• Tidak ada hasil yang ditemukan

Effects of Drying Conditions and Maltodextrin Addition on Spray-Dried Sumac Extract Properties

N/A
N/A
Darell Athallah

Academic year: 2024

Membagikan "Effects of Drying Conditions and Maltodextrin Addition on Spray-Dried Sumac Extract Properties"

Copied!
10
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Food and Bioproducts Processing

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / f b p

The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract

Gulsah Caliskan

, S. Nur Dirim

DepartmentofFoodEngineering,EgeUniversity,35100Bornova,Izmir,Turkey

a bs t r a c t

Sumac(RhuscoriariaL.)isaspicewhichisobtainedbygrindingofwholesumacberries.Theaimofthisstudyis tosurveythefeasibilityofaspraydriedsumacextractprocessalongwiththeeffectsofaddingmaltodextrin(MD) andtheeffectsoftheinletandoutlettemperaturesofthedryingaironthepropertiesofthepowderedproduct obtainedfromthespraydryingofthesumacextract.Apilotscalespraydryerwasusedfortheproductionofthe sumacextractpowder.Theinlet/outletairtemperatureswereadjustedto160/80,180/90,and200/100Cwhereoutlet airtemperaturewascontrolledbyregulatingthefeedflowrate.Thetotalsolublesolidcontentofthesumacextract wasmeasuredas3.5%andadjustedto10,15,20,and25%(w/w)withtheadditionofmaltodextrinwithaDextrose Equivalence(DE)of10–12.Theobtainedpowderswereanalyzedformoisturecontent,wateractivity,ashcontent, pH,colour,totalphenoliccontent,antioxidantactivity,bulkdensity,wettability,solubility,andmicrostructure.

Dependingontheanalysisoftheresults,thetemperature,maltodextrin,andtheinteractionbetweentemperature andmaltodextrinhaveanimportanteffectontheperformedanalysis(P<0.05)exceptforthepHvalueanalysis (P>0.05).

©2013TheInstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

Keywords:Sumac;Spraydrying;Maltodextrin;Totalphenoliccontent;Powderproperties

1. Introduction

Sumac (Rhus coriaria L.) is frequently used inthe Mediter- ranean and Middle East regions as a spice, sauce, and drink (Bayram et al., 2005, 2008). The sumac berries con- tainflavones,tannins,anthocyanins,andorganicacidswhich provideantioxidantandantimicrobialactivity.Severalstudies demonstratethatsumacberriescontainbiologicalactivities suchasantioxidant,antimicrobial,hypoglycemic,andantidi- abetic(Giancarloetal.,2010;Gunduzetal.,2010;Kosaretal., 2007).

Therearesomedifficultiesforthestorageofspicesdueto thegrowthofmicroorganismsandlossofflavourandcolour compounds.Forthisreason,thespiceextractscontainingthe target compounds were used instead ofspices because of theadvantagesofbeing hygienic,easytoblendforaccept- ableflavour,andleadtolimitedgrowth ofmicroorganisms, whichbringsabout storageadvantages(Kanakdandeet al.,

Correspondingauthor.Tel.:+902323113010;fax:+902323427592.

E-mailaddresses:[email protected],[email protected],[email protected](G.Caliskan).

Received11January2013;Receivedinrevisedform28May2013;Accepted19June2013

2007).However,spiceextractsaresensitivetolight,heat,and oxygen,and haveshortstorage livesifnotstored properly (Kanakdandeetal.,2007;Shaikhetal.,2006).Inordertoover- cometheabovementionedproblems,microencapsulationof spiceextractswassuggestedbyresearchers(Krishnanetal., 2005;Shaikhetal.,2006;Vaidyaetal.,2006).

Spray drying is a process where the food ingredient is coatedwithorentrappedwithinasuitablecarryingagentand themostcommonmethodofencapsulatingfoodingredients isspraydrying.Inspraydryingthefinalproductqualityand powderefficiencydependsontheoperatingconditionssuch asinletandoutletairtemperatures,feedflowrate,atomiza- tionspeedorpressure,feedconcentration,feedtocarrierratio etc. (Amerieand Maa, 2006;Chegini and Ghobadian, 2005;

GoulaandAdamopoulos,2008a;Tononetal.,2008).

Therearesomedifficultiesforthedryingoffoodextracts andjuicesduetothelowglasstransitiontemperatures(Tg)of foodcomponentssuchashighsugarandorganicacidsthat

0960-3085/$–seefrontmatter©2013TheInstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

http://dx.doi.org/10.1016/j.fbp.2013.06.004

(2)

leadstostickinessproblems.Inorder topreventthis prob- lemandobtainpowderedproductswithacceptableproperties, dryingaids which have high glass transitiontemperatures (Tg)are used (Goulaand Adamopoulos, 2008b). Theuse of dryingagentssuchasgumarabic,maltodextrin,wheypro- tein,sucroseetc.improvesthe dryingprocessand leadsto effectivedrying.Maltodextrinsarecommonlyusedforspray dryingprocessessuchas thedryingoffish oil(Anwarand Kunz, 2011), blackcarrot anthocyaninpigments (Ersusand Yurdagel,2007),chickenmeatproteinhydrolysate(Kurozawa etal.,2009),mandarinoil(Lantiguaetal.,2011),cashewapple juice (Oliveira et al., 2009), ac¸ai pulp (Tonon et al., 2008), waterextractofmountaintea(Nadeemetal.,2011),cinna- monoleoresin(Vaidyaetal.,2006),andcardamomoleoresin (Krishnanetal.,2005)forimprovingthedryingprocessand reducingthestickinessandagglomerationproblemsduring storage,therebyimprovingproductstability.However,besides theadvantagesofaddingdryingagents,theminimumquan- tityofdryingagentisdesirableforpreventingchangesinthe productpropertiesanddecreasingtheproductcost.

ThedryingofsumacextractwasinvestigatedbyBayram etal.(2005,2008)usingaspraydrier.Intheirstudy,thewater extractofsumacberries(ratio1:2)wasspraydriedusingsev- eraldifferentcarrierssodiumchloride,sucrose,glucose,and starch(Bayrametal.,2005),guargum,whey,andmilkpowders (Bayrametal.,2008)at200/100Cinlet/outletairtemperature andfeedconcentrationsof5–25%todetermineasuitablecar- rier.Theresearchersreportedthatonlysodiumchlorideand wheypowderwerefoundassuitablecarriesforthespraydry- ingofsumacextract.

Foodpowders are stable productsforstorage; they also havestorage,packaging,andtransportationadvantagesdue tothe reductionofvolume. Besidesthe mentioned advan- tages,powderscanbeusedasnaturalandeasilymeasurable ingredientsinfoodrecipies.Thequalitycharacteristicsoffood powderssuchasbulkdensity,hygroscopicity,degreeofcaking, dispersibility,wettability,solubility,particlesize,and distri- bution are usefulforthe designand controlofprocessing, handlingandstorageoperations,andproductqualitycontrol (Martinellietal.,2007).Thesepropertiesareinfluencedbythe feedproperties(totalsolublecontent,temperature,useand amountofdryingagents,viscosityetc.),typeofspraydryer, atomizationpressureandspeed,andinletandoutletairtem- perature.Inliterature,thereexistseveral studiesdedicated totheeffectoffeedpropertiesanddryingconditionsonthe physicalpropertiesofspraydriedpowderssuchasmoisture content(Abadioetal.,2004;Adhikarietal.,2004;Cheginiand Ghobadian,2005;Gongetal.,2008;GoulaandAdamopoulos, 2008a;Jinapongetal.,2008;Khaetal.,2010;Kocetal.,2011;

Lantiguaetal.,2011;Mahendran,2010;Papadakisetal.,2006;

Queketal.,2007;Tononetal.,2008),bulkdensity(Cheginiand Ghobadian,2005;Gongetal.,2008;GoulaandAdamopoulos, 2008a;Jinapongetal.,2008;Khaetal.,2010;Mahendran,2010;

Nadeemetal.,2011;Papadakisetal.,2006),wettability(Chegini and Ghobadian, 2005; Fang et al., 2008; Gong et al., 2008;

Jinapongetal.,2008),andsolubility(Cano-Chaucaetal.,2005;

ChenandPatel,2008;GoulaandAdamopoulos,2008a;Nadeem etal.,2011).

