JGPYFQFQLQVZQVYVQVQVQVNQVQVNQVNQVNQVQVNQVQN nYg+/waO/MuO AAAKnicdVHLbhMxFHWGVwmvFtixsYgqsZrMDGUCXRV1w4JFkUhaKRlVtnMzMfHYln2nUjTKP7CFP+Nv8CQBkYheydLROffchy+3SnpMkl+d6M7de/cfHDzsPnr85Omzw6PnI29qJ2AojDLuijMPSmoYokQFV9YBq7iCS744b/ XLG3BeGv0VlxaKipVazqRgGKjRZM6wWV0f9pL43Yc8zwY0ifNkkOVZC9J88DajaZyso0e2cXF91LmZTI2oK9AoFPN+nCYWi4Y5lELBqjupPVgmFqyEcYCaVeCLZj3uih4HZkpnxoWnka7Zfx0Nq7xfVjxkVgznfl 9ryf9p4xpn74tGalsjaLFpNKsVRUPb3elUOhColgEw4WSYlYo5c0xg+KGdSpyXDmChiqbtwrlRq/1igZvSdRZVgPsV/u5wTOeI9rTfF8h0bFzZt4uyv1V3HFa233GLYSN2w6X+nIPeDkZZnAb85aR3drK92QF5RV6TN yQlA3JGPpELMiSCfCPfyQ/yM3oZnUYfo/NNatTZel6QnYg+/waO/MuOAAACknicdVHLbhMxFHWGVwmvFtixsYgqsZrMDGUCXRV1w4JFkUhaKRlVtnMzMfHYln2n UjTKP7CFP+Nv8CQBkYheydLROffchy+3SnpMkl+ d6MzOmqPjn2cdlcdlcdlcd10000000000000000001 uijs aVeCLZj3uih4HZkpnxoWnka7Zfx0Nq7xfVjxkVgznfl9ryf9p4xpn74tGalsjaLFpNKsVRUPb3elUOhColgEw4WSYlYo5c0xg+KGdSpyXDmChiqbtwrs f.

Figure 3.2: Mode interaction and stability analysis. a, A weak signal sensor [mode ( 𝑎,ˆ 𝑎ˆ † ), plus ( 𝑥 , 𝑝 ) for the test mass in case of GW detectors] plus coherent quantum feedback with modes ( 𝑏,ˆ 𝑏ˆ † ) , ( 𝑐,ˆ 𝑐 ˆ † )
Figure 3.2: Mode interaction and stability analysis. a, A weak signal sensor [mode ( 𝑎,ˆ 𝑎ˆ † ), plus ( 𝑥 , 𝑝 ) for the test mass in case of GW detectors] plus coherent quantum feedback with modes ( 𝑏,ˆ 𝑏ˆ † ) , ( 𝑐,ˆ 𝑐 ˆ † )

Comparison with the unstable amplifier

The stability of the system is jointly determined by the stability of the open-loop gain 𝐺𝑜and the condition when𝐺𝑜 =11. The feedback gain at uWLC is inherently unstable, and the instability will be inherited by the entire system; while for sWLC, the stability depends on the ratio of the feedback gain to the open-loop transfer function, i.e. the condition to reach 𝐺𝑜 = 1, which is determined by the value of 𝜒/𝜅.

Figure 3.4: The comparison between sWLC and uWLC. a, Mode interaction structure (same as Fig
Figure 3.4: The comparison between sWLC and uWLC. a, Mode interaction structure (same as Fig

Application to laser interferometer GW detectors .1 PT-symmetric amplifier for GW detection.1PT-symmetric amplifier for GW detection

