ContentslistsavailableatScienceDirect
Ecological Modelling
jo u r n al ho m e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l m o d e l
Combined modeling of fish behavior and fishing operations for conger eel fishery in Ise Bay
Shigeru Tabeta
∗, Shota Suzuki, Yoshiharu Nakamura
DepartmentofEnvironmentSystems,GraduateSchoolofFrontierSciences,TheUniversityofTokyo,5-1-5Kashiwanoha,Kashiwa,Chiba277-8563,Japan
a r t i c l e i n f o
Articlehistory:
Received2March2015
Receivedinrevisedform15June2015 Accepted30June2015
Keywords:
Fishmigration Fishingoperation Congermyriaster IseBay
Bottomottertrawling
a b s t r a c t
Inordertosimulatethecongereel(Congermyriaster)fisheryinIseBay,atypicalsemi-enclosedbayin Japan,wedevelopedafisherysimulatorthatconsistsofafishbehavioralmodelandafishingoperations model.Thefishbehavioralmodelconsidersthemigrationeffectaswellasthegrowthrateofindividuals andchangesinpopulationsize.Inthebehavioralmodelwithmigration,thedirectionoffishmovement isdeterminedbythepreferenceintensitiesfortheenvironmentalfactorsofwatertemperatureand dissolvedoxygen.Thechangeinpopulationsizeiscalculatedbyusingageneralpopulationdynamics modelconsideringnaturalandfishingmortalities.Inthefirststep,thefishingmortalitywasestimatedby theactualfishcatchdata.Studieshaveclarifiedthatenvironmentalconditionssuchasoxygen-deficient waterinsummerhavealargeinfluenceonthemigrationanddistributionofC.myriaster.Althoughthe simulatedcatchperuniteffort(CPUE)basedonactualfishingoperationsdatawasabletodescribegeneral featuresoftheannualvariability,someimprovementofthemodelwillbenecessaryformoreaccurate prediction.Inthenextstep,thefishbehavioralmodelwascombinedwithafishingoperationsmodel, whichpredictsthebehavioroftrawlingboatsbasedoneconomicconditionsandresourcedistribution.
Thecombinedmodelreproducedtheboats’fishinglocationsandtheirfishcatchamountswell.Themodel wasappliedtoevaluatetheeffectsoffisherymanagementandclarifiedthatthecontroloffine-netuse isaneffectivemeanstoincreasethefisheryprofit.
©2015ElsevierB.V.Allrightsreserved.
1. Introduction
Whenconsideringtheenvironmentalmanagementandsustain- ableuseofacoastalzone,revitalizationofcoastalfisheriesisan importantissuethat isdeeply connected toecosystemservices andthelocaleconomy.Withregardtofisheryproductioninthe Japanesecoastalzone,itsrelationshipwithwaterqualityand/or terrestrialloadhasoftenbeendiscussed,aswellastheeffectsof environmentalregenerationprojectssuchasthedevelopmentof seagrassbedsandtidalflats(e.g.,KodamaandTabeta,2012).How- ever,coastalfisheriesinJapanarefacingserioussituationsduenot onlytothedeclineof fisheryresourcescaused byenvironmen- taldegradationandotherreasons,butalsotoeconomicproblems includingpricesettinganddistributioninfrastructure,decreased consumption,andunstableincomeoffishermen.Inordertorevital- izecoastalfisheriesanddistressedlocalcommunities,appropriate fisheriesmanagementconsideringbothenvironmentalandeco- nomicfactorsisnecessary,aswellasasystemforassessingthese
∗Correspondingauthor.Tel.:+81471364718.
E-mailaddress:[email protected](S.Tabeta).
factors.Forexample,moreefficientandsustainablefishingopera- tionsshouldbeinvestigatedbasedontheresourceconditionsand businessprofitability.
Recently,anumberofmodelsconsideringbothecologicaland economicconditionshavebeendevelopedandappliedtoassessing fisherymanagement(e.g.,Bastardieetal.,2014;Blenckneretal., 2011;Fultonetal.,2011;KaplanandLeonard,2012;Romagnoni etal.,2015;Russoet al.,2015).However,therehavebeenvery fewapplicationsofbio-economicmodelstoJapanesecoastalfish- eries.Additionally,modelingandimplementingoffishmigration incoastalareawherecomplexenvironmentalfactorsaffectthefish behaviorisstillachallengingissue.