Thesumac sold inthe markets as a seasoning usually containslargeamountsofsaltandsomeskinsoftheseeds.

Forthisreason,theeffectivenessofthespicedecreases.The objective of this study was to obtain sumac extract pow- derthatistobeusedasflavouringandcolouringagentsby meansofspraydrying.Thephysical,chemical,andpowder

propertiesoftheobtainedpowdersweredeterminedtoensure thatthe propertiesoftheproductwereacceptablesuchas, colourretention,highsolubility,reducedvolumeforstorage andpackagingpurposes,suitablerheologicalpropertiesasa powder product,and increasedshelflifefor storageofthe productwhencomparedtothesumacextract.

2. Materials and methods

2.1. Rawmaterials

Freshsumacberries(R.coriariaL.)wereobtainedfromalocal companyinIzmirduringtheharvestseason.Theyweresep- aratedfromtheirstemsandscreened.Althoughtheberries were alreadysundriedbytheproducers,theywere keptin coldstorageuntiltheywereneededfortheexperiments.Mal- todextrin withaDEvalueof10–12(ASKimyaIndustryand CommerceLimitedCompany,Turkey)wasusedasthedrying agent.

2.2. Preparationofsumacextractforspraydrying

Thesumacberrieswere washed,drained,andgroundwith ablenderandthenmixedwithwater(withratioof1:1,1:2 and 1:4)for2hatroomtemperatureand thenfilteredwith crude filter paper toprepare the sumac extract. The solu- blesolidcontentsoftheextractsolutionsweremeasuredas 12.4±0.06,7.8±0.06 and, 3.5±0Bx, respectively byrefrac- tometer(RFM330,England).Theextractionyieldsofsolution were calculated as35, 65,and 81.25% forratios of 1:1,1:2 and 1:4respectively. Duetohighwaterabsorptioncapacity ofsumacberries,thehighestextractionyieldwereobtained fromthe1:4sumacberries/waterextractandthisratiowas usedthroughouttheexperiments.Inordertoprovideaneasy feedingtospraydryerextractswereusedwithoutanyconcen- trationstage.Thedesiredtotalsolublesolidcontent(TSS)of thesolutionswasadjustedto10,15,20,and25%(w/w)TSS byaddingtheappropriateamountsofMDtakingintoaccount themoisturecontentoftheMD(2%onawetbasis(wb)and sumacextract).

2.3. Spraydrying

Thedrying experimentswere performed withapilot scale spray dryer (Mobile Minor Miro-Atomizer, Denmark). The sumacextractwasatomizedfromarotaryatomizerintoaver- ticalco-currentdryingchamber0.87mindiameterandwitha heightof1.2mundervariousoperatingconditions.Theinlet andoutletairtemperatureswereintherangeof160,180,and 200Cand80,90,and100C,respectively.Thecontrolofout- letairtemperaturewasregulatedbyadjustingthefeedflow rate.Theatomizationpressureandtheairflowratewerekept constantas392kPaand1.54m3/minrespectively.Thedried powderswerecollectedfromthecycloneseparatorandafter coolingtoroomtemperaturepackagedinglassjarsandwere keptinthedark,incoldstorageuntiltheywereanalyzed.

2.4. Physicalandchemicalanalyses

Themoisturecontentofthesumacextractpowderswerecar- ried out witha 3–4g sample,which was dried inan oven at105Cuntilreachingaconstantweight(AOAC,1990).The wateractivityvaluesweremeasuredbyusingaTesto-AG400 relativehumidityandtemperaturemeasurementdevice.The

(3)

ashcontentofthesumacextractpowderswasdetermined accordingtoAOAC(1995).ThepHvaluesofthesumacextract andpowdersweremeasuredusingapHmetre(InolabWTW pH720,Germany)afterdissolving0.2gofpowderinto48.8g ofdeionisedwater(Bayrametal.,2005).

Thecolour(L*,a*,andb*values)valuesofthesumacextract powdersweremeasuredwithaMinoltaCR-400Colorimeter, USAandtheresultswereexpressedinaccordancewiththe CIELab.System.Thehueangleandchromawerecalculated byusingEqs.(1)and(2).

H()=tan1b

a (1)

Chroma=(a∗2+b∗2)1/2 (2)

Forthedeterminationofthetotalphenoliccontent(TPC) ofthewaterextractsofsumacandspraydriedsumacextract powders;thewaterextractsofsumacwereuseddirectlyand the powder was diluted(1:1kg/kg).The resultswere given asgallicacidequivalentspergramofthespraydriedsumac extractpowder(Frankeetal.,2004).

The DPPH (1,1-diphenyl-2-picryl hydrazyl) free radical- scavenging capability of methanol extracts of sumac (R.

coriariaL.)andspraydriedsumacextractpowders(20␮g/ml) wereevaluatedbythemethodofSanchez-Morenoetal.(1998) withslightmodifications.Thepercentageofscavengingcapa- bility of DPPH radical was calculated using the following equation.

DPPH×scavengingactivity(%)=

1−AAsample

control

×100 (3)

2.5. Analysisofthepowderproperties

Forthedeterminationofbulkdensity,themethodexplained byCheginiandGhobadian(2005)wasusedinamodifiedform.

Theaveragewettability and solubility timesofspray dried sumacextractpowdersweredeterminedbyusingthemethod explainedbyGongetal.(2008),andGoulaandAdamopoulos (2008a),respectively.

2.6. Scanningelectronmicroscopy(SEM)

Theappearanceandshapeofthepowdersampleswereinves- tigatedbyplacingthepowdersonaluminiumstubsusinga double-sidedadhesivetape.Thesampleswere thencoated withgoldandwereexaminedwithascanningelectronmicro- scope (SEM-Phillips XL-30S FEG, Eindhoven, Netherlands) operatingat5kVacceleratingvoltage.

2.7. Statisticalanalysis

Thedatawasanalyzed usingstatisticalsoftware SPSS16.0 (SPSSInc.,USA).Thedatawasalsosubjectedtoananalysisof variance(ANOVA)andDuncan’smultiplerangetest(˛=0.05) wasused todetermine the difference betweenmeans and homogeneoussubsets. The dryingexperiments were repli- catedtwiceandalltheanalysesweretriplicated.

3. Results and discussion

3.1. Resultsoftheanalysisforthephysicaland chemicalproperties

Thedryingofsumacextractisimportanttoobtainapureand easytouseformofthespice.Spraydryingisthemostsuitable methodforthedryingofmaterialsintheformofsolutions.