  • BAE with effective negative mass

SQLAAACk3icdVHLahsxFJWnjyTuI0lLVtmImkBX9kwItKRdhDaLLBpIaB0H7CFI8vVYrgfJEYS0pZZd5VYrfJEYS0pZZd5VYrfJYRx7pZz2vVYrfJYRx3pZz2vVYrfJYRx3pZz2vYrfJYRx7p XW6V9BjHD63o2fMXLzc2t9qvXr95u72z++7Km9IJ6AujjLvmzIOSGvooUcG1dcAKrmDA8++1PrgF56XRv3BmIS1YpuVECoaBGoxcQX9e/rjCFNKPZYGa000000000000000000000000000000 wfJrHFtGIOpVAwb49KD5aJnGUwDFCzAnxaLead04PAjOnEuPA00gX7t6NihfezgofMguHUr2s1+S9tWOLkc1pJbUsELZaNJqWiaGi9PB1LBwLVLAAmnAyzMXUfZfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfxfx100 FEFuF7hzw4HdIpoj3s9gUx3jct6Ns96jbrisLL+jv8YlmI7XCpZv8tTcHXYTQK+POqcfG1utkn2yQfykSTkEzkhZ+SC9IkgOflN7sh9tBd9IkgOflN7sh9tBd9IkgOflN7sh9tBd9IkgOflN7sh9tBd9IkgOflN7sh9tBd9IqNV4Fp8pxitMAwlyFp8mxvt_ 1_base64="Jg5LnS06MWmRWfqnZ67ej5EGSMk=">AAACk3icdVHLahsxFJWnjyTuI0lLVtmImkBX9kwItKRdhDaLLBpIaB0H7CFI8vVYjEYS0p5P2Krfx7p2AGrfx7p2AGrfx7p2AGrfx7p2Krxfx7p2Krxfx7p2Krxfx30000000 HD63o2fMXLzc2t9qvXr95u72z++7Km9IJ6AujjLvmzIOSGvooUcG1dcAKrmDA8+ +1PrgF56XRv3BmIS1YpuVECoaBGoxcQX9e/rjZ6cTdeBH0KUga0CFNXNzstm5HYyPKAjQKxbwfJrHFtGIOpVAwb49KD5aJnGUwDFCzAnxaLead04PAjOnEuPA00gX7t6NihfezgofMguHUr2s1+S9tWOLkc1pJbUsELZaNJqWiaGi9PB1LBwLVLAAmnAyzUjFljgkMX7RSifPMAeQqreounBs1Xy8WuDFdZFEFuF7hzw4HdIpoj3s9gUx3jct6Ns96jbrisLL+jv8YlmI7XCpZv8tTcHXYTQK+POqcfG1utkn2yQfykSTkEzkhZ+SC9IkgOflN7sh9tBd9ib5Fp8vUqNV43pOViM4fAXMlywc=AAACk3icdVHLahsxFJWnjyTuI0lLVtmImkBX9kwItKRdhDaLLBpIaB0H7CFI8vVYjEYS0p2AGfwR3SZflr+Jxh5K7bQXBIdz7rkPXW6V9BjHD63o2fMXLzc2t9qvXr95u72z++7Km9IJ6AujjLvmzIOSGvooUcG1dcAKrmDA8++1PrgF56XRv3BmIS1YpuVECoaBGoxcQX9e/rjZ6cTdeBH0KUga0CFNXNzstm5HYyPKAjQKxbwfJrHFtGIOpVAwb49KD5aJnGUwDFCzAnxaLead04PAjOnEuPA00gX7t6NihfezgofMguHUr2s1+S9tWOLkc1pJbUsELZaNJqWiaGi9PB1LBwLVLAAmnAyzUjFljgkMX7RSifPMAeQqreounBs1Xy8WuDFdZFEFuF7hzw4HdIpoj3s9gUx3jct6Ns96jbrisLL+jv8YlmI7XCpZv8tTcHXYTQK+POqcfG1utkn2yQfykSTkEzkhZ+SC9IkgOflN7sh9tBd9ib5Fp8vUqNV43pOViM4fAXMlywc= AAACk3icdVHLahsxFJWnjyTuI0lLVtmImkBX9kwItKRdhDaLLBpIaB0H7CFI8vVYjEYS0BXH7CFI8vVYjEYS0BXZZd7VYJEYS0BXBZZd7VYJYS00XbZzf7fxfxfxfxfxfx2000002 W6V9BjHD63o2fMXLzc2t9qvXr95u72z++7Km9IJ6AujjLvmzIOSGvooUcG1dcAKrmDA8++1PrgF56XRv3BmIS1YpuVECoaBGoxcQX9e/rbHX0KUPGaYstm5KHQVnQdxcdxcfvxcfxctxvxctxctxctxctxctxcts for EFuF7hzw4HdIpoj3s9gUx3jct6Ns96jbrisLL+jv8YlmI7XCpZv8tTcHXYTQK+POqcfG1utkn2yQfykSTkEzkhZ+SC9IkgOflN7sh9tBd9ib5Fp8pOViMxiqly.

Figure 3.6: Example of GW noise spectra for sWLC and uWLC (both with 𝜅 /( 2 𝜋 ) = 5 kHz , 𝜒 /( 2 𝜋 ) = 4
Figure 3.6: Example of GW noise spectra for sWLC and uWLC (both with 𝜅 /( 2 𝜋 ) = 5 kHz , 𝜒 /( 2 𝜋 ) = 4

Application to microwave axion detectors .1 Introduction of microwave axion detector.1Introduction of microwave axion detector