Ise Bay (Fig. 1) is a typical semi-enclosed bay located in south-central Honshu, Japan, witha large urban areaalong its shore.Coastaldevelopmentandterrestrialloadshavecausedenvi- ronmental degradationand affected themarine ecosystem and fisheriesinthebay. Inparticular,oxygen-deficientwaterinthe bottomlayerduringsummerhascausedseriousimpactsonthe bay’sbenthicecosystem(Fujiwaraetal.,2002;Suzuki,2001).Itis reportedthatoxygen-deficientwaterappearsfromJunetoOctober almosteveryyearinIseBay,whoseareahasbeenincreasingand thedurationhasbecomelonger(KurodaandFujita,2006).
http://dx.doi.org/10.1016/j.ecolmodel.2015.06.043 0304-3800/©2015ElsevierB.V.Allrightsreserved.
Fig.1.IseBayandthethreemajorfishingportsforbottomottertrawling.
However,variousfisheriesactivitiesarestillcontinuingunder theseharshsocialconditions(Funakoshi,2008;General,2008).Bot- tomottertrawlingisoneofthemajorfisheriesactivitiesinIseBay, andthesuccessofsuchtrawlingissensitivetomarineenviron- mentalconditionssuchasthedissolvedoxygenlevel.Thefishcatch ofbottomottertrawlinginIseBaywasabout7200tin2000,but itdeclinedtoabout4600tin2009.Thenumberoffisheryman- agemententities,whichwasabout3000in1998,alsodeclinedto about1900in2013.Themaintargetspeciesarecongereel(Conger
myriaster),mantisshrimp(Oratosquillaoratoria),Japanesepuffer- fish(Takifugurubripes),prawn(Trachysalambriacurvirostris),and Japaneseseabass(Lateolabraxjaponicus)(JapanFisheriesAgency, 2007,2012).
Inthepresentstudy,wedevelopedafisherysimulatorforC.myr- iaster,whichisoneoftherepresentativetargetspeciesfortrawl fishingin Ise Bay.Thefish catchofC. myriasterin thebay has beendeclininginrecentyears,withmorethan1000tcaughtannu- allyinthe1990sbutlessthan500tcaughtin2012(Kurogietal., 2013).Thesimulatorconsistsofafishbehavioralmodelthatpre- dictsspatiotemporalvariabilityoffishbiomassandpopulationsize andafishingoperationsmodelthatpredictsthefishingactivities oftrawlingboats.
Inthefishbehavioralmodel,themigration,growthrate,and changesinpopulationsizeofthefisharecalculated.Wepreviously developedasimilarmodelforPagrusmajorintheSetoInlandSea (HakutaandTabeta,2013),butthemodelvalidationwasdifficult becausetherearelimitedquantitativedataaboutthebehaviorof thetargetfish.Inthepresentstudy,wewereabletoobtainbetter quantitativedatabyusingfisheryinformationsuchasfishcatch andcatchperuniteffort(CPUE).
Inthefirststep,thefishingcoefficientwasestimatedbyusing actualfishcatchdatatovalidatethefishbehavioralmodel.Inthe nextstep,thefishbehavioral modelwascombinedwithafish- ing operations model, which predicts theactivities of trawling boatsbasedoneconomicconditionsandresourcedistribution.The combinedmodelwasthenappliedtoevaluatetheeffectsoftrawl fishingmanagementonthecongereelfisheryinIseBay.
Fig.2.Thelower-trophicecosystemmodelusedforcalculatingenvironmentalconditions(fromHakutaandTabeta,2013).
Fig.3. Theselectivityoffishinggear(trawlingnet)usedatthemajorfishingports onIseBay.
2. Models
2.1. Fishbehavior
2.1.1. Environmentalconditions
Alower-trophicecosystemmodel(Fig.2)wasemployedtocal- culatethe environmentalconditions of water temperature and dissolved oxygen. The details of the model were described by HakutaandTabeta(2013)andMizumukaietal.(2008).Inorderto reproducetherealisticspatioemporalvariabilityofenvironmental conditions,theobservedvaluesofwatertemperatureanddissolved oxygenwereassimilatedwithanudgingscheme.
2.1.2. Fishmigration
Basedonthelife-historytraitsofC.myriaster,inthemodelit isassumedthatthefishstayinthebottomlayer.Thedirectionof thefishmovementisdeterminedbythepreferenceintensityofthe environmentalfactors.Foreachtimestep,thepreferenceintensity ofeachgridiscalculatedbyusingthefollowingequation:
P∗=P1×P2 (1)
Fig.4. Thecombinedmodeloffishbehaviorandfishingoperations.
whereP*istheinclusivepreferenceintensity,whichtakesavalue between0and1,andP1andP2arethepreferenceintensitiesfor watertemperatureanddissolvedoxygen,respectively.Thelikeli- hoodthatthefishwillstayormoveisproportionaltothepreference intensitiesinthetargetgridandtheadjacentones.Thetimeinter- valforthecalculationoffishmovementcorrespondstothetime requiredforthefishtomovethehorizontaldistanceofonegridat thespecies’typicalmovementspeed.