Theexperimentalconditionsweredeterminedbyconsidering previousstudiesperformedwiththesameequipment.How- ever,itwasnotpossibletodrytheextractsundertheworking range (selectedvaluesofconcentrationsand temperatures) ofthespraydryerused.So,inordertoovercomethisprob- lem,adryingagent(maltodextrin)wasusedtoimprovethe dryingprocess.Thefirstattemptwastouseaminimumcon- centrationofMDinthefeednecessaryforasuccessfulpowder production.So,theTSSofthesumacextract(3.5%)(w/w)was adjustedto5%withtheadditionofMD.Theseattemptswere consideredsuccessfulfordryingexperimentsat160/80Cand 180/90Cinlet/outlettemperatures.However,duetothesticki- nessproblem,onlysmallquantitiesofpowderswerecollected from the cyclone walls. For the experiments at 200/100C inlet/outlettemperaturenopowderwasobtainedbecauseof thesolutionsstickingtothesurfacesandburning.Forthisrea- son,itwasdecidedtoincreasetheTSSofthesumacextract to10%,15%,20%,and25%withtheadditionofMD.Theseval- ueswerealsoconsistentwiththeexperimentalconditionsof Bayrametal.(2005,2008).Thefeedflowrateofsumacextracts wereadjustedas33.50,33.50,36.00and41.50ml/min,forthe samplescontaining%10,15%,20%,and25%TSSrespectively inordertosupplythedesiredoutputtemperatures(80Cand 90C).Ontheotherhand,inordertoreachtheoutlettempera- tureof100C,thefeedflowrateswereadjustedto39.25,39.75, 41.00,and43.50ml/min,respectivelyfortheextractswith%10, 15%,20%,and25%TSS.Itwasobservedthat,increasingthe MDconcentrationresultedinanincreaseinthefeedflowrate toreachthedesiredoutletairtemperature.Theaveragedry- ingtimesofsumacextracts(perkilogramfeed)werefound as30.5minfor10% TSS,26.3minfor15% TSS,25.8minfor 20%TSSand25.6,minfor25%TSS.Theefficiencyofthepro- cesswascalculated astheratiooftheamount ofobtained powdertothefeedsumacextract(w/w)andwasevaluated as70.21%,86.77%,97.45%,and98.5%fortheextractswith10, 15,20,and25%TSS,respectively.Theefficiencyvalueforthe extractcontaining5%TSSextractwasfoundas31.68%due tothestickinessproblem.Theresultsshowedthatincreasing thecarrierconcentrationandassociatedincreaseinTSScon- tentofthefeedresultedinanincreaseintheefficiency.The stickybehaviourofextractswhichincludehighamountsof sugar(glucose,fructose,andsucrose)andorganicacid(citric, malic,andtartaricacid)causesthestickinessproblemdueto the lowglass transitiontemperature,whereas,theuse ofa carrierdecreasesthestickinessbyincreasingtheglasstran- sitiontemperature.Although,sumacextractdoesnotinclude highamounts ofsugar,itsorganicacidcontentishigh.For thisreason,theadditionofMDincreasedtheproductyieldby preventingadhesionofthesumacextractonthedryerwalls.

SimilarresultswerefoundbyNadeemetal.(2011).However, Tononetal.(2008)reportedthat,increasingthecarriercon- centrationcausedadecreaseinefficiencyduetoincreasing viscosity.InthestudyofNadeemetal.(2011)anincreaseof 217%and 36%was observedinproductyieldbyincreasing thecarrierconcentrationfrom0to3g/100gand3to5g/100g, respectively.Dependingontheresultsofthisstudyeach5%

(4)

increaseinTSS contentincreasedtheyieldinadecreasing way(121.6,23.59,12.31,and1.08%,respectively).Forthisrea- son,increasingthe amount ofsolid contentafteracertain intervalwasnoteffectiveontheyieldsbutincreasesthecost byincreasingtheamountofdryingagent.Theeffectofthe inletairtemperature onthe productyieldwasdetermined inpaststudies(CheginiandGhobadian,2005;Nadeemetal., 2011;Tononetal.,2008).Nadeemetal.(2011)andCheginiand Ghobadian(2005)reportedthatincreasingtheinletairtemper- aturecausedadecreaseinproductyield.Similarresultswere foundfortheextractscontaining5and25%TSS.However,the yieldoftheextractwith10%TSSincreaseddependingonthe airtemperature.ThisresultwasconsistentwithTononetal.

(2008).However,forthesamplecontaining15and20%TSS,the effectoftemperatureontheyieldwasnotprominentlydeter- mined.Ingeneral,theresultsshowedthatspraydryingcan satisfactorilybeappliedfordryingofsumacextracttoobtain powders.Theuseofacarrier,improvesthedryingprocessand leadstoeffectivedrying.

The average values of the experimental results of the physicochemicalpropertiesofspraydriedsumacextractpow- dersareshowninTable1.Themoisturecontent(wetbasis, wb)ofspraydriedsumacextractpowdersvariedfrom1.89to 2.94%.Theseresultswere similarwiththe measuredmois- turecontentvaluesofspraydriedguavaconcentratepowders withfourdifferentMDconcentrations(30,40,50,and60%by weightonadry basis)at160Cinletand 80C outlettem- peraturesrangingfrom2.14to2.24%(wb)(Mahendran,2010).

Similarly,themoisturecontentvaluesforwatermelonpow- derswerebetween1.49and2.78%(wb)whichweredriedat fourdifferent inlettemperatures(145, 155,165, and175C) andtwodifferentMDconcentrationsof3and5%(Queketal., 2007).Othercomparableresultswereobtainedinthestudyof Papadakisetal.(2006)wherethemoisturecontentsofspray driedraisinjuiceconcentratesrangedbetween0.6and4.5%

(wb)foralargevarietyofexperimentalconditionsasthreedif- ferenttypes(6,12,and21DE)andamounts(33/67,50/50,and 67/33raisinjuicesolids/maltodextrinsolids)ofMDandfour differentinlet/outlettemperatures(110/77,130/86,140/95,and 200/115C).

The results showed that when the inlet/outlet tem- peratures increased, the moisture content of the powders decreasedduetoahightransferrateathighoperationtemper- atures.Theseresultswereconsistentwithotherresearches (Chegini and Ghobadian, 2005; Goula and Adamopoulos, 2008a;Khaetal.,2010;Queketal.,2007;Tononetal.,2008).

Increasingtheinlet/outlettemperaturesshowedasignificant effectonthemoisturecontentoftheextractswith15and20%

TSScontainingsumacextractpowders(P<0.05).Themoisture content was significantlyinfluenced bythe MD concentra- tionfortheexperimentscarriedoutat200/100Cinlet/outlet temperatures(P<0.05).Except,forthepowdersobtainedfrom extractscontaining25%TSS,wherehighconcentrationsofMD ledtoadecreaseinthemoisturecontentofthepowders.The totalsolublesolidcontentoftheextractswasincreasedby increasingtheamountofMDandforthisreasontheamount ofwatertobeevaporateddecreased.Hence,theresidualmois- tureinthepowderdecreased.Thisobservationwasfoundto besimilarwithotherresearchers(Abadioetal.,2004;Quek etal.,2007).Duringthedryingoperationsoftheextractswith 25%TSS,thefeedflowratewasincreasedtoreachtheoutlet temperaturewhichresultedinashortercontacttimebetween theextractanddryingair.Forthisreason,duetoalesseffi- cientheattransfer,alowerevaporationratewasobservedand

this resulted inhigherresidual moisture content.Therea- sonforhighmoisturecontentswasexplainedbyGoulaand Adamopoulos(2008a)andAdhikarietal.(2004)asthedifficulty forwatermoleculestodiffusepastthelargerMDmolecules.

