• Tidak ada hasil yang ditemukan

Format Karya Ilmiah (Contoh) - UIN Raden Intan

N/A
N/A
Protected

Academic year: 2024

Membagikan "Format Karya Ilmiah (Contoh) - UIN Raden Intan"

Copied!
9
0
0

Teks penuh

(1)

http://ejournal.radenintan.ac.id/index.php/al-jabar/index

363

Rough u-exact sequence of rough groups

Fitri Ayuni1, Fitriani Fitriani1*, Ahmad Faisol1

1 Universitas Lampung, Indonesia.

[email protected]*

Abstract

Article Information Submitted June 07, 2022 Revised Dec 09, 2022 Accepted Dec 11, 2022

Keywords Exact Sequence;

Rough U-Exact Sequence;

Rough Group.

The notion of a U-exact sequence is a generalization of the exact sequence. This paper introduces a rough U-exact sequence in a rough group in an approximation space. Furthermore, we provide the properties of the rough U-exact sequence in a rough group.

INTRODUCTION

In 1982, Zdzislaw Pawlak developed one of the mathematical techniques known as rough set theory (Pawlak, 1982). The fundamental concept of the rough set theory is an equivalence relation. The equivalence class is a partition used to determine universe subsets' lower and upper bounds. Assume U is a non-empty set, which we refer to as the universe set, and R is an equivalence relation on U. The pair (π‘ˆ π‘Žπ‘›π‘‘ 𝑅) represents an approximation space (Miao et al., 2005). If 𝑋 βŠ† π‘ˆ, the lower approximation of 𝑋, denoted by 𝑋, is a union of the equivalence class contained in 𝑋. The upper approximation of 𝑋, denoted by 𝑋̅, is a union of the equivalence class intersecting with 𝑋. If 𝑋̅ βˆ’ 𝑋 β‰  βˆ…, then the set 𝑋 is a rough set.

In 1997, Kuroki gave the idea of the ideal rough in semigroups (Kuroki, 1997).

Furthermore, Miao et al. introduce the rough groups, rough subgroups, and their properties (Miao et al., 2005). Moreover, Davvaz and Mahdavipour investigate the rough module (Davvaz & Mahdavipour, 2006). Isaac and Neelima introduce the concept of rough ideals and their properties (Isaac & Neelima, 2013). Sinha and Prakash study the exact sequence of rough modules (Sinha, 2016). Furthermore, Jesmalar gives homomorphism and rough group isomorphism (Jesmalar, 2017). Besides that, Davvaz and Parnian-Garamaleky give a concept of the U-exact sequence of the R-module (Davvaz & Parnian-Garamaleky, 1999). Then, Fitriani et al. introduce the notion of a sub-exact sequence of R-modules (Fitriani et al., 2016).

Elfiyanti et al. also give an Abelian property of the category of U-complexes, which is motivated by the U-exact sequence (Elfiyanti et al., 2016). Aminizadeh et al. (Aminizadeh et al., 2017) introduce an exact sequence of S-acts. Fitriani et al. also establish the notion of an X-sub-linearly independent module (Fitriani et al., 2017). They introduce a UV-generated module (Fitriani et al., 2018b). Furthermore, they established U-basis and U-free modules using the concept of a sub-exact sequence of modules (Fitriani et al., 2018a). Moreover, they define the rank of the UV-generated module (Fitriani et al., 2021). Then, they apply the sub- exact sequences to determine the Noetherian property of the submodule of the generalized power series module (Faisol et al., 2021).

How to cite Ayuni, F., Fitriani, F., & Faisol, A (2022). Rough u-exact sequence of rough groups. Al-Jabar: Jurnal Pendidikan Matematika, 13(2), 363 – 371.

e-ISSN 2540-7562.

Published by Mathematics Education Department, UIN Raden Intan Lampung.

(2)

364

Furthermore, Setyaningsih et al. introduce the sub-exact sequence in the rough groups (Setyaningsih et al., 2021). Many researchers investigate the application of rough sets to algebraic structures, such as rough groups (Nugraha et al., 2022), the properties of rough groups (Wang & Chen, 2010), rough subgroups (Bağırmaz, 2019), rough rings and rough ideals (Agusfrianto et al., 2022), rough V-coexact sequence in the rough group (Hafifullah et al., 2022), roughness in quotient group (Mahmood, 2016), roughness in module (Davvaz &

Mahdavipour, 2006), rough semi prime ideals (Neelima & Isaac, 2014), and roughness in the module by using the reference points (Davvaz & Malekzadeh, 2013). In this research, we introduce the U-exact sequence of the rough group and its properties.

METHODS

This study was based on literature searches on rough sets, upper and lower approximation space, rough groups, exact sequence, and U-exact sequence. First, we define the rough U- exact sequence in an approximation space. Then we examine the properties of the rough group. In the following step, we use a finite set to construct an example of a U-exact sequence in a rough group. Finally, we examine the properties of the U-exact sequence in the rough group.

Figure 1. Research stage diagram

RESULTS AND DISCUSSION

Motivated by the definitions of the U-exact sequence of the R-module (Davvaz & Parnian- Garamaleky, 1999), we construct the definition of the rough U-exact sequence as follows.