  • PT-symmetric amplifier for axion detection

1/S(⌦)AAACoHicdVFNTxsxEHW2XzT9CvTIxSJCopf9AFpoT0hcuBHUBlCTVeR1JhsrXtuyZ1GjVf5Kr+1f4t/gTbZVE5WRLD29N29mPJMZKRzG8X0rePL02fMXWy/br16/efuus71z7XRpOfS5ltreZsyBFAr6KFDCrbHAikzCTTY7r/WbO7BOaPUN5wbSguVKTARn6KlRZyeJvo6qYc+JxcHwsoCcfRh1unF4dPjxNDmmK/CpASefY5qE8TK6pIneaLt1NxxrXhagkEvm3CCJDaYVsyi4hEV7WDowjM9YDgMPFSvApdVy+AXd98yYTrT1TyFdsv86KlY4Ny8yn1kwnLpNrSb/pw1KnJymlVCmRFB81WhSSoqa1pugY2GBo5x7wLgVflbKp8wyjn5fa5WyLLcAM5lWdZcs03KxWcxzY7rMohJws8LfP+zTKaL5EkUcmQq1zSMzy6NGXXMYUa/jEcNKbPtL/TkHfRxcH4aJx1fH3bOwudkW2SV75IAk5ISckQvSI33CyQ/yk/wiv4O94CK4DK5WqUGr8bwnaxF8fwC+h8/CAAACoHicdVFNTxsxEHW2XzT9CvTIxSJCopf9AFpoT0hcuBHUBlCTVeR1JhsrXtuyZ1GjVf5Kr+1f4t/gTbZVE5WRLD29N29mPJMZKRzG8X0rePL02fMXWy/br16/efuus71z7XRpOfS5ltreZsyBFAr6KFDCrbHAikzCTTY7r/WbO7BOaPUN5wbSguVKTARn6KlRZyeJvo6qYc+JxcHwsoCcfRh1unF4dPjxNDmmK/CpASefY5qE8TK6pIneaLt1NxxrXhagkEvm3CCJDaYVsyi4hEV7WDowjM9YDgMPFSvApdVy+AXd98yYTrT1TyFdsv86KlY4Ny8yn1kwnLpNrSb/pw1KnJymlVCmRFB81WhSSoqa1pugY2GBo5x7wLgVflbKp8wyjn5fa5WyLLcAM5lWdZcs03KxWcxzY7rMohJws8LfP+zTKaL5EkUcmQq1zSMzy6NGXXMYUa/jEcNKbPtL/TkHfRxcH4aJx1fH3bOwudkW2SV75IAk5ISckQvSI33CyQ/yk/wiv4O94CK4DK5WqUGr8bwnaxF8fwC+h8/CAAACoHicdVFNTxsxEHW2XzT9CvTIxSJCopf9AFpoT0hcuBHUBlCTVeR1JhsrXtuyZ1GjVf5Kr+1f4NVE5PLZMPLZMJPLD1FZVE5000000000000000 02fMXWy/br16/efuus71z7XRpOfS5ltreZsyBFAr6KFDCrbHAikzCTTY7r/WbO7BOaPUN5wbSguVKTARn6KlRZyeJvo6qYc+JxcHwsoCcfRh1unF4dPqENXtNdF5dPjXNdF6dPjxNdfNdf5dPjxNdfNfNdf5dPjxNdfN kEvm3CCJDaYVsyi4hEV7WDowjM9YDgMPFSvApdVy+AXd98yYTrT1TyFdsv86KlY4Ny8yn1kwnLpNrSb/pw1KnJymlVCmRFB81WhSSoqa1pugKY2GWylxf1pugKY2gWylxf1pugkY2gWVvvnfvfvfvvvvvvvvvfvvvvvvvvvvvvfvvvvvfvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvApdVy+AXd98y Zcs03KxWcxzY7rMohJws8LfP+zTKaL5EkUcmQq1zSMzy6NGXXMYUa/jEcNKbPtL/TkHfRxcH4aJx1fH3bOwudkW2SV75IAk5ISckQvSI33Cy4Oykrn/9WYK8WC8CVQVQV4WQVx8wc8wc8wc8wc8wc8wc8cvvvvvvvvx8wc8wc8wc8wc8wc8wcf8000 /CAAACoHicdVFNTxsxEHW2XzT9CvTIxSJCopf9AFpoT0hcuBHUBlCTVeR1JhsrXtuyZ1GjVf5Kr+1f4t/gTbZVE5WRLD29N29mPJMZKRzG8X0rePL02Ox1fmxfmxfmxfxfxfxfmxfxfxfxfxfxfxfmxfxfxfxfxfxfxfxfxfx7fxfxfx100x10fxfx7xfxfx100x7fmxfxfx100x1000x1000x7 syBFAr6KFDCrbHAikzCTTY7r/WbO7BOaPUN5wbSguVKTARn6KlRZyeJvo6qYc+JxcHwsoCcfRh1unF4dPjxNDmmK/CpASEfY5qE8TK6pIneaLt1NxxrXhagiWDVYmFSyWDvDvDvYvDvvDvvDvvDvvDvvDvvDvvDvvDvvDvvDvvDvvDvvDvDvDvvDvvDvD ApdVy+AXd98yYTrT1TyFdsv86KlY4Ny8yn1kwnLpNrSb/pw1KnJymlVCmRFB81WhSSoqa1pugY2GBo5x7wLgVflbKp8wyjn5fa5WyLLcAM5lWdchLzLcfLcfLcf300000000000000000000 EkUcmQq1zSMzy6NGXXMYUa/jEcNKbPtL/TkHfRxcH4aJx1fH3bOwudkW2SV75IAk5ISckQvSI33CyQ/yk/wiv4O94CK4DK5WqUGr8bwnaxF8fwC+h8/C. " NXG6zebW2+b795/+Phpe+dz35vCCegJo4y74cyDkhp6KFHBjXXAcq7gmk/PK/36DpyXRl/hzEKas0zLsRQMA9UfThiW89vtVtw+SI4Pukd0CX4cNeZuNxdUSg/Sx4c2cnxnxnxgd0cx4c2cnxnxg m/SCJLaYlcyiFgnlzWHiwTExZBoMANcvBp+Vi3DndC8yIjo0LTyNdsE8dJcu9n+U8ZOYMJ35dq8jntEGB4+O0lNoWCFosG40LRdHQanc6kg4EqlkATDgHQZQBNWHWHQZQBQJWHQVJQVNWHQVQJWQJWHQWHQVQJWHQWHQVQJWHQWHQVQJWHQWHQWHQJQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQWHQJWHQWHQJWHQWHQJWHQWHQJQJWH FFFeB6hf877NEJoj3pdAQy3TYu69hp1qnVFYeV1Xe8YFiKzXCpf+egL4P+fjsJ+LLbOu3WN9siu+Qb +U4SckROyU9yQXpEkN/kD7knD9HX6CQ6i86XqVGj9nwhKxH9+guCFMuIAAACNDx0CVFNtxHvfntxfntxvvntxfntxvntxvntxfvntxfntxvntxvntxvntxvntx YceQCIBKVkh25ls3Hhty55Filb5D73CP+Pf1JtsKxLBSJae3ps3Hx5ulfQYx4+N6NXG6zebW2+b795/+Phpe+dz35vCCegJo4y74cyDkhp6KFHBjXXAccq7g/XRREKlzDk/XRREKlzDk/XREKLzDk/XREKLzDk/XREKLzDk/XRkUzDk/XrkJDQ36 fThiW89vtVtw+SI4Pukd0CX4c1mC/S5N2vIgWqePidqdxNxwZUeSgUSjm/SCJLaYlcyiFgnlzWHiwTExZBoMANcvBp+Vi3DndC8yIjo0LTyNdsE8U5ZEGdYn+j3dgbq90LtyNdsE8U5ZEG9 O0lnowcfosg40lrdhqanc6kg4eqlkatdgzzqviwhwtgh5oprlnmqoyqrssunbu1hy9wobgdjfffeb6hf877nejoj3pdaqy3tyu69hp1qnvfyev1xe8yfikzxcpf+egl4p+fjsjn+ 9SIU+QB+U4SCKROYU9YQXPEKN/KD7KND9HX6CQ6I86XQVGJ9NWHKXH9+GUCFMUI C9REUFINKHPKDIECYGNEPYCEQCIBKVKH25LS3HHTY55FILB5D73CP+PF1JTSKXLBSJAE3PS3HX5ULFQYX4+N6NXG6ZEBW2+B795/+PHPE+DZ35VCCEGJO4Y74CYKHP6KFS /36dpyxrl/hzekas0zlsrqma9ufthiw89vtvtw+si4pukd0cx4c1mc /S5N2vIgWqePidqdxNxwZUeSgUSjm/SCJLaYlcyiFgnlzWHiwTExZBoMANcvBp+Vi3DndC8yIjo0LTyNdsE8dJcu9n+U8ZOYMJ35dq8jntEGB4+O0lNoWCFosG40LRdHQanc6kg4EqlkATDgZZqViwhwTGH5opRLnmQOYqrSsunBu1Hy9WOBGdJFFFeB6hf877NEJoj3pdAQy3TYu69hp1qnVFYeV1Xe8YFiKzXCpf+egL4P+fjsJ+LLbOu3WN9siu+Qb+U4SckROyU9yQXpEkN/kD7knD9HX6CQ6i86XqVGj9nwhKxH9+guCFMuIAAACknicdVFNTxsxEHW2tND0C9reuFiNkHpKdiECygnEpYceQCIBKVkh25ls3Hhty55Filb5D73CP+Pf1JtsKxLBSJae3ps3Hx5ulfQYx4+N6NXG6zebW2+b795/+Phpe+ dz35vCCegJo4y74cyDkhp6KFHBjXXAcq7gmk/PK/36DpyXRl/hzEKas0zLsRQMA9UfThiW89vtVtw+SI4Pukd0CX4c1mC/S5N2vIgWqePidqUeSCJLWVZLZWLZWLZWLZWLZWVZWLZWVZLWVZWLWVZWLWVZWH ZBoMANcvBp+Vi3DndC8yIjo0LTyNdsE8dJcu9n+U8ZOYMJ35dq8jntEGB4+O0lNoWCFosG40LRdHQanc6kg4EqlkATDgZZqViwhwTGH5opRLnmQOYJHyqrFFssOBNJF8F3BNJF7NJJF7NJJF3NJJJF8NJJNJF7NJJF8NJF3N y3TYu69hp1qnVFYeV1Xe8YFiKzXCpf+egL4P+fjsJ+LLbOu3WN9siu+Qb+U4SckROyU9yQXpEkN/kD7knD9HX6CQ6i86XqVGj9nwhKxH9+