Water activity isconsidered asone of the mostimpor- tant quality factorsespecially forlong termstorage. Water activityisrelatedwithmoisturecontentandresponsiblefor biochemicalreactions(Queketal.,2007).Thevaluesofwater activity under 0.6 is generally considered as microbiologi- cally stable(Queket al., 2007) and at0.20and 0.40 ensure the stabilityofthe productagainstbrowningandhydroliti- calreactions,lipidoxidation,auto-oxidation,andenzymatic activity (Marqueset al.,2007).Since thewateractivity val- uesofsumacextractpowderswerebetween0.157and0.215, thepowderscanbeacceptedasmicrobiologicallyandoxida- tively stable. The wateractivity ofsumac extract powders was found tobe lower than the spray driedmountain tea waterextractpowders(0.276–0.331) whichwerespraydried atthree differentinlet temperatures(145, 155, and 165C), carrierconcentrations(0%,3%,and5%)andfourdifferentcar- riers(␤-cyclodextrin,arabicgum,MD12andMD19)(Nadeem et al., 2011), and watermelon powders (0.2–0.29) for which the experimentaldesignwas givenpreviously(Queket al., 2007).Increasingthe MDamount andinlet/outlettempera- turesshowedasignificanteffectonthewateractivityofthe sumacextractpowders(P<0.05).

Theashcontent(%)ofsumacextractpowderswasfound tobebetween1.15and3.37%onawetbasis(Table1).Theash contentvaluesdecreaseddependingontheincreaseoftheMD content.IncreasingtheamountofMDthatdidnotincludeash hasresultedinsignificantdecreasesoftheashcontentofthe powders(P<0.05).Theincreaseininlet/outlettemperatures hadsignificanteffectsonlyontheashcontentofthepowder samplescontaining10%TSSinthesumacextract(P<0.05).

ThepHvalueofthesumacextractwas3.01andthepHval- uesoftheextractpowders(3.13–3.23)weresimilarandslightly higher than thisvalue.Thesame resultwasalsofoundby Bayrametal.(2005).Theresultsshowedthatincreasingthe amountofMDhadasignificanteffectontheincreaseofthe pHinthesumacextractpowders(P<0.05).Similareffectswere observedforguavafruitjuicepowdersthatwereobtainedby Mahendran(2010)anditwasreportedthatsomeacidswere lostduetoevaporationduringthespraydryingofguavafruit juice.However,Khaetal.(2010)didnotobserveasignificant effectonthepHvalueofgacfruitarilpowderbyincreasing theamountofMD.Increasingtheinlet/outlettemperatures didnothavesignificanteffectsonthepHvaluesofthesumac extractpowders(P>0.05).Thisresultwasinagreementwith theresultsofKhaetal.(2010)whofoundthatthepHofthe gacfruitaril powderdidnotchange withthefivedifferent (120–200C)inletairtemperatures.

Colour is an important quality factor as it reflects the sensoryattractivenessandthequalityofthepowders(Quek etal.,2007).Eventhoughafunctionalfoodcanprovideseveral healthbenefitstoconsumers,withoutvisualattractiontothe consumersitcannotbemarketable.Forthisreason,thecolour oftheprocessedproductsshouldideallyremainunchanged afterproductiontoremindtheconsumersoftheoriginalprod- uct.Theresultsofthecolourmeasurementsforsumacextract powdersareshowninTable2.Ingeneral,thecolourvalues(L*, a*,andb*)ofthespraydriedsumacextractpowdersweresig- nificantlyinfluencedbythemaltodextrinconcentrationand inlet/outlet temperatures(P<0.05). Itwasfoundthat when theMDconcentrationincreasedtheL*valuesincreasedbuta*

(5)

Table1–Effectofdifferentdryingconditions(inlet/outlettemperature)andmaltodextrinconcentrationonthephysical propertiesofsumacextract±powders.

Inlet/outlet temperature(C)

Totalsolublesolid contents(%)

Moisturecontent(%) Wateractivity Ashcontent(%) pH

160/80 10 2.94±0.09ap 0.187±0dr 3.20±0.16dr 3.13±0.01bp

15 2.86±0.00ar 0.165±0.00bp 2.05±0.07cp 3.19±0.04cp

20 2.72±0.11ar 0.166±0.00bs 1.51±0.08bp 3.21±0.01cp

25 2.92±0.11ap 0.174±0.00cp 1.21±0.01ap 3.22±0.04cp

180/90 10 2.93±0.12ap 0.197±0.00cs 3.07±0.04dp 3.13±0.06bp

15 2.73±0.01ar 0.215±0.00ds 1.90±0.11cp 3.17±0.08bp

20 2.69±0.24ar 0.157±0ap 1.51±0.06bp 3.20±0.04cp

25 2.89±0.13ap 0.200±0.001cs 1.15±0.09ap 3.21±0.01cp

200/100 10 2.82±0.05bp 0.180±0.003bp 3.37±0.06ds 3.15±0.04ap

15 2.36±0.08bp 0.204±0.003dr 2.05±0.16cp 3.16±0.03ap

20 1.89±0.11ap 0.164±0.0007ar 1.53±0.02bp 3.20±0.01bp

25 2.65±0.10cp 0.190±0.004cr 1.19±0.19ap 3.23±0.01bp

Differentletters(a–d)inthesamecolumnindicatesignificantdifferencebetweenmaltodextrinconcentrationsP<0.05.

Differentletters(p–s)inthesamecolumnindicatesignificantdifferencebetweeninlet/outlettemperaturesatP<0.05.

Table2–Effectofdifferentdryingconditions(inlet/outlettemperature)andmaltodextrinconcentrationonthecolour valuesofsumacextractpowder.

Inlet/outlet temperature(C)

Totalsolublesolid contents(%)

L* a* b* Hueangle() Chroma

160/80 10 63.56±0.21bs 30.91±0.20dr 4.41±0.16bp 8.12±0.24 31.22±0.22

15 66.49±0.30cp 28.63±0.69cp 4.33±0.09bp 8.61±0.22 28.95±0.68 20 67.54±0.21dp 27.61±0.55bs 4.64±0.07cs 9.54±0.23 27.99±0.54 25 70.79±0.16ep 25.36±0.24ar 3.83±0.04as 8.65±0.08 25.65±0.24

180/90 10 61.17±0.30br 30.93±0.42er 4.80±0.21dr 8.82±0.30 31.30±0.43

15 66.63±0.25cp 30.23±0.28ds 4.55±0.06cr 8.55±0.06 30.57±0.29 20 70.59±0.31dr 26.11±0.26cr 3.70±0.04br 8.03±0.10 26.46±0.17 25 72.60±0.22er 24.13±0.10bp 3.56±0.04ap 8.37±0.07 24.38±0.10

200/100 10 59.15±0.73ap 30.11±0.40dp 6.30±0.27cs 11.81±0.38 30.76±0.44

15 67.38±0.16br 29.41±0.10cr 4.53±0.03br 8.76±0.07 29.76±0.10 20 71.34±0.18cs 25.62±0.11bp 3.58±0.03ap 7.95±0.05 25.86±0.11 25 72.13±0.16dr 24.31±0.20ap 3.61±0.05ar 8.46±0.12 24.48±0.31 Differentletters(a–e)inthesamecolumnindicatesignificantdifferencebetweenmaltodextrinconcentrationsatP<0.05.