The preference intensity for each environmental factor also takesthevaluebetween0and1.ForthewatertemperatureT,the preferenceintensityP1isdeterminedbythefollowingformula:
P1=
⎧ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎩
0 if T≤Tcl
T−Tcl
Tol−Tcl
if Tcl<T≤Tol 1 if Tol<T≤Toh
Tch−T Tch−Tohif Toh<T<Tch
0 if T≥Tch
(2)
whereTcl(◦C)isthelowerlimittemperature,Tol(◦C)theloweropti- mumtemperature,Toh(◦C)theupperoptimumtemperature,and
Fig.5.SimulatedcongereelannualdistributionpatternsinIseBay.
Fig.6. Theannualvariabilitiesofwatertemperatureanddissolvedoxygen.
Tch(◦C)upperlimittemperature.Forthedissolvedoxygenconcen- tration,DO,thepreferenceintensityP2iscalculatedasfollows:
P2=
⎧ ⎪
⎪ ⎪
⎪ ⎪
⎨
⎪ ⎪
⎪ ⎪
⎪ ⎩
0 if DO≤DOc
DO−DOcDOo−DOc
if DOc<DO≤DOo
1 if DO>DOo
(3)
whereDOc (mg/L)isthecriticaldissolvedoxygenconcentration andDOo(mg/L)isthelowerlimitoftheoptimumdissolvedoxygen concentration.Theparametervaluesweredeterminedbasedonthe studieslistedinTable1.
2.1.3. Fishgrowth
The relationship between body weight and body length is obtainedbytheanalysisofC.myriastersamplescaughtinIseBay, asfollows:
W=0.0007×L3.24 (4)
Table1
Thepreferenceintensityparametersforthefishbehaviormodel.
Symbol Value Reference Tcl 7.0◦C Shimoetal.(2000) Tol 13.0◦C Shimoetal.(2000) Toh 23.0◦C Shimoetal.(2000) Tch 29◦C Shimoetal.(2000)
DOc 2.0mg/L OsakaPrefecturalFisheryExperimentalStation(1963) DOo 3.0mg/L Kobayashi(1993),Nakamuraetal.(2003)
whereW(g)istheaverageweightofanindividualfish,andL(cm) istheaveragebodylength.
Tocalculatethebody lengthweemployedVonBertalanffy’s growthfunction,whoseparametervalueswerealsodetermined bysampleanalysis:
L=45.8{1−e−0.51(t+0.97)} (5)
wheret(year)isthetimefromApril1.
2.1.4. Fishpopulation
Ageneralpopulationdynamicsmodelisemployedtopredict thevariabilityofthefishpopulationsize:
dNi
dt =−(M+Fi)·Ni (6)
whereNiisthepopulationsizeingridi,Mthecoefficientofnat- uralmortality,andFithecoefficientoffishingmortalityingridi.
ThenaturalmortalityrateofM=0.25year−1wasestimatedbythe methodofTauchandTanaka(Tanaka,1960).
Finally,thetotalfishbiomassingridi,Biiscalculatedfromthe fishpopulationsize,Ni,andtheweightofanindividualfish,W:
Bi=Ni·W (7)
2.2. Fishingoperation
Thefishingoperationsmodel wasdeveloped basedoninfor- mationobtainedthroughafield survey(Tabetaet al.,2012).In thesimulator,theactivitiesoffishingboats,suchastheselection offishingareas,arepredictedbasedontheresourcedistribution andeconomicconditions.Thecalculationforeachdayinvolvesa three-stepprocedure.
First,itisassumedthateachfishingboatchoosesthegridin whichthecostfunctionVtakesmaximumvalue:
V=Pj·Ui(1−ıDi,j) (8)
wherePjisthepriceoffishatthelocalmarketofportj,Uiisthe expectedCPUEofgridi,Di,jisthedistancebetweenportjandgridi, andıistheweightcoefficientforthedistancewhichisdetermined bythesensitivityanalysis.