Definition 1. Let (𝑆, πœƒ) be an approximation space, and let 𝐾, 𝐿, π‘Žπ‘›π‘‘ 𝑀 be the rough groups in (𝑆, πœƒ), and π‘ˆ be the rough subgroup of 𝑀. A sequence

𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ… is called rough π‘ˆ-exact in 𝑀 if im (𝑓) = π‘”βˆ’1(π‘ˆΜ…).

Before investigating the properties of the rough U-exact sequence, we give the construction of a rough subgroup in an approximation space.

Example 1. Let β„€9= {0Μ…, 1Μ…, 2Μ…, 3Μ…, 4Μ…, 5Μ…, 6Μ…, 7Μ…, 8Μ…} is a set of integers modulo 9 and +9 modulo 9 summation operations. We already know that βŒ©β„€9 π‘Žπ‘›π‘‘ +9βŒͺ is a group. Then, we define a

Define the rough U-exact sequence in an approximation space

Examine the properties of the rough group

Construct the example of the rough U-exact sequence of rough groups using the finite set Examine the properties of rough U-exact

sequence of rough groups

(3)

365

relation 𝑅 in β„€9 as follows. For every π‘Ž, 𝑏 ∈ β„€9, π‘Žπ‘…π‘ if and only if π‘Ž βˆ’ 𝑏 = 4π‘˜, for some π‘˜ ∈ β„€. From this equivalence relation, we have four equivalence classes as follows:

𝐸1 = {1Μ…, 5Μ…}, 𝐸2 = {2Μ…, 6Μ…}, 𝐸3 = {3Μ…, 7Μ…}, 𝐸4 = {0Μ…, 4Μ…, 8Μ…}.

Next, we will construct three rough groups to form a rough U-exact sequence of rough groups. Let 𝑋1 = {0Μ…, 4Μ…, 5Μ…}. We obtain 𝑋̅̅̅1= 𝐸1βˆͺ 𝐸4 = {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…}.

Table 1. Table Cayley on 𝑋1

+9 0Μ… 4Μ… 5Μ…

0Μ… 0Μ… 4Μ… 5Μ…

4Μ… 4Μ… 8Μ… 0Μ…

5Μ… 5Μ… 0Μ… 1Μ…

(1) Table 1 shows that for every π‘₯, 𝑦 ∈ 𝑋1, x (+9) y ∈ 𝑋̅̅̅1; (2) association property holds in 𝑋̅̅̅1;

(3) there exists 0Μ… ∈ 𝑋̅̅̅1, such that for every π‘₯Μ… ∈ 𝑋̅̅̅1, π‘₯Μ…(+9)0Μ… = 0Μ…(+9)π‘₯Μ… = π‘₯Μ…;

(4) there exists π‘₯Μ… ∈ 𝑋1, there exists 𝑦̅ ∈ 𝑋1 such that π‘₯Μ…(+9)𝑦̅ = 0Μ… or 𝑦̅ = (π‘₯Μ…)βˆ’1, that is (0Μ…)βˆ’1= 0Μ… ∈ 𝑋1, (4Μ…)βˆ’1 = 5Μ… ∈ 𝑋1, and (5Μ…)βˆ’1 = 4Μ… ∈ 𝑋1.

Table 2. Rough Inverse Element on 𝑋1 π‘₯ The rough inverse of π‘₯

0Μ… 0Μ…

4Μ… 5Μ…

5Μ… 4Μ…

Based on Table 2, every element of 𝑋1 has a rough inverse in 𝑋̅̅̅1. Hence, 𝑋1is a rough group.

Now, let 𝑋2 = {1Μ…, 3Μ…, 6Μ…, 8Μ…}. We get 𝑋̅̅̅2 = E1 βˆͺ E2 βˆͺ E3 βˆͺ E4 = β„€9. We will show that 𝑋2 is a rough group in an approximation space (β„€9, 𝑅).

Table 3. Table Cayley on 𝑋2

+9 1Μ… 3Μ… 6Μ… 8Μ…

1Μ… 2Μ… 4Μ… 7Μ… 0Μ…

3Μ… 4Μ… 6Μ… 0Μ… 2Μ…

6Μ…

8Μ…

7Μ…

0Μ…

0Μ…

2Μ…

3Μ…

5Μ…

5Μ…

7Μ…

(1) Table 3 shows that for every x, y ∈ 𝑋2, x (+9) y ∈ 𝑋̅̅̅2; (2) association property holds in 𝑋̅̅̅2;

(3) there exists 0Μ… ∈ 𝑋̅̅̅2, such that for every π‘₯Μ… ∈ 𝑋̅̅̅2, π‘₯Μ…(+9)0Μ… = 0Μ…(+9)π‘₯Μ… = π‘₯Μ…;

(4) for every π‘₯Μ… ∈ 𝑋2, there exists 𝑦̅ ∈ 𝑋2, such that π‘₯Μ…(+9)𝑦̅ = 0Μ… or 𝑦̅ = (π‘₯Μ…)βˆ’1, that is (1Μ…)βˆ’1= 8Μ… ∈ 𝑋2, (8Μ…)βˆ’1 = 1Μ… ∈ 𝑋2, (3Μ…)βˆ’1 = 6Μ… ∈ 𝑋2, and (6Μ…)βˆ’1= 3Μ… ∈ 𝑋2.

(4)

366

Table 4. Rough Inverse Element on 𝑋2 π‘₯ The rough inverse of π‘₯

1Μ… 8Μ…

3Μ… 6Μ…

6Μ… 3Μ…

8Μ… 1Μ…

Table 4 shows that every element of 𝑋2 has a rough inverse in 𝑋2. Hence, 𝑋2 is a rough group.