Differentletters(p–s)inthesamecolumnindicatesignificantdifferencebetweeninlet/outlettemperaturesatP<0.05.

andb*valuesdecreased.Similarobservationswereobtained forthedryingofthewaterextractofmountaintea(Nadeem etal.,2011).Hueangleistheratioofa*andb*andmeasuresthe propertyofcolourandthechromavalueindicatesthecolour intensityorsaturation(Queketal.,2007).Thechangesinhue angle()andchromavaluesofthesamplesarealsogivenin Table2.ForTSSvaluesofmorethan10%,theresultedpow- derslosttheirspecificattractivecolour.Similarresultswere observedbyQueketal.(2007)forspraydriedwatermelonpow- ders.Itwasreportedthat,aftertheadditionof10%MDthe watermelonpowderslosttheirred–orangecolour.

Thetotalphenoliccontentforthewaterextractofthespray driedsumacextractpowdersweredetermined bytheFolin Ciocalteaumethod(Frankeetal.,2004).Theresultsobtained by using the calibration curve [A=0.1041GAE−0.0469 and R2=0.9977]wereexpressedasgallicacidequivalentsper1gof sumacextractpowder(mgGAE/gsumacextractpowder).The TPCofthespraydriedsumacextractpowdersrangedbetween 1.165and 1.45mgGAE/g ofsumacextractpowder.TheTPC ofthesumacextractpowdersdependingontheinlet/outlet temperatureandamountofadditionalMDisshowninFig.1.

Sumacberriescontainahighamountofantioxidantand antimicrobialcompoundssuchasphenolicacids,flavonoids,

hydrolysabletannins,anthociyanins,andorganicacids(Kosar etal.,2007;Leeetal.,2002;OzcanandHaciseferogullari,2004) whichalsomakessumacmuchmoreattractivetoconsumers.

So,itisimportanttodeterminetheeffectofspraydryingoper- ationonthephenoliccontentofthesumacextract.Thetotal phenoliccontentofpuresumacextractwasfoundas2.95mg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10 15 20 25

mg GAE/ g sumac extract powder

Total Soluble Solids (%)

160/80 °C 180/90 °C 200/100 °C

Fig.1–Theeffectofdifferentdryingconditions(inletand outlettemperatures)andmaltodextrinconcentrationson theTPCofsumacextractpowders.

(6)

GAE/gsumacextract,whichwasfoundtobelowerthanthe evaluatedTPCvalueofthewaterextractofsumacbyBursal andKoksal(2011)(63mgGAE/g)andKosaretal.(2007)(5.15mg GAE/g).Bursal and Koksal (2011) explainedthat the differ- entextractionprocesseswerethereasonsforthedifferences betweenthedeterminedtotalphenoliccompounds.Thetotal phenoliccontentofsumacextractswerefoundas2.328,2.258, 2.245,and2.237mgGAE/gsumacextract,fortheextractscon- taining10%,15%,20%,and25%TSS,respectively.Theaverage retentionsofTPCofsumacextractpowderswerecalculated as62.35±1.07%for160/80C,53.35±1.56%for180/90Cand 62.04±1.17% for200/100C.In addition, theaverage reten- tionsofTPCofsumacextractpowdersweredetermined as 59.44±4.64%,59.12±4.85%,58.93±5.94%,and57.95±5.09%

fortheextractswith10,15,20,and25%TSS.Inastudyfor spraydryingofphenoliccompounds which wereextracted fromwinelees,toincreasetheyieldofspraydryingtwodif- ferentagents(maltodextrinandAerosil-200)wereused.The researchersreportedthatincreasingtheadditionalamounts ofcarriersdecreasedthetotalphenolsindex(%)inthefinal product.However,thisdecreasewasonlyduetothedilution effect,asaslightdecreaseofphenoliccompoundoxidation (%)could beobservedwhenhighamounts ofcarrierswere added. The resultsof our study were also consistent with theresearchers(Pérez-SerradillaandLuquedeCastro,2011).

Accordingtotheseresults,it wasobservedthatthesignifi- canteffectoftheadditionofMDonTPCstartswiththeextract containing15%TSS(P<0.05).Thevaluesobtainedforthetotal phenoliccontentofspraydriedpowderswerelowerthanthe TPCoffreshsumacextract.TheresultsshowedthattheTPCof sumacextractpowderswassignificantlyinfluencedbytheMD concentration(P<0.05).Nadeemetal.(2011)alsoobservedthe sameeffectofthecarrierontheTPCofmountainteapowder.

Theresultsshowedthatthespraydryingprocessdidnotcause importantchangesintheTPCofsumacextractpowder.The spraydryingprocesscausedabouta15%decreaseintheTPCof thepowdersbyincreasingtheinlet/outlettemperaturefrom 160/80Cto180/90C,furtherincreaseintheinlet/outlettem- peratureto200/100CincreasedtheTPCofthepowdersabout 16%.Nadeemetal.(2011)reportedthattheTPCofmountain teapowderincreasedabout4%whentheinletairtempera- turewasincreasedfrom145Cto155C.However,afurther increase(to165C)causedaslightdecreaseintheTPC.On theotherhand,theTPCofsumacextractpowdersthatwere obtainedat180/90Cinlet/outlettemperatureswerefoundas statisticallydifferent(P>0.05)fromtheotherpowders.

Radicalscavengingactivity(RSA)isanimportantproperty dueto the inhibition offreeradicals infoods and biologi- calsystemsand it isanindicationofantioxidantcapacity.

Sumac is a rich source of phenolic acids, flavonoids, tan- nins,andanthocyaninswhicharestrongantioxidants(Kosar et al.,2007).TheRSA(%) ofmethanol extract(20␮g/ml)of sumacwasfoundas74.84%andtheRSA(%)ofwaterextract ofsumacatdifferent concentrations (10,20, and 30␮g/ml) weredeterminedas15.8%,23.2%,and41.2%,respectivelyby BursalandKoksal(2011). Inaddition,thesame researchers reportedthat theRSA(%) ofethanolextractofsumacwas notgoodaswellaswaterextract.InanotherstudyTheRSA (%) ofaqueousethanol extractofsumacatconcentrations (10, 20, and 50␮g/ml) were determined as 48.91%, 60.89%, and93.79%,respectivelybyKossahetal.(2011).Thedifferent extractionprocesses,analysismethodandcultivarofsumac mightbethereasonsofthedifferencesbetweenthe deter- minedRSA(%).Theeffectofdifferentdryingconditions(inlet

0 5 10 15 20 25 30

10 15 20 25

Radical Scavenging Acvity (%)

Total Soluble Solid (%)

160/80 °C 180/90 °C 200/100 °C

Fig.2–Theeffectofdifferentdryingconditions(inletand outlettemperatures)andmaltodextrinconcentrationson theradicalscavengingactivity(%)ofsumacextract powders.

and outlet temperatures) and maltodextrin concentrations ontheradicalscavengingactivity(%)ofsumacextractpow- derswasshowninFig.2.TheRSA(%)ofspraydriedsumac extract powdersdecreased withincrease inthe concentra- tion of maltodextrinand inlet/outlettemperature (P<0.05).