Second,thefishingcoefficientineachgrid,Fi,iscalculatedas:
Fi=
NSi
k
ATk
AGi·NTk·GEk (9)
whereNSiisthenumberofboatsoperatingingridi,ATkisthe trawlingareaperhaulbyfishingboatk,AGiistheareaofgridi,NTk isthenumberofhaulsperdaybyboatk,andGEkistheefficiency offishinggear(i.e.,trawlingnet)onboatk.
Finally,thechangeintheresourceamountineachgriddueto fishcatch,mortality,andgrowthofthefishiscalculatedbythefish behavioralmodel.
Thetrawlingareaperhaul,ATk,iscalculatedbymultiplyingthe widthofthetrawl(18m)and thedistanceof onetrawlingrun (3500m).Thenumberofhaulsperdaybyaboat,NTk,wassetto10 basedoninterviewswiththefishermenofIseBay.
Fig.7.ComparisonofannualvariabilityofactualandsimulatedCPUEforthemajor fishingportsinIseBay.
Forthegearefficiency,GEk,theselectivitybasedonthemesh sizeofthetrawlingnetisused,asmodeledbyGorieandNagasawa (2010):
GEk=˛·r(L,p) (10)
r(L,p)= 1
1+e−0.99(L/p−12.1) (11)
Fig.8. ThecongereelpriceatthemajorfishingportsinIseBay.
Table2
Theparametersusedinthefishingcoefficientcalculation.
Port Fishingefforts Netmeshsize
Wakamatsu 409boats/year 20.2mm
Aritaki 1596boats/year 21.6mm
Toyohama 8024boats/year 23.3mm
where˛istheparameterdenotingtheprobabilityoffishentering thenet,andpisthemeshsizeofthetrawlingnet(Table2).The selectivitycurvesforthethreeportsareshowninFig.3.
The fishing efficiency could also be affected by ecological characteristics of the fish. Conger eels tend tohide in benthic
mudwhenthewatertemperatureislow,whichmakesthegear efficiencylower.Thiseffectisincorporatedintotheparameter˛, asfollows:
˛=˛0·P1 (12)
whereP1 isthepreferenceintensityofwatertemperatureinthe grid.˛0wasempiricallydeterminedtobe0.2,becauseitisneces- sarytoseineseveraltimestocatchallthefishinacertainarea.
Inthepresentstudy,threemajorfishingportswerechosenfor thetargetsoftheanalysis:Wakamatsu,Aritaki,andToyohama,the locationsofwhichareshowninFig.1.Thefishingboatsarepro- hibitedfromenteringthegridsadjacenttothecoastline,because theseareasareprotectedfromtrawlfishing.
2.3. Couplingofmodels
Afisherysimulatorwasdevelopedbylinkingthefishbehavioral modelandthefishingoperationsmodel,asshowninFig.4.
Thecomputationalprocedureofthecombinedmodelinvolves sevensteps:(1)calculatethelengthandweightofthefish,usingthe growthmodel;(2)determinethefishingground(grid)foreachboat usingcostfunctionVforeachgrid;(3)calculatethefishingcoef- ficientFiforeachgridbyusingEq.(9);(4)calculatethefishcatch Ciingridi(Ci=Fi·W·Ni);(5)calculatethechangeintheresource amountineachgridduetofishcatch,mortality,and growthof thefishbyusingthefishpopulationandgrowthmodel;(6)calcu- latethepreferenceintensitybasedonenvironmentalconditionsto determinethemigrationofthefish;and(7)gotothenexttime step.
Thetimeintervalofthefishbehavioralmodelwassetto30min, andthatofthefishingoperationsmodelwas60minforonetrawl- ingperiod.Sincetheboatstrawls10timesinaday,theyoperate for10hinaday.
Fig.9.ThefishinggroundsusedbytheboatsfromeachportinAugustandDecember.
3. Simulationunderactualfishingoperation
3.1. Computationalconditions
Asimulation of fishbehavior was firstcarried out by using actualfishingoperationsdata.Inthesimulation,thefishingcoeffi- cientsFiarecalculatedbasedoncollectedfishingrecordsforIseBay (KurogiandKatayama,2011;Tabetaetal.,2012).Thegridsizefor thesimulationswas900m×900mfortheentirecomputational domain,andtherewere26verticallayers.Thesimulationswere carriedoutforApril2007throughMarch2008.Theforcingfac- torsforthehydrodynamicmodelaretide,riverdischarge,wind, andsurfaceheatandsalinityfluxes,whichwerebasedonobserva- tions.