Figure 3.7: Illustration of the axion search. The entire bandwidth Γ is divided into bins with width Γ 𝐴 , and to be covered by a (large) number of detectors (three shown in the figure, in terms of their 1 / 𝑆 Ψ (Ω) )
Figure 3.7: Illustration of the axion search. The entire bandwidth Γ is divided into bins with width Γ 𝐴 , and to be covered by a (large) number of detectors (three shown in the figure, in terms of their 1 / 𝑆 Ψ (Ω) )

Discussion

Converting a signal recycling cavity into an astable optomechanical filter to improve the detection bandwidth of gravitational wave detectors. Phys. Overcoming the standard quantum limit in gravitational wave detectors using spin systems with negative effective mass.

Figure 3.9: Sensitivity improvement for axion detection. a, The enhancement of effective scan rate R 𝑎 achievable by sWLC (black solid lines) and uWLC (red dashed lines) axion detectors over the single-cavity one, as a function of the amplifier gain 𝜒 and
Figure 3.9: Sensitivity improvement for axion detection. a, The enhancement of effective scan rate R 𝑎 achievable by sWLC (black solid lines) and uWLC (red dashed lines) axion detectors over the single-cavity one, as a function of the amplifier gain 𝜒 and

OPTOMECHANICAL REALIZATION OF PT-SYMMETRIC INTERFEROMETER

Introduction

In the original proposal [30], in addition to the filter cavity, there are several auxiliary optics, either for impedance matching with the input mirror of the arm cavity or for directing the field to the filter, leading to a rather complex arrangement. We recently realized that when the optomechanical interaction strength is less than or equal to the coupling frequency between the arm cavity and the filter cavity, the system self-stabilizes [1].