Thecomponentsofsumacpolyphenolswhichareresponsi- bleofantioxidantactivityofsumacareeasilyoxidizedinthe spraydryingprocess(underthehightemperatures).Although thereisarelationshipbetweentheantioxidantactivitiesof sumacextractswiththeirphenolicscontent,thetotalphen- olicscontentdoesnotincorporatedallantioxidantspresent in the sumac extract. Also,Georgetti et al. (2008) reported that, thereaction betweenthechemical compoundsinthe extractmakestheantioxidantactivitydependentofthechem- ical structureofthe antioxidant substance and interaction betweenthem,besidesitsconcentration.

3.2. Analysisofthepowderproperties

The bulk density, average time of wettability, and solu- bility as a function of inlet/outlet temperatures and MD addition are presentedin Figs. 3–5, respectively and these properties are important for ease of reconstitution. These properties are influenced by the nature of the feed (solid content,viscosity,and temperature)andoperational condi- tions (Mahendran, 2010). Knowledgeof thebulk densityof food productsisanimportantparameter forthe transport, storage,packaging,andmixingprocesses.Thebulkdensities

0.5 0.55 0.6 0.65 0.7 0.75 0.8

10 15 20 25

Bulk Density (g/ml)

Total Soluble Solids (%)

160/80 °C 180/90 °C 200/100 °C

Fig.3–Theeffectofdifferentdryingconditions(inletand outlettemperatures)andmaltodextrinconcentrationson thebulkdensityofsumacextractpowders.

(7)

0 500 1000 1500 2000 2500 3000 3500 4000

10 15 20 25

Weability Time (s)

Total Soluble Solids (%)

160/80 °C 180/90 °C 200/100 °C

Fig.4–Theeffectofdifferentdryingconditions(inletand outlettemperatures)andmaltodextrinconcentrationson thewettabilityofsumacextractpowders.

ofthesumacpowdersrangedbetween0.592and0.772g/ml.

Thebulkdensity valuesofspraydriedraisinjuiceconcen- trate,guavaconcentrate,andaqueoussolutionsofmucilage ranged between 0.64–0.67g/cm3 (Papadakis et al., 2006), 0.54–0.61g/cm3 (Mahendran, 2010) and (0.570–0.769g/ml) (Martínez etal., 2010)respectively. On the other hand,the bulk density values of spray dried tomato juice powders (0.091–0.271g/ml)which were driedatthreeinlettempera- tures(130,140,and150C),threedifferenttypes(6,12,and21 DE),andratios(0.25,1,and4tomatopulpsolids/maltodextrin solids)ofMDwerefoundtobelowerthanthebulkdensityof spraydriedsumacextractpowders(GoulaandAdamopoulos, 2008a).AnincreaseinMDconcentrationledtoasignificant

0 50 100 150 200 250 300 350 400

10 15 20 25

Solubility Time (s)

Total Soluble Solids (%)

160/80 °C 180/90 °C 200/100 °C

Fig.5–Theeffectofdifferentdryingconditions(inletand outlettemperatures)andmaltodextrinconcentrationson thesolubilityofsumacextractpowders.

decrease (P<0.05)inbulkdensities ofthepowders. Thisis probablyduetothelowmoisturecontentofthedriedpow- ders.ThisresultwasconsistentwithGoulaandAdamopoulos (2008a)andMahendran(2010). Ontheotherhand,Nadeem et al. (2011) reported that the bulk density of spray dried mountainteapowderincreasedwithanincreaseintheMD concentration ofthe feed. The change of inlet and outlet temperatureshadasignificanteffectonthebulkdensityof powders(P<0.05)exceptthesamplecontaining25%extract powders(P>0.05).Thestudiesmadeonthedeterminationof thebulkdensityshowedthatanincreaseindryingairtemper- atureleadstoadecreaseinthebulkdensityofsomeproducts suchastomatopulp(GoulaandAdamopoulos,2008a),orange

Fig.6–Scanningelectronmicrographsofspraydriedsumacextracts:(a)160/80C10%TSS,(b)160/80C15%TSS,(c) 160/80C20%TSSand(d)160/80C25%TSSat1000×magnification.

(8)

Fig.7–Scanningelectronmicrographsofspraydriedsumacextracts:(a)160/80C10%TSS,(b)180/90C10%TSSand(c) 200/100C10%TSS1000×magnification.

juiceconcentrate(CheginiandGhobadian,2005),andgacfruit aril powder (Kha et al., 2010) due to a faster evaporation rateleading tooccur onceinmoreporous andfragmented products.Theresults ofthisstudy were also supportedby theseresearchers.

Wettabilityistheabilityofthepowderparticlestoover- comethesurfacetensionbetweenthemselvesandwater.In ordertoattainhighwettabilityvalues,highporosityorlarge pores for big particles are desirable. Besides the effects of physicalproperties, the chemical composition of the pow- dersalsoinfluenceswettabilitydependingonthecontentof fats,proteins,and carbohydrates ontheirsurfaces. Ingen- eral,wettingcanbeconsidered asthe rate-controllingstep ofthe reconstitutionprocess,withthesurfacecomposition stronglyaffectingwettability(Fangetal.,2008).Theaverage timesofwettabilityofthesumacpowdersvariedfrom1239s to3263s(Fig.4).Theaveragewettabilitytimeofsumacextract powderswasfoundtobelongerthanspraydriedblackberry powderswithtwodifferentcarriers(MD,gumArabic,andMD –gumArabicblend)and145Cinletand75–80Coutlettem- peraturesrangingfrom82.2to134.20s(Ferrarietal., 2012).

Ferrarietal.(2012)alsoreportedthatblackberrypowderpro- ducedwithmaltodextrinshowedthe lowestwettability.An increaseinMDconcentrationinsumacextractsledtoasig- nificantdecrease(P<0.05)inthewettabilityofthepowders exceptthesamplewith25%TSS.Theresultsshowedthatthe inlet/outlettemperatureshadasignificanteffectonthewett- abilityofpowders(P<0.05). Theaveragewettabilitytimeof sumacextractpowdersincreasedwithincreasinginlet/outlet airtemperatures.Also,CheginiandGhobadian(2005)reported

thatincreasingtheinletairtemperaturescausedanincrease intheaveragewettabilitytimeoforangejuicepowders.The residualmoisturecontentofpowdershasanimportanteffect onthepowderpropertiessuchasbulkdensity,solubility,wett- ability,flowbehaviouretc.(GoulaandAdamopoulos,2008a).

Theresidualmoisturecontentofpowderswashighlyaffected by the operationconditions of the spraydryer and carrier concentration.Atthehigheroperationtemperatures,thefor- mationofahardsurfacelayerpreventstheentranceofwater intothematerial(CheginiandGhobadian,2005).So,athigh airdryingtemperatures, theaveragetimeofwettabilityfor sumac extractpowderswas foundtobe long.Athigh car- rierconcentrations,theresidualmoisturecontentofsumac extractpowderwhichhighlyaffectedtheaveragewettability timewasfoundtobelow,exceptfortheextractwith25%TSS.

Themoisturecontentofthesumacextractpowderwith25%

TSSwasfoundtobehigherthanthepowdersthatcontain- ing15and20%TSS.Dependingonthemoisturecontentthe averagetimeofwettabilityofthe25%powderwasfoundto beshorterthan20%fortheinletandoutlettemperaturesof 180/90Cand200/100C.