Let 𝑋3 = {1Μ…, 3Μ…, 4Μ…, 5Μ…, 6Μ…, 8Μ…}. We obtain 𝑋̅̅̅3 = E1 βˆͺE2 βˆͺ E3 βˆͺ E4 =β„€9. Table 5. Table Cayley on 𝑋3

+9 1Μ… 3Μ… 4Μ… 5Μ… 6Μ… 8Μ…

1Μ… 2Μ… 4Μ… 5Μ… 6Μ… 7Μ… 0Μ…

3Μ… 4Μ… 6Μ… 7Μ… 8Μ… 0Μ… 2Μ…

4Μ… 5Μ… 7Μ… 8Μ… 0Μ… 1Μ… 3Μ…

5Μ… 6Μ… 8Μ… 0Μ… 1Μ… 2Μ… 4Μ…

6Μ…

8Μ…

7Μ…

0Μ…

0Μ…

2Μ…

1Μ…

3Μ…

2Μ…

4Μ…

3Μ…

5Μ…

5Μ…

7Μ…

(1) Table 5 shows that for every x, y ∈ 𝑋3, x (+9) y ∈ 𝑋̅̅̅3; (2) association property holds in 𝑋̅̅̅3;

(3) there exists 0Μ… ∈ 𝑋̅̅̅3, such that for every π‘₯ ∈ 𝑋̅̅̅3, π‘₯(+9)0Μ… = 0Μ…(+9)π‘₯ = π‘₯;

(4) for every π‘₯ ∈ 𝑋3, there exists 𝑦 ∈ 𝑋3, such that π‘₯(+9)𝑦 = 0Μ… or 𝑦 = π‘₯βˆ’1, that is

(1Μ…)βˆ’1= 8Μ… ∈ 𝑋3, (8Μ…)βˆ’1 = 1Μ… ∈ 𝑋3, (3Μ…)βˆ’1 = 6Μ… ∈ 𝑋3, (6Μ…)βˆ’1= 3Μ… ∈ 𝑋3, (4Μ…)βˆ’1 = 5Μ… ∈ 𝑋3, and (5Μ…)βˆ’1 = 4Μ… ∈ 𝑋3.

Table 6. Rough Inverse Element on 𝑋3 π‘₯ The rough inverse of π‘₯

1Μ… 8Μ…

3Μ… 6Μ…

4Μ… 5Μ…

5Μ… 4Μ…

6Μ… 3Μ…

8Μ… 1Μ…

Based on Table 6, we have every element of 𝑋3 that has a rough inverse in 𝑋3. Hence, 𝑋3 is a rough group.

Finally, we form a sequence 𝑋̅̅̅1β†’ 𝑋𝑖 Μ…Μ…Μ…2β†’ 𝑋𝑖 Μ…Μ…Μ…3, with 𝑖 as an identity function. Then let π‘ˆ1 = {4Μ…, 5Μ…} βŠ† 𝑋3. We have π‘ˆΜ…Μ…Μ…1 = 𝐸1βˆͺ 𝐸4 = {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…} is a rough subgroup of 𝑋3. We have 4Μ…(+9)5Μ… = 0Μ… ∈ π‘ˆΜ…Μ…Μ…1 and (4Μ…)βˆ’1= 5Μ… ∈ π‘ˆ1.

We will show the sequence 𝑋̅̅̅1 β†’ 𝑋𝑖 Μ…Μ…Μ…2 β†’ 𝑋𝑖 Μ…Μ…Μ…3 is a rough π‘ˆ1-exact in 𝑋̅̅̅3. We have im (𝑓) = {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…} = π‘”βˆ’1(π‘ˆΜ…Μ…Μ…). Hence the sequence 𝑋1 Μ…Μ…Μ…1β†’ 𝑋𝑖 Μ…Μ…Μ…2β†’ 𝑋𝑖 Μ…Μ…Μ…3 is a rough π‘ˆ1-exact in 𝑋̅̅̅3.

Next, we will give the properties of the rough U-exact sequence of rough groups.

(5)

367

Proposition 1. Let (𝑉, πœƒ) be an approximation space, 𝐾 a rough group in V, and π‘ˆ1, π‘ˆ2,... π‘ˆπ‘› rough subgroup 𝐾. If π‘ˆΜ…Μ…Μ… ∩ π‘ˆ1 Μ…Μ…Μ… ∩ … ∩ π‘ˆ2 Μ…Μ…Μ…Μ… = π‘ˆπ‘› Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…1∩ π‘ˆ2 ∩ … π‘ˆπ‘›, then π‘ˆ1∩ π‘ˆ2 ∩ … π‘ˆπ‘› is a rough subgroup 𝐾 in the approximation space (𝑉, πœƒ).

