http://ejournal.radenintan.ac.id/index.php/al-jabar/index
363
Rough u-exact sequence of rough groups
Fitri Ayuni1, Fitriani Fitriani1*, Ahmad Faisol1
1 Universitas Lampung, Indonesia.
Abstract
Article Information Submitted June 07, 2022 Revised Dec 09, 2022 Accepted Dec 11, 2022
Keywords Exact Sequence;
Rough U-Exact Sequence;
Rough Group.
The notion of a U-exact sequence is a generalization of the exact sequence. This paper introduces a rough U-exact sequence in a rough group in an approximation space. Furthermore, we provide the properties of the rough U-exact sequence in a rough group.
INTRODUCTION
In 1982, Zdzislaw Pawlak developed one of the mathematical techniques known as rough set theory (Pawlak, 1982). The fundamental concept of the rough set theory is an equivalence relation. The equivalence class is a partition used to determine universe subsets' lower and upper bounds. Assume U is a non-empty set, which we refer to as the universe set, and R is an equivalence relation on U. The pair (π πππ π ) represents an approximation space (Miao et al., 2005). If π β π, the lower approximation of π, denoted by π, is a union of the equivalence class contained in π. The upper approximation of π, denoted by πΜ , is a union of the equivalence class intersecting with π. If πΜ β π β β , then the set π is a rough set.
In 1997, Kuroki gave the idea of the ideal rough in semigroups (Kuroki, 1997).
Furthermore, Miao et al. introduce the rough groups, rough subgroups, and their properties (Miao et al., 2005). Moreover, Davvaz and Mahdavipour investigate the rough module (Davvaz & Mahdavipour, 2006). Isaac and Neelima introduce the concept of rough ideals and their properties (Isaac & Neelima, 2013). Sinha and Prakash study the exact sequence of rough modules (Sinha, 2016). Furthermore, Jesmalar gives homomorphism and rough group isomorphism (Jesmalar, 2017). Besides that, Davvaz and Parnian-Garamaleky give a concept of the U-exact sequence of the R-module (Davvaz & Parnian-Garamaleky, 1999). Then, Fitriani et al. introduce the notion of a sub-exact sequence of R-modules (Fitriani et al., 2016).
Elfiyanti et al. also give an Abelian property of the category of U-complexes, which is motivated by the U-exact sequence (Elfiyanti et al., 2016). Aminizadeh et al. (Aminizadeh et al., 2017) introduce an exact sequence of S-acts. Fitriani et al. also establish the notion of an X-sub-linearly independent module (Fitriani et al., 2017). They introduce a UV-generated module (Fitriani et al., 2018b). Furthermore, they established U-basis and U-free modules using the concept of a sub-exact sequence of modules (Fitriani et al., 2018a). Moreover, they define the rank of the UV-generated module (Fitriani et al., 2021). Then, they apply the sub- exact sequences to determine the Noetherian property of the submodule of the generalized power series module (Faisol et al., 2021).
How to cite Ayuni, F., Fitriani, F., & Faisol, A (2022). Rough u-exact sequence of rough groups. Al-Jabar: Jurnal Pendidikan Matematika, 13(2), 363 β 371.
e-ISSN 2540-7562.
Published by Mathematics Education Department, UIN Raden Intan Lampung.
364
Furthermore, Setyaningsih et al. introduce the sub-exact sequence in the rough groups (Setyaningsih et al., 2021). Many researchers investigate the application of rough sets to algebraic structures, such as rough groups (Nugraha et al., 2022), the properties of rough groups (Wang & Chen, 2010), rough subgroups (BaΔΔ±rmaz, 2019), rough rings and rough ideals (Agusfrianto et al., 2022), rough V-coexact sequence in the rough group (Hafifullah et al., 2022), roughness in quotient group (Mahmood, 2016), roughness in module (Davvaz &
Mahdavipour, 2006), rough semi prime ideals (Neelima & Isaac, 2014), and roughness in the module by using the reference points (Davvaz & Malekzadeh, 2013). In this research, we introduce the U-exact sequence of the rough group and its properties.