ThelarvaeofC.myriastercometothemouthofIseBayfromthe PacificOceanfromFebruarythroughMay,andthefrywithbody lengthsof10–20cmarecaughtbybottomtrawlingwithincoastal areasthat areshallower than10minJune and July(Nakajima, 1997).Therefore,inthesimulationitwasassumedthatinAprilthe fishconveneacrossthewholeareainthebaythatisshallowerthan 10m,withauniformpopulationdensity.Theinitialbodylengthand populationsizeweresetto17.9cmand32.6million,respectively.
Thesimulation wasconductedfor 3years consideringmultiple agegroups,in whichenvironmentalconditionsfromApril2007 toMarch2008wererepeatedlyused.
3.2. Fishbehavior
Fig.5showstheannualvariabilityoffishbiomassdistribution basedonthesimulation.Thevariabilitiesofwatertemperatureand dissolvedoxygenarealsoshowninFig.6.InAprilandMay,the fishdensitywasnearlyhomogeneousacrossthewholebay.The influenceofoxygen-deficientwater,alongthemarginalzone of whichthefishdensitybecomeshigher,begantoappearinJune.
FromJulytoSeptember,veryfewfishstayedinthelargecentral areaofthebaybecauseofthespreadofoxygen-deficientwater, whichresultedinareasofhighfishdensitynearthecoast.Because ofthebottomtopographicfeatures andseasonalwindpatterns, theoxygen-deficientwaterinIseBaytendstospreadacrossthe westernsideofthebay.Theinfluenceofoxygen-deficientwater begantodecline inOctober,andthefishdistributionwasagain nearlyhomogeneousinDecemberandJanuary.InFebruary,when thewatertemperaturewaslowest,thefishtendedtogatheratthe centerorthemouthofthebay,wherethewatertemperaturewas higher.
The simulation also shows that less than 1% of the initial populationdiedduetothelowoxygen,whichmeansthattheenvi- ronmentalconditionshavelargeinfluencesonthedistributionof congereel,butaffectlittleonthestockofcongereel.
3.3. CPUE
Inordertovalidatethefishbehavioralmodel,simulatedCPUE wascomparedtotheactualCPUEfortheboatsbelongingtoeach fishingport(Fig.7).TheCPUEincreasedfromspringtosummer anddeclinedinautumn,becauseareasofhighresourcedensity appearedduringsummerduetotheinfluenceofoxygen-deficient water.ThepeakCPUEvalueswerelargerforWakamatsuandAri- takithanforToyohama,andthesefeatureswerereproducedwell bythesimulation.However,thesimulationunderestimatedthe CPUEfor Aritakiin springandsummer.Accordingtothesimu- lation,theresourcedensityinthesouthwesternpartofthebay, which is themain fishing ground for theboats of Aritaki,was notveryhighinJune andJuly(Fig.5).Inreality,however,it is possiblethatthehigh-resource-densityareacorrespondingtothe marginalzoneofoxygen-deficientwateralsoformedintheAritaki
Fig.10.ComparisonofannualvariabilityofsimulatedCPUEforthemajorfishing portswith(Cal.B)orwithout(Cal.A)thefishingoperationsmodel.
fishingarea.Thesimulationalsofailedtoreproducetheveryhigh CPUEinspringatAritaki,whichwasanunusualphenomenonthat occurredin2007.Althoughthereweresomedifferencesbetween thesimulationandactualdata,themodelwasabletoreproduce thegeneralfeaturesofannualCPUEvariabilityforC.myriasterin IseBay.
Fig.11.Theinfluencesofmanagingfishinggearbychangingtheperiodoffine-netuseon(a)thepopulationcaughtbyfishingand(b)thepopulationsurvivingtoescapethe bay.Thebaselineofincreaserateisthepopulationbythesimulationinwhichthefine-netisusedallyearround.
4. Simulationbycombinedmodel
4.1. Computationalconditions
Thefisherysimulatorcombiningthefishbehavioralmodeland fishingoperationsmodelwasappliedtothesimulationofthecon- gereelfisheryinIseBay.Theexpectedfishpriceisnecessaryto calculatethecostfunctionVintheoperationsmodel.Thefishprice variabilityatthemajorlocalmarketswasobtainedbyanalyzing thevouchers.Therelationshipbetweenthepriceandbodylength offishwasdifferentateachmarketasshowninFig.8.Thefish priceatthe Wakamatsulocal marketwashigher thanthose at othermarketsbecauseithasbrandvalue.ThecoefficientıforV wasdeterminedtobe0.02bysensitivityanalysis.