Proof. Let (𝑉, πœƒ) be an approximation space, 𝐾 a rough group in V, and π‘ˆ1, π‘ˆ2,... π‘ˆπ‘› rough subgroup 𝐾. We will prove that π‘ˆ1∩ π‘ˆ2∩ … ∩ π‘ˆπ‘› is a rough subgroup of K.

a. Since 𝑒 ∈ π‘ˆΜ… , for every 𝑖 𝑖 = 1, 2, . . , 𝑛, we have 𝑒 ∈ π‘ˆΜ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…1∩ π‘ˆ2∩ … ∩ π‘ˆπ‘›. Hence, π‘ˆ1∩ π‘ˆ2∩ … ∩ π‘ˆπ‘›

Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ… β‰  βˆ….

b. For every π‘Ž, 𝑏 ∈ π‘ˆ1∩ π‘ˆ2∩ … ∩ π‘ˆπ‘›, we have π‘Ž βˆ’ 𝑏 ∈ π‘ˆΜ… , βˆ€π‘– = 1,2, … , 𝑛. So 𝑖 π‘Ž βˆ’ 𝑏 ∈ π‘ˆ1

Μ…Μ…Μ… ∩ π‘ˆΜ…Μ…Μ… ∩ … ∩ π‘ˆ2 Μ…Μ…Μ…Μ… . By hypothesis, 𝑛 π‘ˆΜ…Μ…Μ… ∩ π‘ˆ1 Μ…Μ…Μ… ∩ … ∩ π‘ˆ2 Μ…Μ…Μ…Μ… = π‘ˆπ‘› Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…1∩ π‘ˆ2∩ … π‘ˆπ‘› and hence π‘Ž βˆ’ 𝑏 ∈ π‘ˆΜ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…1 ∩ π‘ˆ2∩ … ∩ π‘ˆπ‘›.

So, π‘ˆ1∩ π‘ˆ2∩ … ∩ π‘ˆπ‘› is a rough subgroup of K in the approximation space (𝑉, πœƒ). ∎

Example 2. Let 𝑉 = {0Μ…, 1Μ…, 2Μ…, 3Μ…, 4Μ…, … , 49Μ…Μ…Μ…Μ…}. We define a relation 𝑅 in 𝑉, where π‘Žπ‘…π‘ if and only if π‘Ž βˆ’ 𝑏 = 6π‘˜, for some π‘˜ ∈ β„€ and π‘Ž 𝑏 ∈ 𝑉. It is easy to show that 𝑅 is an equivalence relation on 𝑉. From this equivalence relation, we have six equivalence classes as follows:

𝐸1 = [1Μ…] = {1Μ…, 7Μ…, 13Μ…Μ…Μ…Μ…, 19Μ…Μ…Μ…Μ…, 25Μ…Μ…Μ…Μ…, 31Μ…Μ…Μ…Μ…, 37Μ…Μ…Μ…Μ…, 43Μ…Μ…Μ…Μ…, 49Μ…Μ…Μ…Μ…}, 𝐸2 = [2Μ…] = {2Μ…, 8Μ…, 14Μ…Μ…Μ…Μ…, 20Μ…Μ…Μ…Μ…, 26Μ…Μ…Μ…Μ…, 32Μ…Μ…Μ…Μ…, 38Μ…Μ…Μ…Μ…, 44Μ…Μ…Μ…Μ…}, 𝐸3 = [3Μ…] = {3Μ…, 9Μ…, 15Μ…Μ…Μ…Μ…, 21Μ…Μ…Μ…Μ…, 27Μ…Μ…Μ…Μ…, 33Μ…Μ…Μ…Μ…, 39Μ…Μ…Μ…Μ…, 45Μ…Μ…Μ…Μ…}, 𝐸4 = [4Μ…] = {4Μ…, 10Μ…Μ…Μ…Μ…, 16Μ…Μ…Μ…Μ…, 22Μ…Μ…Μ…Μ…, 28Μ…Μ…Μ…Μ…, 34Μ…Μ…Μ…Μ…, 40Μ…Μ…Μ…Μ…, 46Μ…Μ…Μ…Μ…}, 𝐸5 = [5Μ…] = {5Μ…, 11Μ…Μ…Μ…Μ…, 17Μ…Μ…Μ…Μ…, 23Μ…Μ…Μ…Μ…, 29Μ…Μ…Μ…Μ…, 35Μ…Μ…Μ…Μ…, 41Μ…Μ…Μ…Μ…, 47Μ…Μ…Μ…Μ…}, 𝐸6 = [6Μ…] = {0Μ…, 6Μ…, 12Μ…Μ…Μ…Μ…, 18Μ…Μ…Μ…Μ…, 24Μ…Μ…Μ…Μ…, 30Μ…Μ…Μ…Μ…, 36Μ…Μ…Μ…Μ…, 42Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…}.

Let π‘Œ = {2Μ…, 4Μ…, 5Μ…, 8Μ…, 10Μ…Μ…Μ…Μ…, 14Μ…Μ…Μ…Μ…, 15Μ…Μ…Μ…Μ…, 16Μ…Μ…Μ…Μ…, 20Μ…Μ…Μ…Μ…, 22Μ…Μ…Μ…Μ…, 23Μ…Μ…Μ…Μ…, 25Μ…Μ…Μ…Μ…, 27Μ…Μ…Μ…Μ…, 28Μ…Μ…Μ…Μ…, 30Μ…Μ…Μ…Μ…, 34Μ…Μ…Μ…Μ…, 35Μ…Μ…Μ…Μ…, 36Μ…Μ…Μ…Μ…, 40Μ…Μ…Μ…Μ…, 42Μ…Μ…Μ…Μ…, 45Μ…Μ…Μ…Μ…, 46Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…} βŠ† 𝑉.

