• Tidak ada hasil yang ditemukan

FI 3103 Quantum Physics Schrodinger Equation in 3D

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "FI 3103 Quantum Physics Schrodinger Equation in 3D"

Copied!
9
0
0

Teks penuh

(1)

FI 3103 Quantum Physics

Alexander A. Iskandar

Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung

Schrodinger Equation in 3D

The Central Potential Hydrogenic Atom

(2)

Schrödinger equation in 3D

▪ For a 3D problem, we extend the representation of the wave function and potential function of the 1D case into 3D as

▪ And the 3D linear momentum operator becomes

▪ So that the Time-independent Schrödinger equation in 3D is given as

Alexander A. Iskandar Schrodinger Equation in 3D 3

     

     

, , , ,

x x y z

V x V V x y z

  

 

r r

2 2 2

2 2

2 2 2 2 2 2 2

2

2 2 2 2

2 2 2

2 2 2

x y z

x p p p

p

m m m

m x m m x y z

 

 

 

   

           p

       

2 2

2 V E

m   

  rr rr Hˆ

   

r r E

 

r

Schrödinger equation in 3D

▪ Interpretation of wavefunction:

probability of finding particle in a volume element centred on r probability density at r

(probability per unit volume) )2

, (r t

3 2

) , ( t d rr

(3)

Hamiltonian for a hydrogenic atom

▪ H-atom is our first example of the 3D Schrödinger equation.

▪ In a hydrogenic atom or ion with nuclear charge +Ze there is the Coulomb attraction between electron and nucleus. This has spherical symmetry –potential only depends on r. This is known as a CENTRAL POTENTIAL.

▪ The Hamiltonian operator is

Alexander A. Iskandar Schrodinger Equation in 3D 5

2 2

2

0

ˆ

2 e 4

H Ze

m  r

   

2

0

( ) 4

V r Ze

 r

  r

+Ze -e

Hamiltonian for a hydrogenic atom

▪ The natural coordinate system is spherical polars. In this case the Laplacian operator becomes

▪ Then the Hamiltonian becomes

▪ And TISE for H-like atom is

or (m = mefrom now on)

 

2 2 2 2 2 2 2 2 2

0 0

ˆ ˆ

2 e 4 2 e 2 e 4

Ze L Ze

H r

m  r m r r r m r  r

   

          

r

2 2

2 2

2

2 1 ˆ

r L r r

r

r 

 

 

2 2 2

2

2 2

0

( ) ˆ ( )

( ) ( )

2 2 4

L Ze

r E

mr r r mr r

   



   

      

r r

r r

     

Hˆ rrEr

(4)

The angular wavefunction

▪ In the spherical coordinate system, this suggests we look for separated solutions of the form

▪ The angular part are the eigenfunctions of the total angular momentum operator . These are the spherical harmonics, so we already know the corresponding eigenvalues and eigenfunctions

▪ Note: this argument works for any spherically-symmetric potential V(r), not just the Coulomb potential.

Alexander A. Iskandar Schrodinger Equation in 3D 8

   

     

2 2

ˆ , ,

ˆ , 1 ,

z lm lm

lm lm

L Y m Y

L Y l l Y

   

   

 

l= orbital quantum number.

m= magnetic quantum number (2l + 1possible values).

( ) (r ) R r Y( ) lm( )

r        ˆ2

L

The radial equation

▪ Substitute separated solution into the time-independent Schrödinger equation

▪ Using separation of variables method, we obtain the equation for the radial part as

or,

( , , )r R r Y( ) lm( , )

     

2 2 2

2

2 2

0

ˆ

( ) ( )

2 2 4

L Ze

r E

mr r r mr r

   



   

      rr

2 2 2

2

2 2

0

( 1)

2 2 4

d dR l l Ze

r R R ER

mr dr dr mr  r

  

    

 

0 ) 2 (

) 1 ( 4

2 2

2 2

0 2 2

2 2

 

 

 

 

 

R r

mr l l r E Ze

m dr

d r dr

d

 

(5)

The radial equation

▪ Introduce the parameter

▪ The above equation could be recast as

where,

▪ The solution of the above equation is obtained like previous example, i.e. by first finding the asymptotic behaviour (large r as well as small r).