From single-mode approximation to full analysis

ˆbAAACr3icdVHLbtswEKTVV+o+4qTHXtgaAXqSJSWwg56C9tJjCtRxAFtxSWotE6ZEglwFMASf8zW9tt/Svylluw8bzQIEBjM7u8tdbpR0GEU/W8GDh48ePzl42n72/MXLw87R8ZXTlRUwFFppe82ZAyVLGKJEBdfGAiu4ghFffGz00S1YJ3X5BZcG0oLlpZxJwdBT086byZwh5Tf1JGN5DnZF14T4S0w73ShMBv3k9JxGYT/pJ3HsQXzWH5wmNA6jdXTJNi6nR63bSaZFVUCJQjHnxnFkMK2ZRSkUrNqTyoFhYsFyGHtYsgJcWq//sqInnsnoTFv/Sj9Iw/7rqFnh3LLgPrNgOHf7WkP+TxtXODtPa1maCqEUm0azSlHUtFkMzaQFgWrpARNW+lmpmDPLBPr17VTiPLcAC5XWTRfOtVrtF/NcRtdZVAHuV/jzhxM6RzTvez2BrAy1zXtmkfe26o7DyGYd9xg2Yttf6vc56P3gKgljjz+fdS8+bG92QF6Tt+QdicmAXJBP5JIMiSB35Bv5Tn4EcTAKboKvm9SgtfW8IjsRyF9TBdbLAAACr3icdVHLbtswEKTVV+o+4qTHXtgaAXqSJSWwg56C9tJjCtRxAFtxSWotE6ZEglwFMASf8zW9tt/Svylluw8bzQIEBjM7u8tdbpR0GEU/W8GDh48ePzl42n72/MXLw87R8ZXTlRUwFFppe82ZAyVLGKJEBdfGAiu4ghFffGz00S1YJ3X5BZcG0oLlpZxJwdBT086byZwh5Tf1JGN5DnZF14T4S0w73ShMBv3k9JxGYT/pJ3HsQXzWH5wmNA6jdXTJNi6nR63bSaZFVUCJQjHnxnFkMK2ZRSkUrNqTyoFhYsFyGHtYsgJcWq//sqInnsnoTFv/Sj9Iw/7rqFnh3LLgPrNgOHf7WkP+TxtXODtPa1maCqEUm0azSlHUtFkMzaQFgWrpARNW+lmpmDPLBPr17VTiPLcAC5XWTRfOtVrtF/NcRtdZVAHuV/jzhxM6RzTvez2BrAy1zXtmkfe26o7DyGYd9xg2Yttf6vc56P3gKgljjz+fdS8+bG92QF6Tt+QdicmAXJBP5JIMiSB35Bv5Tn4EcTAKboKvm9SgtfW8IjsRyF9TBdbLAAACr3icdVHLbtswEKTVV+o+4qTHXtgaAXqSJSWwg56C9tJjCtRxAFtxSWotE6ZEglwFMASf8zW9tt/Svylluw8bzQIET4Gdb8bzQIEBjGdB8bzQIEt4Gd7Gd67Gd67Gd67Gd200000000000000000000000Gd10Gd10Gd77000000000000000000000000000077 n72/MXLw87R8ZXTlRUwFFppe82ZAyVLGKJEBdfGAiu4ghFffGz00S1YJ3X5BZcG0oLlpZxJwdBT086byZwh5Tf1JGN5DnZF14T4S0w73ShMBv3kXZJXNJHJNJDJNJDJNJDJNJDJNWJNWJNJDJN 63bSaZFVUCJQjHnxnFkMK2ZRSkUrNqTyoFhYsFyGHtYsgJcWq//sqInnsnoTFv/Sj9Iw/7rqFnh3LLgPrNgOHf7WkP+TxtXODtPa1maCqEUtFMVNPLWP1maCqEUtFmPWPWP1MQVNQVVMZVZVZVVZVVZVZVZVZVZVZVZVZVZVZVZVZVZVVZVVZVZVVZVVZVVZVVZVVZVZVZVZVVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVZVVN PLcAC5XWTRfOtVrtF/NcRtdZVAHuV/jzhxM6RzTvez2BrAy1zXtmkfe26o7DyGYd9xg2Yttf6vc56P3gKgljjz+fdS8+bG92QF6Tt5+BJIMAXTnf5QDIAXSBctm4Qdmxbctf5Qdmxtm5BvkSbctmf3000007 W8IjsRyF9TBdbLAAACr3icdVHLbtswEKTVV+o+4qTHXtgaAXqSJSWwg56C9tJjCtRxAFtxSWotE6ZEglwFMASf8zW9tt/Svylluw8bzQIEBjM7u8tdbpR0GEU/W8GDh48ePzl42n72/MXLw87R8ZXTlRUwFFppe82ZAyVLGKJEBdfGAiu4ghFffGz00S1YJ3X5BZcG0oLlpZxJwdBT086byZwh5Tf1JGN5DnZF14T4S0w73ShMBv3k9JxGYT/pJ3HsQXzWH5wmNA6jdXTJNi6nR63bSaZFVUCJQjHnxnFkMK2ZRSkUrNqTyoFhYsFyGHtYsgJcWq//sqInnsnoTFv/Sj9Iw/7rqFnh3LLgPrNgOHf7WkP+TxtXODtPa1maCqEUm0azSlHUtFkMzaQFgWrpARNW+lmpmDPLBPr17VTiPLcAC5XWTRfOtVrtF/NcRtdZVAHuV/jzhxM6RzTvez2BrAy1zXtmkfe26o7DyGYd9xg2Yttf6vc56P3gKgljjz+fdS8+bG92QF6Tt+QdicmAXJBP5JIMiSB35Bv5Tn4EcTAKboKvm9SgtfW8IjsRyF9TBdbL †cˆ† signal. ˆbAAACnXicdVFNaxsxEJW3zUfdfDjtsYeKmkBO9m4ItOQUUgo9lJJCbQfsxUjyeC2slYQ0GzCLf0muzY/Kv6nWXkpttwOCx3vzZkYz3CrpMY6fG9GLl3v7B4evmq+Pjk9OW2dv+t4UTkBPGGXcPWcelNTQQ4kK7q0DlnMFAz7/XOmDB3BeGv0TFxbSnGVaTqVgGKhx63Q0Y0j5uBy5nEq9HLfacSdeBd0FSQ3apI678VnjYTQxoshBo1DM+2ESW0xL5lAKBcvmqPBgmZizDIYBapaDT8vV5Et6HpgJnRoXnka6Yv92lCz3fpHzkJkznPltrSL/pQ0LnH5KS6ltgaDFutG0UBQNrdZAJ9KBQLUIgAknw6xUzJhjAsOyNipxnjmAuUrLqgvnRi23iwVuQldZVAFuV/jzh3M6Q7TX3a5ApjvGZV07z7q1uuGwslrHfwxrsRkulWzfZRf0LztJwD+u2je39c0OyTvygVyQhHwkN+QruSM9IkhBHskv8hS9j75E36Lv69SoUXveko2IBr8BiHPO5w==AAACnXicdVFNaxsxEJW3zUfdfDjtsYeKmkBO9m4ItOQUUgo9lJJCbQfsxUjyeC2slYQ0GzCLf0muzY/Kv6nWXkpttwOCx3vzZkYz3CrpMY6fG9GLl3v7B4evmq+ Pjk9OW2dv+t4UTkBPGGXcPWcelNTQQ4kK7q0DlnMFAz7/XOmDB3BeGv0TFxbSnGVaTqVgGKhx63Q0Y0j5uBy5nEq9HLfacSdeBd0FSQ3apI678VnjYTQxoshBo1DM+2ESW0xL5lAKBcvmqPBgmZizDIYBapaDT8vV5Et6HpgJnRoXnka6Yv92lCz3fpHzkJkznPltrSL/pQ0LnH5KS6ltgaDFutG0UBQNrdZAJ9KBQLUIgAknw6xUzJhjAsOyNipxnjmAuUrLqgvnRi23iwVuQldZVAFuV/jzh3M6Q7TX3a5ApjvGZV07z7q1uuGwslrHfwxrsRkulWzfZRf0LztJwD+u2je39c0OyTvygVyQhHwkN+QruSM9IkhBHskv8hS9j75E36Lv69SoUXveko2IBr8BiHPO5w==AAACnXicdVFNaxsxEJW3zUfdfDjtsYeKmkBO9m4ItOQUUgo9lJJCbQfsxUjyeC2slYQ0GzCLf0muzY/Kv6nWXkpttwOCx3vzZkYz3CrpMY6fG9GLl3v7B4evmq+Pjk9OW2dv+t4UTkBPGGXcPWcelNTQQ4kK7q0DlnMFAz7/XOmDB3BeGv0TFxbSnGVaTqVgGKhx63Q0Y0j5uBy5nEq9HLfacSdeBd0FSQ3apI678VnjYTQxoshBo1DM+2ESW0xL5lAKBcvmqPBgmZizDIYBapaDT8vV5Et6HpgJnRoXnka6Yv92lCz3fpHzkJkznPltrSL/pQ0LnH5KS6ltgaDFutG0UBQNrdZAJ9KBQLUIgAknw6xUzJhjAsOyNipxnjmAuUrLqgvnRi23iwVuQldZVAFuV/jzh3M6Q7TX3a5ApjvGZV07z7q1uuGwslrHfwxrsRkulWzfZRf0LztJwD+u2je39c0OyTvygVyQhHwkN+QruSM9IkhBHskv8hS9j75E36Lv69SoUXveko2IBr8BiHPO5w ==AAACnXicdVFNaxsxEJW3zUfdfDjtsYeKmkBO9m4ItOQUUgo9lJJCbQfsxUjyeC2s/ClCbQfsxUjyeC20clcfcwcfcwc2000000000000000 3vzZkYz3CrpMY6fG9GLl3v7B4evmq+Pjk9OW2dv+t4UTkBPGGXcPWcelNTQQ4kK7q0DlnMFAz7/XOmDB3BeGv0TFxbSnGVaTqVgGKhx63Q0FfacySjE3d53Q0Facy5FaQ5FaqFaSvE30Faaaaaaaaaaaaaaaaaaaaaaaaa YTQxoshBo1DM+2ESW0xL5lAKBcvmqPBgmZizDIYBapaDT8vV5Et6HpgJnRoXnka6Yv92lCz3fpHzkJkznPltrSL/pQ0LnH5KS6ltgaDFutG0UBQNrdZAJUzAhJUzNQUzQNQJUzUzAhJQNQNdZQJUzUzAhJQNQUzJUzAkJUzA rLqgvnRi23iwVuQldZVAFuV/jzh3M6Q7TX3a5ApjvGZV07z7q1uuGwslrHfwxrsRkulWzfZRf0LztJwD+u2je39c0OyTvygVyQhHwkvN+SHvkN+SHjXru 2IBr8BiHPO5w== in.