Therefore, the lower approximation and the upper approximation of π‘Œ are as follows:

π‘Œ= 𝐸4 = {4Μ…, 10Μ…Μ…Μ…Μ…, 16Μ…Μ…Μ…Μ…, 22Μ…Μ…Μ…Μ…, 28Μ…Μ…Μ…Μ…, 34Μ…Μ…Μ…Μ…, 40Μ…Μ…Μ…Μ…, 46Μ…Μ…Μ…Μ…}

π‘ŒΜ… = 𝐸1βˆͺ 𝐸2 βˆͺ 𝐸3βˆͺ 𝐸4βˆͺ 𝐸5βˆͺ 𝐸6 = 𝑉

The rough set π‘Œ is the ordered pair of the lower approximation and the upper approximation written as π΄π‘π‘Ÿ(π‘Œ) = ({4Μ…, 10Μ…Μ…Μ…Μ…, 16Μ…Μ…Μ…Μ…, 22Μ…Μ…Μ…Μ…, 28Μ…Μ…Μ…Μ…, 34Μ…Μ…Μ…Μ…, 40Μ…Μ…Μ…Μ…, 46Μ…Μ…Μ…Μ…}, 𝑉).

Next, we define the binary operation +50 on rough set π‘Œ. We will show that βŒ©π‘Œ, +50βŒͺ is a rough group.

1. π‘Ž+50𝑏 ∈ π‘ŒΜ…, for every π‘Ž, 𝑏 ∈ π‘Œ.

2. Association property holds in π‘ŒΜ…, i.e., (π‘Ž+50𝑏)+50𝑐 = π‘Ž+50(𝑏+50𝑐), for every π‘Ž, 𝑏 ∈ π‘ŒΜ….

3. There exists the rough identity element 0 ∈ π‘ŒΜ…, such that for every 𝑦 ∈ π‘Œ, 𝑦(+50)0 = 0(+50)𝑦 = 𝑦.

4. For every 𝑦 ∈ π‘Œ, there is a rough inverse element of 𝑦, i.e., π‘¦βˆ’1∈ π‘Œ such that 𝑦+50π‘¦βˆ’1= π‘¦βˆ’1+50𝑦 = 0.

Hence, βŒ©π‘Œ, +50βŒͺ is a rough group on the approximation space (𝑆, πœƒ).

(6)

368

Next, let 𝐼 = {2Μ…, 4Μ…, 20Μ…Μ…Μ…Μ…, 22Μ…Μ…Μ…Μ…, 28Μ…Μ…Μ…Μ…, 30Μ…Μ…Μ…Μ…, 46Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…}. We have 𝐼̅ = 𝐸2βˆͺ 𝐸4 βˆͺ 𝐸6. Since 𝐼 βŠ† π‘Œ and each element of 𝐼 have a rough inverse in 𝐼, then I is a rough subgroup of π‘Œ. Now, let 𝐽 = {2Μ…, 5Μ…, 23Μ…Μ…Μ…Μ…, 27Μ…Μ…Μ…Μ…, 45Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…} and 𝐽̅ = 𝐸2βˆͺ 𝐸3 βˆͺ 𝐸5βˆͺ 𝐸6. We will show that 𝐽 is a rough subgroup of π‘Œ. Since 𝐽 βŠ† π‘Œ and each element of 𝐽 has a rough inverse in 𝐽, then 𝐽 is a rough subgroup of π‘Œ.

The two rough subgroups constructed in the previous section can be obtained.

𝐼 ∩ 𝐽 = {2Μ…, 48Μ…Μ…Μ…Μ…}

𝐼 ∩ 𝐽

Μ…Μ…Μ…Μ…Μ…Μ… = {0Μ…, 2Μ…, 6Μ…, 8Μ…, 12Μ…Μ…Μ…Μ…, 14Μ…Μ…Μ…Μ…, 18Μ…Μ…Μ…Μ…, 20Μ…Μ…Μ…Μ…, 24Μ…Μ…Μ…Μ…, 26Μ…Μ…Μ…Μ…, 30Μ…Μ…Μ…Μ…, 32Μ…Μ…Μ…Μ…, 36Μ…Μ…Μ…Μ…, 38Μ…Μ…Μ…Μ…, 42Μ…Μ…Μ…Μ…, 44Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…}

The same can be obtained.

𝐼̅ ∩ 𝐽̅ = {0Μ…, 2Μ…, 6Μ…, 8Μ…, 12Μ…Μ…Μ…Μ…, 14Μ…Μ…Μ…Μ…, 18Μ…Μ…Μ…Μ…, 20Μ…Μ…Μ…Μ…, 24Μ…Μ…Μ…Μ…, 26Μ…Μ…Μ…Μ…, 30Μ…Μ…Μ…Μ…, 32Μ…Μ…Μ…Μ…, 36Μ…Μ…Μ…Μ…, 38Μ…Μ…Μ…Μ…, 42Μ…Μ…Μ…Μ…, 44Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…}

Consequently 𝐼̅ ∩ 𝐽̅ = 𝐼 ∩ 𝐽̅̅̅̅̅̅=𝐸2 βˆͺ 𝐸6

= {0Μ…, 2Μ…, 6Μ…, 8Μ…, 12Μ…Μ…Μ…Μ…, 14Μ…Μ…Μ…Μ…, 18Μ…Μ…Μ…Μ…, 20Μ…Μ…Μ…Μ…, 24Μ…Μ…Μ…Μ…, 26Μ…Μ…Μ…Μ…, 30Μ…Μ…Μ…Μ…, 32Μ…Μ…Μ…Μ…, 36Μ…Μ…Μ…Μ…, 38Μ…Μ…Μ…Μ…, 42Μ…Μ…Μ…Μ…, 44Μ…Μ…Μ…Μ…, 48Μ…Μ…Μ…Μ…}

Next, it will be indicated that 𝐼 ∩ 𝐽 = {2Μ…, 48Μ…Μ…Μ…Μ…} is a rough subgroup of Y.

i. 2Μ…(+50)48Μ…Μ…Μ…Μ… = 0Μ… ∈ 𝐼 ∩ 𝐽̅̅̅̅̅̅, ii. (2Μ…)βˆ’1 = 48Μ…Μ…Μ…Μ… ∈ 𝐼 ∩ 𝐽.