METHODS
This study was based on literature searches on rough sets, upper and lower approximation space, rough groups, exact sequence, and U-exact sequence. First, we define the rough U- exact sequence in an approximation space. Then we examine the properties of the rough group. In the following step, we use a finite set to construct an example of a U-exact sequence in a rough group. Finally, we examine the properties of the U-exact sequence in the rough group.
Figure 1. Research stage diagram
RESULTS AND DISCUSSION
Motivated by the definitions of the U-exact sequence of the R-module (Davvaz & Parnian- Garamaleky, 1999), we construct the definition of the rough U-exact sequence as follows.
Definition 1. Let (π, π) be an approximation space, and let πΎ, πΏ, πππ π be the rough groups in (π, π), and π be the rough subgroup of π. A sequence
πΎΜ β πΏΜ π β ππ Μ is called rough π-exact in π if im (π) = πβ1(πΜ ).
Before investigating the properties of the rough U-exact sequence, we give the construction of a rough subgroup in an approximation space.
Example 1. Let β€9= {0Μ , 1Μ , 2Μ , 3Μ , 4Μ , 5Μ , 6Μ , 7Μ , 8Μ } is a set of integers modulo 9 and +9 modulo 9 summation operations. We already know that β©β€9 πππ +9βͺ is a group. Then, we define a
Define the rough U-exact sequence in an approximation space
Examine the properties of the rough group
Construct the example of the rough U-exact sequence of rough groups using the finite set Examine the properties of rough U-exact
sequence of rough groups
365
relation π in β€9 as follows. For every π, π β β€9, ππ π if and only if π β π = 4π, for some π β β€. From this equivalence relation, we have four equivalence classes as follows:
πΈ1 = {1Μ , 5Μ }, πΈ2 = {2Μ , 6Μ }, πΈ3 = {3Μ , 7Μ }, πΈ4 = {0Μ , 4Μ , 8Μ }.
Next, we will construct three rough groups to form a rough U-exact sequence of rough groups. Let π1 = {0Μ , 4Μ , 5Μ }. We obtain πΜ Μ Μ 1= πΈ1βͺ πΈ4 = {0Μ , 1Μ , 4Μ , 5Μ , 8Μ }.
Table 1. Table Cayley on π1
+9 0Μ 4Μ 5Μ
0Μ 0Μ 4Μ 5Μ
4Μ 4Μ 8Μ 0Μ
5Μ 5Μ 0Μ 1Μ
(1) Table 1 shows that for every π₯, π¦ β π1, x (+9) y β πΜ Μ Μ 1; (2) association property holds in πΜ Μ Μ 1;
(3) there exists 0Μ β πΜ Μ Μ 1, such that for every π₯Μ β πΜ Μ Μ 1, π₯Μ (+9)0Μ = 0Μ (+9)π₯Μ = π₯Μ ;
(4) there exists π₯Μ β π1, there exists π¦Μ β π1 such that π₯Μ (+9)π¦Μ = 0Μ or π¦Μ = (π₯Μ )β1, that is (0Μ )β1= 0Μ β π1, (4Μ )β1 = 5Μ β π1, and (5Μ )β1 = 4Μ β π1.
Table 2. Rough Inverse Element on π1 π₯ The rough inverse of π₯
0Μ 0Μ
4Μ 5Μ
5Μ 4Μ
Based on Table 2, every element of π1 has a rough inverse in πΜ Μ Μ 1. Hence, π1is a rough group.
Now, let π2 = {1Μ , 3Μ , 6Μ , 8Μ }. We get πΜ Μ Μ 2 = E1 βͺ E2 βͺ E3 βͺ E4 = β€9. We will show that π2 is a rough group in an approximation space (β€9, π ).