4.2. SimulationoftrawlfisheryinIseBay
Thesimulatedfishinggroundusedbytheboatsfromeachport wascomparedtoactualdatafromthefishingrecords.Fig.9shows thefishinggroundsusedbytheboatsfromeachportinAugustand December.Theareasoffishinggroundsbasedonthefishingrecords appeartobelargerthanthesimulatedareas,becausethespatial
resolutionofthefishingrecords(4km×4km)iscoarserthanthat ofthecomputationalgrids(900m×900m).TheboatsfromWaka- matsumainlyusedtheeasternpartofthebayinsummer,whereas theyusedthecoastalareaneartheportinwinter.Thisactivitypat- ternisstronglyrelatedtotheenvironmentalconditionofdissolved oxygen.Ontheotherhand,theboatsfromAritakiandToyohama usedtheareasrelativelynearertotheirhomeportsthroughoutthe year.Thesefeatureswerereproducedwellbythesimulationusing thecombinedmodel.
TheCPUEatthethreemainportscalculatedbythecombined modelwerecomparedtothosebythesimulationbasedonactual fishingoperations.Fig.10showsannualvariabilityofsimulated CPUEforthemajorfishingportswithorwithoutthefishingoper- ations model. The combinedmodel overestimated the CPUE in summerforWakamatsu.Thereasonforthis discrepancyisthat congereelscongregateinaquitenarrowareaalongthemargins oftheoxygen-deficientwaterinsummer,andthefishermenwere assumedtoidentifytheareawithcompleteaccuracyintheopera- tionsmodel.Incontrast,forAritakiandToyohamaportstheresults ofboth modelsimulationswereconsistent,whichindicatesthe fishingoperationsmodelpredictedtheactivitiesofthefishingboats wellfortheseports.
Fig.12.Theeconomiceffectofmanagingfishinggearbychangingtheperiodoffine-netuse.
4.3. Assessmentoffisherymanagement
Controllingtheefficiency offishinggear isan effectivefish- eriesmanagementscheme.Forbottomottertrawling,meshsizeof thetrawlingnetisoftencontrolledtoavoidcatchingsmallyoung fish.Thesimulatorwasappliedtoevaluatetheeffectofcontrolling fishinggearefficiencyforbottomottertrawlinginIseBay.Inthe simulation,low-efficiencygear(coarsenet)isusuallyusedtoavoid catchingsmallfish,andhigh-efficiencygear(finenet)isusedonly duringaspecificperiodtoincreasethecatchofmaturehigh-value fish.
Fig.11(a) showsthe influencesof managingfishing gearby changingtheperiodoffine-netuseonthepopulationofcongereel caughtbythefishing.Theincreaserateofcongereelpopulation whichsurvivetoescapethebayisalsoshowninFig.11(b).Asthe periodoffine-netusebecomesshorter,thepopulationcaughtby fishingdeclinesandthesurvivingpopulationincreases.Theeco- nomiceffectofmanagingfishinggearbychangingtheperiodof fine-netuseis shownin Fig.12.The simulatedresultsshowed thatiffishermenstart tousethefinernettooearly(i.e.,before May)orcontinuetouseittoolong(i.e.,afterOctober),thecatchof smallyoungfishwillincrease,whichadverselyaffectstheresource andeconomicconditions.However,iftheystarttousethefiner netafterAugust,toomanylargefishwillescapethebay,which willalsoreducetheprofit.Thesalessignificantlydecreasedwhen thefinenetwasuseduntilOctober,becausesmallfishofthenext age-classbegantobecaught,whichwilldecreasethefishcatchin thefollowingyear.Oursimulationshowedthatthesalesvalueof caughtfishbecomeslargestwhenthefinernetisusedfromJuneto September.
5. Conclusion
Inthepresentstudy,afisherysimulatorforC.myriasterinIseBay wasdevelopedbycombiningafishbehavioralmodelandafishery operationsmodel.Thefishbehavioralmodelconsidersthemigra- tioneffectaswellasthegrowthrateofindividualsandchangesin populationsize.Inthebehavioralmodelwithmigration,thedirec- tionoffishmovementisdeterminedbythepreferenceintensities fortheenvironmentalfactorsofwatertemperatureanddissolved oxygen.Thechangeinpopulationsizeiscalculatedbyusingagen- eralpopulationdynamicsmodelconsideringnaturalandfishing mortalities.
Numericalsimulationswerecarriedouttoreproducethespa- tialdistributionandseasonalvariationoffishmovementinIseBay.
