• Tidak ada hasil yang ditemukan

Differentiation - Direktori File UPI

N/A
N/A
Protected

Academic year: 2024

Membagikan "Differentiation - Direktori File UPI"

Copied!
15
0
0

Teks penuh

(1)

Differentiation

MATHEMATICS FOR SCIENCE

IPSE FPMIPA UPI

(2)

There are three notations for the derivative of with respect to

They are

) (x f y

) ( '

' f x

y D

x

y

x

dx y dy

dx

d ( )

(3)

rule multiple

- constant )

( ' )

( )

3

rule function

power )

2

function contant

0 )

1

1

x cf

x dx cf

d

nx dx x

d dx c

d

n n

(4)

rule Quotient

) (

) ( ' ) ( )

( ' ) ( )

( ) (

6)

rule Produc t

) ( )

( .

5)

rule differenc e

- sum

)

4

2 x g

x g

x f x

f x g x

g x f dx

d

x g x f x

g x f

x g x dx f

d

x g x

f x

g x

dx f d

(5)

dR Q

Q Q

R

Q Q

Q

dQ Q P d

dQ P Q d

dQ dR

-Q)Q (

R -Q

P PQ

R

2 15

15

2 15

1 15

1

15 15

2

(6)

x x

dx x d

x x

dx x x d

dx x d

x dx x

x d dx x

d

cot csc

csc )

5

tan sec

) (sec 4)

sec

) (tan )

3

sin )

(cos )

2 cos

) (sin )

1

2

(7)

)

60

1 4

2 ( )

( x x x

F

60 2

) (

and 1

4 2

) (

y z

y f

x x

y x

g

Imagine trying to find the derivative of

Let

then

) )(

( ))

( (

) (

)

( x z f y f g x f g x

F

(8)

or

) )(

( or

) ( ' )) (

( ' )

( '

and at

able differenti

is )) (

( )

(

by defined

function composite

the then

, at

able differenti

is and

at able

differenti is

and If

) (

and )

( Let

dx dy dy

dz dx

dz

y D z

D z

D

x g

x g f

x g

f

x x

g f

x g

f

g f

y

f x

g f

x g y

y f

z

x y

x

(9)

3 )

7 3

(

3 7

3

) 7

( )

(

Rule, Chain

the Applying

) ( 7

) (

w rite ),

( Assume

. of

terms in

for solved

be c annot it

, 7

Let

2 2

2 2

3 3

3 3 3 3

x dx y

dy

dx x dy dx

y dy

dx x y d

dx y d

dx d

x x

y x

y

x y y

x y

x y

y

(10)

) ( '

) ( ' :

have we

then

. variable ent

independ the

of al differenti the

called ,

. variable t

independen the

of al differenti the

called ,

. variabel

t independen the

of function abel

differenti a

be )

( Let

x dx f

dy

dx x

f dy

y dy

x dx

x

x

f

y

(11)

1 1

1

cost average

cost marginal

cost total

cost average

minimum the

Find

2

AC Q MC

Q Q Q C

Q C

Q

Q C Q

C Q Q

Q C dQ

d

C(Q)/Q AC

C'(Q) MC

C(Q) TC

C

MC AC

Q

(12)

dx y dy

f dy

dx

y f

x

x f

dx dy

x f

y

1 ) 9

and

) ( then

x of

function monotonic

strictly a

is y where

and ),

( Let

1 1

(13)

/dP /dQ

/b dP/dQ

b

•dQ /dP

) b

(

)Q

/b (

/b -b P

P b

•Q b

(Q) f

P f(P)

Q

s s

-

1 1

0 where

1

each x) for

y one 17,

p.

function, a

of definition the

(Recall

x.

of value unique

a yield y will

of e given valu a

and

y of value unique

a yield x

of e given valu a

in which one

is function monotonic

•A

1

1 1

0 1

0

1

(14)

1 1

.

unknown) one

equation, (one

for x Solve

function inverse

an have ill

function w the

y, of value different

a yield always

x will of

value different

a i.e.,

mapping, one

- to - one a

represents f(x)

y function the

If

1(y) f

x

x f dx

dy

f(x) y

-

(15)

This property of one to one mapping is unique to the class of functions known as monotonic functions:

Recall the definition of a function, p. 17,

function: one y for each x

monotonic function: one x for each y (inverse function)

if x1 > x2 f(x1) > f(x2) monotonically increasing

Qs = b0 + b1P supply function (where b1 > 0) P = -b0/b1 + (1/b1)Qs inverse supply function

if x1 > x2 f(x1) < f(x2) monotonically decreasing

Qd = a0 - a1P demand function (where a1 > 0)

Referensi

Dokumen terkait