Solubilityisanimportantcriteriontoevaluatetheprod- uct’s behaviour in the aqueous phase since food powders musthavegoodsolubilitytobeusefulandfunctional.Solu- bilityisthefinalstepofpowderdissolutionandisconsidered as the key determinant ofthe overall reconstitution qual- ity (Chen and Patel, 2008; Fang et al., 2008). The average timeforthesolubilityofthesumacextractpowdersvaried from93.5sto314.5s(Fig.5).GoulaandAdamopoulos(2008a) reportedthattheaveragesolubilitytimeofspraydriedtomato

(9)

powdersrangedbetween119and213s.Anincreasinginthe MDconcentrationhadsignificanteffects(P<0.05)onthesol- ubility of powders. On the other hand an increase of the inlet/outlettemperatureshadsignificanteffectsonlyonthe solubilityofthesamplescontaining10and20%TSS(P<0.05).

Goula and Adamopoulos (2008a) and Nadeem et al. (2011) observedthat increasingtheinletairtemperaturelettoan increaseinthesolubilityoftomatopulppowderandmoun- tain tea powder, respectively. Abadio et al. (2004) reported thatareductionintheMDconcentrationimprovedthesol- ubility.OnthecontrarytotheresultsgivenbyAbadioetal.

(2004)theresultsofthisstudyshowedthat,thehighMDcon- centrationsledtoanincreaseinthesolubilityofthesumac extractpowdersinwaterassimilartoNadeemet al.(2011) andCano-Chaucaetal.(2005).Maltodextrinisoneofthemost frequentlyuseddryingagentsforthespraydryingofplant extractsduetoitshighsolubilityinwater(Cano-Chaucaetal., 2005).Asitwasdiscussedforwettabilitythehardsurfacelayer formedcausestochangesinthemicrostructureofthepow- ders.Accordingtothe literature,inthe absence offatand surface-activecomponents(e.g.proteins),theformationofa solidcrustonthedropletsurfaceoccurswhenthereissuper- saturationatthesurfaceofthedryingdroplet(Kimetal.,2009).

Thecompositionofthecrustformedisthenexpectedtobe largelydeterminedbythesolubilityofthedissolvedcompo- nentswherethecrustisgeneratedatthedropletsurfaceby precipitationoftheleastsolublesubstancefromthesaturated solution.Forthisreasontheformedcrustismainlycomposed ofMDwhichhashighsolubility.Thisexplainstheincreaseof solubilityofthepowderswithincreasingtemperatureandMD concentration.

3.3. SEManalysis

SelectedimagesfromtheSEMmicrostructureanalysisofthe spraydriedsumacextractpowderswereshowninFigs.6and7.

TheSEMresultsshowedthatspray-driedsumacextractpow- dersareirregularlysphericalshapedparticles,havingmany shrinkagesanddentsonthesurfaceingeneral.

4. Conclusion

Thepresentworkdescribesthepossibilityofproducingsumac extractpowderbyspraydryingandthechangesinsomeof thephysical,chemical,andpowderpropertiesofthepowders dependingontheinlet/outlettemperatureandMDadditions.

Theresultsshowedthattheprocesshassomedifficultiesfor dryingofpuresumacextract.Theuseofacarrier,improves thedryingprocessandleadstoeffectivedrying.Forthisrea- son,theadditionofMDwasfoundtobesuitableasacarrier forthespraydryingofsumacextract.Thephysical,chemical, andpowderproperties, exceptforthe pHvalueandcolour ofthe powders ofthe spray driedsumacextract powders, were significantlyaffected byboth theinlet/outlet temper- ature,MD additions, and the temperature–MD interactions (P<0.05).Thehighestefficiencyandlowestdryingtimewere obtainedfromtheextractswith25%TSS.However,maltodex- trinconcentrationaffectedthequalitysuchascolour,thetotal phenoliccompoundsandRSA(%),wettabilitytimeofsumac extractpowders, negatively. Increasing inlet/outlet temper- atureresultedin alsosomequality losses.Asa result,the extractswith10%TSSand160/80Cinlet/outlettemperature canbeselectedbestconditionsforthisstudy.Thepossible

usesofthisdriedproductinfoodsystemsandstoragepoten- tialshouldbestudiedinfutureprojects.

Acknowledgement

TheauthorsacknowledgethefinancialsupportEgeUniversity, Izmir,Turkey,CouncilofScientificResearchProjects(Project Number:BAP2010/Muh/015).

References

Abadio,F.D.B.,Domingues,A.M.,Borges,S.V.,Oliveira,V.M.,2004.

Physicalpropertiesofpowderedpineapple(Ananascomosus) juiceeffectofmaltodextrinconcentrationandatomization speed.J.FoodEng.64,285–287.

Adhikari,B.,Howes,T.,Bhandari,B.R.,Troung,V.,2004.Effectof additionofmaltodextrinondryingkineticsandstickinessof sugarandacid-richfoodsduringconvectivedrying:

experimentsandmodelling.J.FoodEng.62,53–68.

Amerie,M.,Maa,Y.F.,2006.Spraydryingofbiopharmaceuticals:

stabilityandprocessconsiderations.DryingTechnol.24, 763–768.

Anwar,S.H.,Kunz,B.,2011.Theinfluenceofdryingonthe stabilizationoffishoilmicrocapsules:comparisonofspray granulation,spraydryingandfreezedrying.J.FoodEng.105, 367–378.

AOAC,1990.OfficialMethodsofAnalysis,vol.II.,15thed.

AssociationofOfficialAnalyticalChemists,Arlington,VA.

AOAC,1995.In:Cunniff,P.(Ed.),OfficialMethodsofAnalysis., 16thed.AssociationofOfficialAnalyticalChemists,Arlington, VA.

Bayram,O.A.,Bayram,M.,Tekin,A.R.,2005.Spraydryingof sumacflavorusingsodiumchloride,sucrose,glucoseand starchascarriers.J.FoodEng.69,253–260.

Bayram,O.A.,Bayram,M.,Tekin,A.R.,2008.Wheypowderasa carrierinspraydryingofsumacconcentrate.J.FoodProcess Eng.31,105–119.

Bursal,E.,Koksal,E.,2011.Evaluationofreducingpowerand radicalscavengingactivitiesofwaterandethanolextracts fromsumac(RhusCoriariaL.).FoodRes.Int.44,2217–2221.

Cano-Chauca,M.,Stringheta,P.C.,Ramos,A.M.,Cal-Vidal,J.,2005.

Effectofthecarriersonthemicrostructureofmangopowder obtainedbyspraydryinganditsfunctionalcharacterization.

InnovativeFoodSci.Emerg.Technol.6,420–428.

Chegini,G.R.,Ghobadian,B.,2005.Effectofspraydrying conditionsonphysicalpropertiesoforangejuicepowder.

DryingTechnol.23,657–668.

Chen,X.D.,Patel,K.C.,2008.Manufacturingbetterqualityfood powdersfromspraydryingandsubsequenttreatments.

DryingTechnol.26,1313–1318.

Ersus,S.,Yurdagel,U.,2007.Microencapsulationofanthocyanin pigmentsofblackcarrot(DaucuscarotaL.)byspraydrier.J.

FoodEng.80,805–812.

Fang,Y.,Selomulya,C.,Chen,X.D.,2008.Onmeasurementoffood powderreconstitutionproperties.DryingTechnol.26,3–14.

Ferrari,C.C.,Germer,S.P.M.,Alvim,I.D.,Vissotto,F.Z.,Aguirre, J.M.,2012.Influenceofcarrieragentsonthephysicochemical propertiesofblackberrypowderproducedbyspraydrying.Int.

J.FoodSci.Technol.47,1237–1245.

Franke,S.I.R.,Chless,K.,Silveria,J.D.,Robensam,G.,2004.Study ofanantioxidantandmutagenicactivityofdifferentorange juices.FoodChem.88,45–55.