Hence {2Μ…, 48Μ…Μ…Μ…Μ…} is a subgroup rough of π‘Œ.

Proposition 2. Let (𝑆, πœƒ) be an approximation space, and 𝐾, 𝐿, π‘Žπ‘›π‘‘ 𝑀 be rough groups. π‘ˆ1 and π‘ˆ2 are a rough subgroup of 𝑀 and π‘ˆ1 β‰  π‘ˆ2 where π‘ˆΜ…Μ…Μ… = π‘ˆ1 Μ…Μ…Μ…2. If a sequence

𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ…

is a rough π‘ˆΜ…Μ…Μ…1-exact sequence, then 𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ… is a rough π‘ˆΜ…Μ…Μ…2-exact sequence.

Proof. We assume that the sequence 𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ… is a rough π‘ˆ1-exact sequence. Based on Definition 1, we have im (𝑓) = π‘”βˆ’1(π‘ˆΜ…Μ…Μ…). 1 Since π‘ˆΜ…Μ…Μ… = π‘ˆ1 Μ…Μ…Μ…2, we have im (𝑓) = π‘”βˆ’1(π‘ˆΜ…Μ…Μ…). In 2

other words, the sequence 𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ… is π‘ˆ2-exact rough in 𝑀. ∎

Example 3. Let β„€9= {0Μ…, 1Μ…, 2Μ…, 3Μ…, 4Μ…, 5Μ…, 6Μ…, 7Μ…, 8Μ…} is a set of integers modulo 9 and +9 modulo 9 summation operations. We define a relation 𝑅 on β„€9 as follows. For every π‘Ž, 𝑏 ∈ β„€9, π‘Žπ‘…π‘ if and only if π‘Ž βˆ’ 𝑏 = 4π‘˜, for some π‘˜ ∈ β„€. From this equivalence relation, we have four equivalence classes as follows:

𝐸1 = {1Μ…, 5Μ…}, 𝐸2 = {2Μ…, 6Μ…}, 𝐸3 = {3Μ…, 7Μ…}, 𝐸4 = {0Μ…, 4Μ…, 8Μ…}.

Next, we construct three rough groups to form a rough U-exact sequence of rough groups. Let 𝑋1 = {0Μ…, 4Μ…, 5Μ…}. We have 𝑋̅̅̅1= 𝐸1βˆͺ 𝐸4 = {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…}.

(1) for every π‘₯, 𝑦 ∈ 𝑋1, x (+9) y ∈ 𝑋̅̅̅1; (2) association property holds in 𝑋̅̅̅1;

(3) there exists 0Μ… ∈ 𝑋̅̅̅1, such that for every π‘₯Μ… ∈ 𝑋̅̅̅1, π‘₯Μ…(+9)0Μ… = 0Μ…(+9)π‘₯Μ… = π‘₯Μ…;

(7)

369

(4) for every π‘₯ ∈ 𝑋1, there exists 𝑦 ∈ 𝑋1 such that π‘₯(+9)𝑦 = 0Μ… or 𝑦 = π‘₯βˆ’1, that is (0Μ…)βˆ’1= 0Μ… ∈ 𝑋1, (4Μ…)βˆ’1= 5Μ… ∈ 𝑋1, and (5Μ…)βˆ’1= 4Μ… ∈ 𝑋1.

Hence, 𝑋1is a rough group.

Now, let 𝑋2 = {1Μ…, 3Μ…, 6Μ…, 8Μ…}. We have 𝑋̅̅̅2= E1 βˆͺE2 βˆͺ E3 βˆͺ E4 =β„€9. (1) for every x, y ∈ 𝑋2, x (+9) y ∈ 𝑋̅̅̅2;

(2) association property holds in 𝑋̅̅̅2;

(3) there exists 0Μ… ∈ 𝑋̅̅̅2, such that for every π‘₯Μ… ∈ 𝑋̅̅̅2, π‘₯Μ…(+9)0Μ… = 0Μ…(+9)π‘₯Μ… = π‘₯Μ…;

(4) for every π‘₯Μ… ∈ 𝑋2, there exists 𝑦̅ ∈ 𝑋2 such that π‘₯Μ…(+9)𝑦̅ = 0Μ… or 𝑦̅ = (π‘₯Μ…)βˆ’1, that is (1Μ…)βˆ’1= 8Μ… ∈ 𝑋2, (8Μ…)βˆ’1 = 1Μ… ∈ 𝑋2, (3Μ…)βˆ’1 = 6Μ… ∈ 𝑋2, and (6Μ…)βˆ’1= 3Μ… ∈ 𝑋2.

Hence, 𝑋2 is a rough group.