Figure 4.2: Idealized mode interaction structure of the optomechanical system illustrated in Fig
Figure 4.2: Idealized mode interaction structure of the optomechanical system illustrated in Fig

Frequency-domain analysis

  • Formalism
  • Noise spectral density
  • Stability analysis

4.7, where a greater amount of signal will leak into the idler channel than is output into the signal channel. At low frequencies, the signal information contained in the idler channel is even more than that contained in the signal channel.

Figure 4.5: Coupling between the optical modes and the mechanical modes rep- rep-resented in frequency domain
Figure 4.5: Coupling between the optical modes and the mechanical modes rep- rep-resented in frequency domain

Time-domain analysis

  • Connecting the system
  • Step-response stability analysis
  • Numerical noise spectral density

The steady-state response is the most essential part of the sensitivity analysis of the system. One such test we can perform is to determine the stability of the system using the step response.

Figure 4.11: Logical flowchart of the time-domain simulation.
Figure 4.11: Logical flowchart of the time-domain simulation.

Optimal readout scheme

In the simulation discussed in Sect. 4.4, the signal can be extracted both from the signal channel around 𝜔0 and from the inactive channel near 𝜔0+2𝜔𝑚. 4.37), the entire noise spectrum can be exploited by any channel with better behavior at one frequency. 4.15, the free channel contributes more below 25 Hz, while the signal channel dominates at higher frequencies above 25 Hz, and the optimal mixing curve follows better at all frequencies.

Figure 4.14: Optical gain transfer functions for the signal and idler channels in the undamped, optical-spring-compensated system.
Figure 4.14: Optical gain transfer functions for the signal and idler channels in the undamped, optical-spring-compensated system.

Discussion

First focused search for gravitational wave bursts from collapsing supernovae in the data of first-generation laser interferometer detectors. Conversion of conventional gravitational wave interferometers to quantum non-demolition interferometers by changing their input and/or output optics.

ATOM INTERFEROMETRY: LINEAR QUANTUM MEASUREMENT THEORY AND THE PRECISION LIMIT

Introduction

Early resonant rod GW detectors and current laser interferometer GW detectors have been extensively studied and understood using this framework of quantum measurement theory [38–40] . In this work, we set up a framework of quantum measurement theory to analyze the physics of an atomic interferometer based on the interaction between an atomic cloud and two optical fields (a passive and a control laser).

Effective Hamiltonian of an atom interferometer

  • Effective Hamiltonian and dynamics of an interaction kernel
  • Back-action noise

The first terms in brackets of r.h.s. 5.10) is much smaller than the other terms (the ratio ∼ p. Inserting this relation into the Langevin force equation 5.12) for the second interaction nucleus, and retains only those terms which due to the atomic fluctuations brought from the first interaction nucleus, we obtain the "reaction force ", acting on the atomic fields of the second interaction nucleus as:

Figure 5.2: A four-boson Raman interaction kernel and its corresponding WKB trajectory
Figure 5.2: A four-boson Raman interaction kernel and its corresponding WKB trajectory

Interferometry solution

  • Input-output relation
  • Standard quantum limit for a single atom interferometer

Let us denote the 𝜋/2 processes for the 𝐴 and 𝐵 channels to be stage-2a and stage-2b, respectively. On the optical Mach-Zender interferometer, part of the quantum noise injected at 2a and 2b stages is reflected away and left unmeasured.

Figure 5.3: Comparison between atom interferometer and optical Mach-Zender interferometer
Figure 5.3: Comparison between atom interferometer and optical Mach-Zender interferometer

Back-action in atom interferometer pair

It is important to note that this standard quantum limit can only be understood in terms of extrapolation. The distance between two interferometers in a real device is much larger than the length scale of the atomic interferometers themselves.

Figure 5.4: Atom interferometer gravitational wave detector configuration: this is the configuration proposed by Dimopoulos et.al
Figure 5.4: Atom interferometer gravitational wave detector configuration: this is the configuration proposed by Dimopoulos et.al

Dynamics of the effective operators: A more exact treatment

  • Perturbative solution to the optical fields: Effective operator for atoms Typically, in an interferometric process, the light-atom interaction time is very

The physical interpretation of the effective operators is that it describes the entire wave packet of the atomic field. Now we want to rewrite the equations of motion for the atomic fields in a more concise way using these creation and annihilation operators.

Figure 5.5: Atom-light interaction kernel. The atoms are undergoing the state swapping interaction, and during the very short interaction time (typically ∼ 𝜇 s), the A and B atoms do not have enough time to fly apart
Figure 5.5: Atom-light interaction kernel. The atoms are undergoing the state swapping interaction, and during the very short interaction time (typically ∼ 𝜇 s), the A and B atoms do not have enough time to fly apart

Conceptual comparison with the laser interferometer GW detector Now we can make some comparison between Laser Interferometer GW detectorNow we can make some comparison between Laser Interferometer GW detector

It is also worth commenting on the similarity between the atom interferometer GW detector and the LISA detector. For a detailed study for the comparison between atom interferometer GW detector with LISA detector, see Refs.