Georgetti,S.R.,Casagrandeb,R.,Souzaa,C.R.F.,Oliveiraa,W.P., Fonsecaa,M.J.V.,2008.Spraydryingofthesoybeanextract:

effectsonchemicalpropertiesandantioxidantactivity.LWT FoodSci.Technol.41,1521L1527.

Giancarlo,S.,Rosa,L.M.,Nadjafi,F.,Francesco,M.,2010.

Hypoglycaemicactivityoftwospicesextracts:RhusCoriariaL.

andBuniumPersicumBoiss.Nat.Prod.Res.20(9),882–886.

(10)

Gong,Z.,Zhang,M.,Mujumdar,A.S.,Sun,J.,2008.Spraydrying andagglomerationofinstantbayberrypowder.Drying Technol.26,116–121.

Goula,A.M.,Adamopoulos,K.G.,2008a.Effectofmaltodextrin additionduringspraydryingoftomatopulpindehumidified air.II.Powderproperties.DryingTechnol.26(6),726–737.

Goula,A.M.,Adamopoulos,K.G.,2008b.Effectofmaltodextrin additionduringspraydryingoftomatopulpindehumidified air.I.Dryingkineticsandproductrecovery.DryingTechnol.26 (6),714–725.

Gunduz,G.T.,Gonul,S.A.,Karapınar,M.,2010.Efficacyofsumac andoreganointheinactivationofSalmonellaTyphimuriumon tomatoes.Int.J.FoodMicrobial.141,39–44.

Jinapong,N.,Suphantharika,M.,Jamnong,P.,2008.Productionof instantsoymilkpowdersbyultrafiltration,spraydryingand fluidizedbedagglomeration.J.FoodEng.84,194–205.

Kanakdande,D.,Bhosale,R.,Singhal,R.S.,2007.Stabilityofcumin oleoresinmicroencapsulatedindifferentcombinationofgum arabic,maltodextrinandmodifiedstarch.Carbohydr.Polym.

67,536–541.

Kim,E.H.J.,Chen,X.D.,Pearce,D.,2009.Surfacecompositionof industrialspray-driedmilkpowders.2.Effectsofspraydrying conditionsonthesurfacecomposition.J.FoodEng.94, 169–181.

Kha,T.C.,Nguyen,M.H.,Roach,P.D.,2010.Effectsofspraydrying conditionsonthephysicochemicalandantioxidant

propertiesoftheGac(Momordicacochinchinensis)fruitaril powder.J.FoodEng.98,385–392.

Koc,M.,Koc,B.,Susyal,G.,Yılmazer,M.S.,Ertekin,F.K., Bagdatlıoglu,N.,2011.Functionalandphysicochemical propertiesofwholeeggpowder:effectofspraydrying conditions.J.FoodSci.Technol.48(2),141–149.

Kosar,M.,Bozan,B.,Temelli,F.,Baser,K.H.C.,2007.Antioxidant activityandphenoliccompositionofsumac(RhuscoriariaL.) extracts.FoodChem.103,952–959.

Kossah,R.,Zhang,H.,Chen,W.,2011.Antimicrobialand

antioxidantactivitiesofChinesesumac(RhustyphinaL.)fruit extract.FoodControl22,128–132.

Krishnan,S.,Bhosale,R.,Singhal,R.S.,2005.Microencapsulation ofcardamomoleoresin:evaluationofblendsofgumarabic, maltodextrinandamodifiedstarchaswallmaterials.

Carbohydr.Polym.61,95–102.

Kurozawa,L.E.,Morassi,A.G.,Vanzo,A.A.,Park,K.J.,Hubinger, M.D.,2009.Influenceofspraydryingconditionson

physicochemicalpropertiesofchickenmeatpowder.Drying Technol.27,1248–1257.

Lantigua,M.B.,Molina,I.E.,Reineccius,G.A.,Hernandez,O.L., Pino,J.A.,2011.Influenceofspray-dryerairtemperatureson encapsulatedmandarinoil.DryingTechnol.29,520–526.

Lee,J.C.,Lim,K.T.,Jang,Y.S.,2002.IdentificationofRhusverniciflua stokescompoundsthatexhibitfreeradicalscavengingand anti-apoptoticproperties.BBAGen.Subjects1570(3),181–191.

Mahendran,T.,2010.Physico-chemicalpropertiesandsensory characteristicsofdehydratedguavaconcentrate:effectof dryingmethodandmaltodextrinconcentration.Trop.Agric.

Res.Extension13(2).

Marques,L.G.,Ferreira,M.C.,Freire,J.T.,2007.Freeze-dryingof acerola(MalpighiaglabraL.).Chem.Eng.Process.46,451–457.

Martinelli,L.,Gabas,A.L.,Romero,J.T.,2007.Thermodynamicand qualitypropertiesoflemonjuicepowderasaffectedby maltodextrinandarabicgum.DryingTechnol.25, 2035–2045.

Martínez,F.M.L.,Lagunas,L.L.M.,Ramírez,J.R.,2010.Spraydrying ofnopalmucilage(Opuntiaficus-indica):effectsonpowder propertiesandcharacterization.Carbohydr.Polym.81, 864–870.

Nadeem,H.S.,Torun,M.,Ozdemir,F.,2011.Spraydryingofthe mountaintea(Sideritisstrica)waterextractbyusingdifferent hydrocolloidcarriers.LWTFoodSci.Technol.44,1626–1635.

Oliveira,M.A.,Maia,G.A.,Figueiredo,R.W.,Souza,A.C.R.,Brito, E.S.,Azeredo,H.M.C.,2009.Additionofcashewtreegumto maltodextrin-basedcarriersforspraydryingofcashewapple juice.Int.J.FoodSci.Technol.44,641–645.

Ozcan,M.,Haciseferogullari,H.A.,2004.Acondiment[sumac (RhuscoriariaL.)fruits]:somephysicochemicalproperties.

Bulg.J.PlantPhysiol.30,74–84.

Papadakis,S.E.,Gardeli,C.,Tzia,C.,2006.Spraydryingofraisin juiceconcentrate.DryingTechnol.24,173–180.

Pérez-Serradilla,J.A.,LuquedeCastro,M.D.,2011.

Microwave-assistedextractionofphenoliccompoundsfrom wineleesandspraydryingoftheextract.FoodChem.124, 1652–1659.

Quek,S.Y.,Chok,N.K.,Swedlund,P.,2007.Thephysicochemical propertiesofspray-driedwatermelonpowders.Chem.Eng.

Process.46, 386–392.

Sanchez-Moreno,C.,Larrauri,J.A.,Saura-Calixto,F.A.,1998.

Proceduretomeasuretheantiradicalefficiencyof polyphenols.J.Sci.FoodAgric.76,270L276.

Shaikh,J.,Bhosale,R.,Singhal,R.S.,2006.Microencapsulationof blackpepperoleoresin.FoodChem.94,105–110.

Tonon,R.V.,Brabet,C.,Hubinger,M.D.,2008.Influenceofprocess conditionsonthephysicochemicalpropertiesofac¸ai(Euterpe oleraceaeMart.)powderproducedbyspraydrying.J.FoodEng.

88,411–418.

Vaidya,S.,Bhosale,R.,Singhal,R.S.,2006.Microencapsulationof cinnamonoleoresinbyspraydryingusingdifferentwall materials.DryingTechnol.24,983–992.

Referensi

Dokumen terkait