Let 𝑋3 = {1Μ…, 3Μ…, 4Μ…, 5Μ…, 6Μ…, 8Μ…}. We obtain 𝑋̅̅̅3 = E1 βˆͺE2 βˆͺ E3 βˆͺ E4 =β„€9. (1) for every x, y ∈ 𝑋3, x (+9) y ∈ 𝑋̅̅̅3;

(2) operation (+9) association property holds in 𝑋̅̅̅3;

(3) there exists 0Μ…βˆˆ 𝑋̅̅̅3,such that for every π‘₯Μ… ∈ 𝑋̅̅̅3, π‘₯Μ…(+9)0Μ… = 0Μ…(+9)π‘₯Μ… = π‘₯Μ…;

(4) for every π‘₯Μ… ∈ 𝑋3, there exists 𝑦̅ ∈ 𝑋3 such that π‘₯Μ…(+9)𝑦̅ = 0Μ… or 𝑦̅ = (π‘₯Μ…)βˆ’1, that is

(1Μ…)βˆ’1= 8Μ… ∈ 𝑋3, (8Μ…)βˆ’1 = 1Μ… ∈ 𝑋3, (3Μ…)βˆ’1 = 6Μ… ∈ 𝑋3, (6Μ…)βˆ’1= 3Μ… ∈ 𝑋3, (4Μ…)βˆ’1 = 5Μ… ∈ 𝑋3, and (5Μ…)βˆ’1 = 4Μ… ∈ 𝑋3.

Hence, 𝑋3 is a rough group.

Next, we form a sequence 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2 β†’ 𝑋𝑔 Μ…Μ…Μ…3. Let π‘ˆ1 = {4Μ…, 5Μ…} βŠ† 𝑋3. We obtain π‘ˆΜ…Μ…Μ…1 = 𝐸1βˆͺ 𝐸4 = {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…} is a rough subgroup of 𝑋3. We get 4Μ…(+9)5Μ… = 0Μ… ∈ π‘ˆΜ…Μ…Μ…1 and (4Μ…)βˆ’1 = 5Μ… ∈ π‘ˆ1. We will show the sequence 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 is π‘ˆ1-exact in 𝑋̅̅̅3.

Since 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2, 𝑓: π‘Ž mod 9, and 𝑋̅̅̅2β†’ 𝑋𝑔 Μ…Μ…Μ…, 𝑔 identity function, we obtain 3 im (𝑓) = {π‘₯ ∈ 𝑋̅̅̅|π‘₯ = 𝑓(𝑋2 Μ…Μ…Μ…)} 1

= {π‘₯ ∈ 𝑋̅̅̅|𝑔(π‘₯) = π‘ˆ2 Μ…Μ…Μ…}1 = π‘”βˆ’1(π‘ˆΜ…Μ…Μ…) 1

= {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…}

Hence 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 is π‘ˆ1-exact in 𝑋̅̅̅3.

Next, we form the second sequence: 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 with 𝑓 homomorphism rough group 𝑓: π‘Ž mod 9 and 𝑔 identity function. Then let π‘ˆ2 = {1Μ…, 8Μ…} βŠ† 𝑋3. We obtain π‘ˆΜ…Μ…Μ…2 = 𝐸1βˆͺ 𝐸4 = {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…} is a rough subgroup of 𝑋3, and 1Μ…(+9)8Μ… = 0Μ… ∈ π‘ˆΜ…Μ…Μ…2 and (1Μ…)βˆ’1 = 8Μ…βˆˆ π‘ˆ2.

We will show the sequence 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 is π‘ˆ2- exact in 𝑋̅̅̅3.

Since 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2, 𝑓: π‘Ž mod 9 dan 𝑋̅̅̅2β†’ 𝑋𝑔 Μ…Μ…Μ…, 𝑔 identity function, we have: 3 im (𝑓) = {π‘₯ ∈ 𝑋̅̅̅|π‘₯ = 𝑓(𝑋2 Μ…Μ…Μ…)} 1

= {π‘₯ ∈ 𝑋̅̅̅|𝑔(π‘₯) = π‘ˆ2 Μ…Μ…Μ…} 2 = π‘”βˆ’1(π‘ˆΜ…Μ…Μ…) 2

= {0Μ…, 1Μ…, 4Μ…, 5Μ…, 8Μ…}

(8)

370

Hence 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 is π‘ˆ2-exact in 𝑋̅̅̅3.

From Example 3, we can conclude that if the sequence 𝑋̅̅̅1β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 is a rough π‘ˆ1-exact sequence and π‘ˆ2 is a subgroup of rough 𝑋̅̅̅3 where π‘ˆ1 β‰  π‘ˆ2 and π‘ˆΜ…Μ…Μ… = π‘ˆ1 Μ…Μ…Μ…2, the sequence 𝑋̅̅̅1

β†’ 𝑋𝑓 Μ…Μ…Μ…2β†’ 𝑋𝑔 Μ…Μ…Μ…3 is a rough π‘ˆ2-exact rough in 𝑋̅̅̅3.