Environmentalconditionssuchasoxygen-deficientwaterinsum- merwereshowntohavealargeinfluenceonthemigrationand distributionofC.myriaster.ThesimulatedCPUEusingactualfishing operationsdatadescribedthegeneralfeaturesofannualvariabil- ityfairlywell,althoughsomeimprovementofthemodelwillbe necessaryformoreaccurateprediction.
Thecombinedmodelofthefishbehaviorandthefisheryoper- ationsalsoreproducedwellthefishinglocationsoftheboatsand theircatchamounts.Thesimulationrevealedthatthespatialpat- ternsoffishinggroundusebyboatsfromeachporthaddifferent featuresbecausetheyareaffectedbyboththeenvironmentaland theeconomicconditions.Thesimulatorwasappliedtoevaluatethe effectsoffisherymanagementandclarifiedthatthecontroloffish- inggearisaneffectivemeansforincreasingtheprofitoftheconger eelfishery.
Inthepresentstudy,wetriedtodeterminethemodelparame- tersbytheexternalinformationaspossible,althoughsomeofthem areestimatedsoastofitthesimulationtotheobservation.How- ever,weneedmoreobservationstoconfirmthatthemodelcould bemoregenerallyapplicable.Forourfutureresearch,wearetrying toimprovethefishingrecordsbygatheringdatamorefrequently andatafinerspatialscalebyusingdigitaldevicewithGPS.Toana- lyzevariousmanagementscenariosofthecongereelfishery,itwill alsobenecessarytoimplementadecision-makingmodeltopredict whetherthefishermengofishingornotconsideringtheexpected fishcatchandoperationscosts.
Acknowledgment
The authors thank Dr. Hiroaki Kurogi (Fisheries Research Agency),Mr.TakuyaMaruyama(MiePrefectureFisheriesResearch Institute), and Dr. Manabu Hibino (Aichi Prefecture Fisheries ResearchInstitute)forprovidingimportantdataandadvice.This researchwaspartiallysupportedbytheAgriculture,Forestry,and FisheriesResearchCouncilandJSPSKAKENHI(grant15H04210).
References
Bastardie,F.,Nielsen,J.R.,Miethe,T.,2014.DISPLACE:adynamic,individual-based modelforspatialfishingplanningandeffortdisplacement–integratingunder- lyingfishpopulationmodels.Can.J.Fish.Aquat.Sci.71,366–386.
Blenckner,T.,Dring,R.,Ebeling,M.,Hoff,A.,Tomczak,M.,Andersen,J.,Kuzebski,E., Kjellstrand,J.,Lees,J.,Motova,A.,Vetemaa,M.,Virtanen,J.,2011.FishSTERN:
afirstattemptatanecological-economicevaluationoffisherymanagement scenariosintheBalticSearegion.Swed.Environ.Prot.AgencyRep.Ser.6428, 89.
Fujiwara,T.,Takahashi,T.,Kasai,A.,Sugiyama,Y.,Kuno,M.,2002.Theroleofcircu- lationinthedevelopmentofhypoxiainIseBay,Japan.Estuar.Coast.ShelfSci.
54(1),19–31.
Fulton,E.A.,Link,J.S.,Kaplan,I.C.,Savina-Rolland,M.,Johnson,P.,Ainsworth,C., Horne,P.,Gorton,R.,Gamble,R.J.,Smith,A.D.M.,Smith,D.C.,2011.Lessonsin modellingandmanagementofmarineecosystems:theAtlantisexperience.Fish Fish.12,171–188.
Funakoshi,S.,2008.Changesinthecatchvolumeandspeciescaughtbysmall-scale trawlfisheriesinIseBay.Bull.AichiFish.Res.Inst.14,7–16.
GeneralCouncilforIseBay,2008.CurrentIndustrialSituationofIseBay.IseEnviron- mentalDatabase,Availableathttp://www.isewan-db.go.jp/sites/jkl/datafour.
Gorie,S.,Nagasawa,K.,2010.Habitatpreferenceandfeedinghabitsofjuvenile whitespottedcongerCongermyriasterintheeasternSetoInlandSea,Japan.
Aquacult.Sci.58(2),167–179.
Hakuta,K.,Tabeta,S.,2013.BehavioralmodellingofPagrusmajorintheeastSeto InlandSea.J.Mar.Sci.Technol.18(2),213–219.