Alexander A. Iskandar Schrodinger Equation in 3D 10

Er m

2

8

  r

0 ) 4 (

1 )

1 ( 2

2 2

2

 

 

 

 

 

 

 r

r

 r

r r

r R

l l d

d d

d

E m Ze

2 4 0

2

 

 

The radial equation

▪ The behavior of R(r)if r>> :

▪ Thus, we write the solution for R(r) as

 

r er 2 or er2

   

0 R 4

1

2 2

R r d

R d

r r

0 ) 4 (

1 )

1 ( 2

2 2

2  

 

 

 

 

 

 r

r

 r

r r

r R

l l d

d d

d

 

r e r G

 

r R 2

(6)

The radial equation

▪ With , yields the equation for G(r)as

▪ The behavior asr<< is governed by the equation

▪ With solutions

Alexander A. Iskandar Schrodinger Equation in 3D 12

 

2

 

1

1

  

0

1 2

2 2

 

 

 

 

 

 

 

 r

r r

 r

r r

r

r G

d dG d

G

d 

0 ) 4 (

1 )

1 ( 2

2 2

2

 

 

 

 

 

 

 r

r

 r

r r

r R

l l d

d d

d

 

r e r G

 

r R 2

 

2

  

1

  

0

2 2

2

 

 r

r r

r r r

r G

d dG d

G

d  

 

r ror r1 G

The radial equation

▪ Thus the general solution forG(r)is written as

▪ Substituting, yields the governing equation for H(r)as

▪ Whose solution can be obtained as a series solution.

▪ Further, to have a convergent solution, (= nr+ l+ 1) has to be an integer, and the solution is known as the Laugerre polynomials.

 

r r H

 

r G

 

2 2 2 1

 

1

 

0

2

 

 



 

  

 r

r

 r

r r

r

r H

d dH d

H

d  

 

2

 

1

1

  

0

1 2

2

2  

 

   

 

 

 

 r

r r

 r

r r

r

r G

d dG d

G

d 

(7)

The radial solution

R(r)depends on nand lbut not on m

▪ The associated Laugerre polynomials

Alexander A. Iskandar Schrodinger Equation in 3D 14

) 2

( )

(r G r er R

) 2

( )

(r H r r er

Rl l

2 )

1 2 (

1( ) )

(r L r r er Rnl nll l

The radial solution

Rnl(r)depends on nand lbut not on m

▪ For atomic units set a0= 1

3/ 2

10 0

0 3/ 2

21

0 0 0

3/ 2

20

0 0 0

3/ 2 2

32

0 0 0

3/

31

0

( ) 2 exp( / )

( ) 1 exp

2 2

3

( ) 2 1 exp

2 2 2

( ) 4 exp

3 3

27 10 ( ) 4 2

9 3

R r Z Zr a

a

Z Zr Zr

R r

a a a

Z Zr Zr

R r

a a a

Z Zr Zr

R r

a a a

R r Z

a

 

 

 

 

 

 

 

 

 

2

0 0 0

3/ 2 2 2

30 2

0 0 0 0

1 exp

6 3

2 2

( ) 2 1 exp

3 3 27 3

Zr Zr Zr

a a a

Z Zr Z r Zr

R r

a a a a







 

 

 

(8)

Hydrogenic Solution

▪ The wave function solution is obtained as with,

▪ And the energy associated with this wave function is

where,

is called the fine structure constant.

Alexander A. Iskandar Schrodinger Equation in 3D 16

2 )

1 2 (

1( ) )

(r L r r er Rnl nll l

) , ( ) ( ) , ,

(    

rRnl r Ylm

2 2 2

0

2 ( )

) 2( 1 2

4 

  Z

mc E E

m

Ze  

 

137 1 4 0

2

c

e

 

Energy Spectrum and Degeneracy

▪ Recall that we found for a Hydrogenic atom, the energy is given by

where we introduced the principle quantum number nas with

▪ Thus, the ground state, n= 1has only one possibility

▪ While, the first excited state, n= 2has two possibilities

2 2 2 2

1 ( )

n Z En mc

1

n l n r

 

 1 1,2,

, 1 , 0

, 2 , 1 ,

0     



n n l

k n l

r r

l nr 0

0 , 1 and

1 ,

0   

l n l

nr r

(9)

Energy Spectrum and Degeneracy

Alexander A. Iskandar Schrodinger Equation in 3D 18

Energy Spectrum and Degeneracy

n= 1 n= 2 n= 3

n= 2

Referensi

Dokumen terkait

Question: 3 Senator Kristina Keneally: In addition to the Assistance and Access Act, what additional, specific FTE requirements does the Ombudsman have in relation to the oversight