CONCLUSIONS

The rough U-exact sequence is a generalization of the rough exact sequence in the rough groups. If 𝐾, 𝐿, π‘Žπ‘›π‘‘ 𝑀 are rough groups, π‘ˆ1 and π‘ˆ2 are rough subgroups of 𝑀 and π‘ˆ1 β‰  π‘ˆ2 where π‘ˆΜ…Μ…Μ… = π‘ˆ1 Μ…Μ…Μ…2 and the sequence 𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ… is a rough π‘ˆΜ…Μ…Μ…1-exact sequence, then the sequence 𝐾̅→ 𝐿̅𝑓 β†’ 𝑀𝑔 Μ… is a rough π‘ˆΜ…Μ…Μ…2-exact sequence. Furthermore, if we have an approximation space (𝑉, πœƒ), a rough group 𝐾 in V, and rough subgroups π‘ˆ1, π‘ˆ2,... π‘ˆπ‘› in 𝐾, and π‘ˆΜ…Μ…Μ… ∩ π‘ˆ1 Μ…Μ…Μ… ∩ … ∩2 π‘ˆπ‘›

Μ…Μ…Μ…Μ… = π‘ˆΜ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…1∩ π‘ˆ2∩ … π‘ˆπ‘›, then π‘ˆ1∩ π‘ˆ2∩ … π‘ˆπ‘› is a rough subgroup 𝐾 of the approximation space (𝑉, πœƒ).

AUTHOR CONTRIBUTIONS STATEMENT

FA conducted a study of the design. AF and FF participate in preparing the research design, coordinate and help organize manuscript, and data analysis. All authors read and approved the final manuscript.

REFERENCES

Agusfrianto, F. A., Fitriani, & Mahatma, Y. (2022). Rough rings, rough subrings, and rough ideals. Journal of Fundamental Mathematics and Applications, 5(2), 1–8.

Aminizadeh, R., Rasouli, H., & Tehranian, A. (2019). Quasi-exact sequences of S-acts.

Bulletin of the Malaysian Mathematical Sciences Society, 42(5), 2225-2235.

Bağırmaz, N. (2019). Direct products of rough subgroups. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 20(3), 307–

316.

Davvaz, B., & Mahdavipour, M. (2006). Roughness in modules. Information Sciences, 176, 3658–3674.

Davvaz, B., & Malekzadeh, A. (2013). Roughness in modules by using the notion of reference points. Iranian Journal of Fuzzy Systems, 10(6), 109-124.

Davvaz, B., & Parnian-Garamaleky, Y. A. (1999). A note on exact sequences. Bulletin of the Malaysian Mathematical Society, 22, 53–56.

Elfiyanti, G., Muchtadi, I., Nasution, D., & Amartiwi, U. (2016). Abelian property of the category of U-Complexes chain of U-Complexes. International Journal of Mathematical Analysis, 10(17), 849–853.

Faisol, A., Ftriani, & Sifriyani. (2021). Determining the noetherian property of generalized power series modules by using X-sub-exact sequence. Journal of Physics: Conference Series, 1751(1).

Fitriani, F., Wijayanti, I. E., Surodjo, B., & Faisol, A. (2021). The rank of U_V-generated modules. Journal of Mathematics Research, 13(4), 81.

(9)

371

Fitriani, Surodjo, B., & Wijayanti, I. E. (2016). On sub-exact sequences. Far East Journal of Mathematical Sciences (FJMS), 100(7), 1055–1065.

Fitriani, Surodjo, B., & Wijayanti, I. E. (2017). On X-sub-linearly independent modules.

Journal of Physicsβ€―: Conferences Series, 893.

Fitriani, Wijayanti, I. E., & Surodjo, B. (2018a). A generalization of basis and free modules relatives to a family of r-modules. Journal of Physics: Conference Series, 1097(1).

Fitriani, Wijayanti, I. E., & Surodjo, B. (2018b). Generalization of U-generator and M- subgenerator related to category Οƒ [ M ]. Journal of Mathematics Research, 10(4), 101–

106.

Hafifullah, D., Fitriani, F., & Faisol, A. (2022). The properties of rough v-coexact sequence in rough group. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 1069–1078.

Isaac, P., & Neelima, C. (2013). Rough ideals and their properties. J Global Research in Mathematical Archives, 1(6), 90-98.

Jesmalar, L. (2017). Homomorphism and isomorphism of rough group. International Journal of Advance Research, Ideas and Innovations in Technology, 3(3), 1382–1387.

Kuroki, N. (1997). Rough ideals in semigroups. Information Sciences, 100(1–4), 139–163.

Mahmood, W. (2016). Roughness in quotient groups. arXiv, 1–13.

Miao, D., Han, S., Li, D., & Sun, L. (2005). Rough group, rough subgroup and their properties. In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing . Springer, Berlin, Heidelberg.

Neelima, C. A., & Isaac, P. (2014). Rough semi prime ideals and rough bi-ideals in rings. Int.

J. Math. Sci. Appl, 4, 29-36.

Nugraha,A, A., Fitriani, F., Ansori, M., & Faisol, A. (2022). The implementation of rough set on a group structure. Jurnal Matematika MANTIK, 8(1), 45-52.

Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341–356.

Setyaningsih, N., Fitriani, F., & Faisol, A. (2021). Sub-exact sequence of rough groups. Al- Jabar: Jurnal Pendidikan Matematika, 12(2), 267-272.

Sinha, A. K., & Prakash, A. (2016). Rough exact sequences of modules. International Journal of Applied Engineering Research, 11(4), 2513-2517.

Wang, C., & Chen, D. (2010). A short note on some properties of rough groups. Computers and Mathematics with Applications, 59(1), 431–436.

Referensi

Dokumen terkait