Discussion

Zero point fluctuations in the test masses on LISA can be eliminated as it is also a displacement sensor. The diffraction loss will erase most of the information from the atomic cloud on the first interferometer carried by the light field.

Appendix: Field formalism for atom interferometer

  • Free fields
  • Effective interaction
  • Definition of field operators
  • Quantum states of fields
  • Equations of motion: Structures

It is probably instructive to study the method to mitigate these issues in the future. Since the typical atomic width is much smaller than the light pulse width, it can be approximated as almost a plane wave in the atom-light interaction region by lim𝑎→∞𝑎sinc(𝜋 𝑎𝑥) =𝛿(𝑥).

Appendix: Mean field solutions

In Gerard Auger and Eric Plagnol, editors, An Overview of Gravitational Waves: Theory, Sources and Detection, pages 285–313. Noise in gravitational wave detectors and other classical force measurements is unaffected by test mass quantization.

HIGH-PRECISION MODELING FOR GRAVITATIONAL WAVES OF BBH REMNANTS

Introduction

However, the sensitivity of proposed next-generation detectors, including the Einstein Telescope [ 53 , 54 ], Cosmic Explorer [ 55 , 56 ] and NEMO [ 57 ], will be significantly improved [ 58 ], especially at the high frequencies that open up. more options in post-merger BBH studies [25]. In this work, we study annular gravity waves and show that spin-weighted spheroidal harmonics are essential for an accurate representation of the downward spatio-temporal emission pattern [59], further confirming that the Teukol-.

Ringdown models

  • Coordinate frames
  • QNM decomposition models
  • Temporal and spatial dependences of the modes
  • Excitations of prograde and retrograde modes
  • QNM conventions
  • Beyond linear ringdowns

The most natural coordinate system for describing non-processing binaries has its ˆ𝑧 axis aligned with the direction of the orbital angular momentum. These are consistent with the fact that the direction of rotation of the black hole is clockwise as seen from the North Pole.

Figure 6.1: Convention of coordinate continuation from positive to negative values of the final spin 𝜒 𝑓
Figure 6.1: Convention of coordinate continuation from positive to negative values of the final spin 𝜒 𝑓

Fit memory-free NR waveforms with QNM expansions

  • Target waveforms and templates

The memory waveform can be calculated from those waveforms obtained by perturbation theory that do not take into account the memory effect [84, 85]. In this study, we use memoryless waveforms and show that they can be decomposed into QNM in terms of temporal and spatial distribution.

Fitting the benchmark GW150921-like binary

  • Strategy for choosing angular modes
  • Fittings results for the benchmark binary G0

Since the 𝑡trans values ​​generally agree between 𝜒2 and the accuracy of (𝑀𝑓 ,est, 𝜒𝑓 ,est), we simply refer to the optimal distance when comparing the fitting results in the following discussions. Thus, apart from the limitation of the model itself, the fitting errors mostly come from numerical noise in the NR waveforms.

Table 6.3: SXS BBH waveforms used in Secs. 6.4–6.5.
Table 6.3: SXS BBH waveforms used in Secs. 6.4–6.5.

Nonspinning binaries with different mass ratios

Once these (𝑙 , 𝑚) modes are included, the𝑆model is consistently better than the𝑌model in both𝜒2. Now we only consider the 𝑆 model since we have demonstrated that the 𝑆 model is a better representation.

Figure 6.7: The minimum distance 𝜒 2
Figure 6.7: The minimum distance 𝜒 2

Spinning binaries and retrograde excitation

Adding harmonics brings 𝑡trans forward, while adding (𝑙, 𝑚) modes postpones 𝑡trans — as the model becomes more accurate, the achievable 𝜒2. In this section we discussed the discriminability of the 𝑆/𝑌 model and the contribution of modes and higher order harmonics (𝑙, 𝑚).

Table 6.5: SXS BBH waveforms used in Sec. 6.6.
Table 6.5: SXS BBH waveforms used in Sec. 6.6.

Gambar

Figure 2.7: Cavity modes splitting caused by different membrane reflectivity 𝑟 . The horizontal axis is a relative phase defined as 𝛿 ≡ ( 𝑘 𝑝 𝐿 + 𝜋 /2) − 𝑁 2 𝜋 and the vertical axis is the ratio of the field amplitude in and out of the system from the inpu
Figure 3.3: Coherent amplification of sensitivity by sWLC (red) and uWLC (blue) when 𝜅 = 10 𝛾 𝑅 , compared with the conventional detector (black), all lossless
Figure 3.5: Nyquist Plot for the open-loop gain of sWLC (upper) and uWLC (lower) based on Eqs.(3.29) and (3.30)
Figure 3.6: Example of GW noise spectra for sWLC and uWLC (both with 𝜅 /( 2 𝜋 ) = 5 kHz , 𝜒 /( 2 𝜋 ) = 4
+7

Referensi

Dokumen terkait

Trong nghiên cứu này, để đo lường tác động của các yếu tố đến hiệu quả tài chính đạt được, mô hình hồi quy tuyến tính được ứng dụng nhằm xác định các yếu tố tác động: chi phí, học vấn,