JapanFisheriesAgency,2007.RecoveryPlanofFisheryResourcesforBottomTrawl- inginIseBayandMikawaBay,Availableathttp://www.jfa.maff.go.jp/j/suisin/
skeikaku/pdf/isewanmikawawankosoko.pdf
JapanFisheriesAgency,2012.SummaryandActionsofRecoveryPlanofFishery ResourcesforBottomTrawlinginIseBayandMikawaBay,Availableathttp://
www.jfa.maff.go.jp/j/suisin/skouiki/taiheiyo/pdf/tm19-2.pdf
Kaplan,I.C.,Leonard,J.,2012.Fromkrilltoconveniencestores:forecastingtheeco- nomicandecologicaleffectsoffisheriesmanagementontheUSWestCoast.
Mar.Pol.36(5),947–954.
Kobayashi,Y.,1993.Relationshipbetweendistributionoftheanoxiawatermassin TokyoBayandcatchbysmallbeamtrawlers.Bull.KanagawaPrefect.Fish.Exp.
Stn.14,27–39.
Kodama,M.,Tabeta,S.,2012.Impactofredtideandhypoxiaoninnerbayfish- eriesanditscountermeasuresforsustainablefisheries.Res.J.FoodAgric.35(3), 11–15.
Kuroda,N.,Fujita,K.,2006.Comparisonoflongtermandshorttermfluctuationof hypoxiabetweenIseBayandMikawaBay.Bull.AichiFish.Res.Inst.12,5–12.
Kurogi,H.,Katayama,S.,2011.StockassessmentandevaluationforCongermyri- aster(fiscalyear2010).In:MarineFisheriesStockAssessmentandEvaluation forJapaneseWaters(FiscalYear2010/2011).FisheriesAgencyandFisheries ResearchAgencyofJapan,pp.667–684.
Kurogi,H.,etal.,2013.StockassessmentandevaluationforCongermyriaster(fiscal year2012).In:MarineFisheriesStockAssessmentandEvaluationforJapanese Waters(FiscalYear2012/2013).FisheriesAgencyandFisheriesResearchAgency ofJapan,pp.650–665.
Mizumukai,K.,Sato,T.,Tabeta,S.,Kitazawa,D.,2008.Numericalstudiesoneco- logicaleffectsofartificialmixingofsurfaceandbottomwatersindensity stratificationin semi-enclosed bay and opensea. Ecol. Model. 214,251–
270.
Nakajima,H.,1997.CongereelfisheryandecologyinMiePrefecture(inJapanese).
In:CurrentStatusofResourcesandFisheriesofCongermyriaster,1(1).Japan FisheriesResourceConservationAssociation,pp.95–97.
Nakamura,Y.,Yoshida,T.,Ariyama,H.,Yamochi,S.,Tamai,K.,Irie,T.,Idemi,N.,Saka- gami,Y.,Koyano,Y.,2003.Habitatsuitabilitymodelbasedonthecharacteristics ofdistributionandmigrationforCongermyriasterinOsakaBay.Annu.J.Coast.
Eng.50(2),1151–1155.
OsakaPrefecturalFisheryExperimentalStation,1963.Short-termcultureexperi- mentofCongermyriaster(inJapanese).Bull.OsakaPrefect.Fish.Exp.Stn.S37, 75–86.
Romagnoni,G.,Mackinson,S.,Hong,J.,Eikeset,A.M.,2015.TheEcospacemodel appliedtotheNorthSea:evaluatingspatialpredictionswithfishbiomassand fishingeffortdata.Ecol.Model.300,50–60.
Russo,T.,Pulcinella,J.,Parisi,A.,Martinelli,M.,Belardinelli,A.,Santojanni,A., Cataudella,S.,Colella,S.,Anderlini,L.,2015.Modellingthestrategyofmid- watertrawlerstargetingsmallpelagicfishintheAdriaticSeaanditsdrivers.
Ecol.Model.300,102–113.
Shimo,S.,Akimoto,Y.,Takahama,H.,2000.Bibliographicalstudyofthethermal effectsonmarineorganisms.Rep.Mar.Ecol.Res.Inst.2,1–351.
Suzuki,T.,2001.Oxygen-deficientwatersalongtheJapanesecoastandtheireffects upontheestuarineecosystem.J.Environ.Qual.30(2),291–302.
Tabeta,S.,Nakamura,Y.,Suto,T.,Maruyama,T.,Sekine,M.,Irie,M.,Seki,I.,Furukawa, K.,2012.AsurveyonactualconditionsofthetrawlfisheryforCongermyri- asterinIseBaytodevelopanoperationsimulator.J.Coast.ZoneStud.25(3), 41–52.
Tanaka,S.,1960.Studiesonthedynamicsandthemanagementoffishpopulations.
Bull.TokaiReg.Fish.Res.Labor28,1–200.