Table 3. Table Cayley on π2
+9 1Μ 3Μ 6Μ 8Μ
1Μ 2Μ 4Μ 7Μ 0Μ
3Μ 4Μ 6Μ 0Μ 2Μ
6Μ
8Μ
7Μ
0Μ
0Μ
2Μ
3Μ
5Μ
5Μ
7Μ
(1) Table 3 shows that for every x, y β π2, x (+9) y β πΜ Μ Μ 2; (2) association property holds in πΜ Μ Μ 2;
(3) there exists 0Μ β πΜ Μ Μ 2, such that for every π₯Μ β πΜ Μ Μ 2, π₯Μ (+9)0Μ = 0Μ (+9)π₯Μ = π₯Μ ;
(4) for every π₯Μ β π2, there exists π¦Μ β π2, such that π₯Μ (+9)π¦Μ = 0Μ or π¦Μ = (π₯Μ )β1, that is (1Μ )β1= 8Μ β π2, (8Μ )β1 = 1Μ β π2, (3Μ )β1 = 6Μ β π2, and (6Μ )β1= 3Μ β π2.
366
Table 4. Rough Inverse Element on π2 π₯ The rough inverse of π₯
1Μ 8Μ
3Μ 6Μ
6Μ 3Μ
8Μ 1Μ
Table 4 shows that every element of π2 has a rough inverse in π2. Hence, π2 is a rough group.
Let π3 = {1Μ , 3Μ , 4Μ , 5Μ , 6Μ , 8Μ }. We obtain πΜ Μ Μ 3 = E1 βͺE2 βͺ E3 βͺ E4 =β€9. Table 5. Table Cayley on π3
+9 1Μ 3Μ 4Μ 5Μ 6Μ 8Μ
1Μ 2Μ 4Μ 5Μ 6Μ 7Μ 0Μ
3Μ 4Μ 6Μ 7Μ 8Μ 0Μ 2Μ
4Μ 5Μ 7Μ 8Μ 0Μ 1Μ 3Μ
5Μ 6Μ 8Μ 0Μ 1Μ 2Μ 4Μ
6Μ
8Μ
7Μ
0Μ
0Μ
2Μ
1Μ
3Μ
2Μ
4Μ
3Μ
5Μ
5Μ
7Μ
(1) Table 5 shows that for every x, y β π3, x (+9) y β πΜ Μ Μ 3; (2) association property holds in πΜ Μ Μ 3;
(3) there exists 0Μ β πΜ Μ Μ 3, such that for every π₯ β πΜ Μ Μ 3, π₯(+9)0Μ = 0Μ (+9)π₯ = π₯;
(4) for every π₯ β π3, there exists π¦ β π3, such that π₯(+9)π¦ = 0Μ or π¦ = π₯β1, that is
(1Μ )β1= 8Μ β π3, (8Μ )β1 = 1Μ β π3, (3Μ )β1 = 6Μ β π3, (6Μ )β1= 3Μ β π3, (4Μ )β1 = 5Μ β π3, and (5Μ )β1 = 4Μ β π3.
Table 6. Rough Inverse Element on π3 π₯ The rough inverse of π₯
1Μ 8Μ
3Μ 6Μ
4Μ 5Μ
5Μ 4Μ
6Μ 3Μ
8Μ 1Μ
Based on Table 6, we have every element of π3 that has a rough inverse in π3. Hence, π3 is a rough group.
Finally, we form a sequence πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3, with π as an identity function. Then let π1 = {4Μ , 5Μ } β π3. We have πΜ Μ Μ 1 = πΈ1βͺ πΈ4 = {0Μ , 1Μ , 4Μ , 5Μ , 8Μ } is a rough subgroup of π3. We have 4Μ (+9)5Μ = 0Μ β πΜ Μ Μ 1 and (4Μ )β1= 5Μ β π1.
We will show the sequence πΜ Μ Μ 1 β ππ Μ Μ Μ 2 β ππ Μ Μ Μ 3 is a rough π1-exact in πΜ Μ Μ 3. We have im (π) = {0Μ , 1Μ , 4Μ , 5Μ , 8Μ } = πβ1(πΜ Μ Μ ). Hence the sequence π1 Μ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is a rough π1-exact in πΜ Μ Μ 3.
Next, we will give the properties of the rough U-exact sequence of rough groups.
367
Proposition 1. Let (π, π) be an approximation space, πΎ a rough group in V, and π1, π2,... ππ rough subgroup πΎ. If πΜ Μ Μ β© π1 Μ Μ Μ β© β¦ β© π2 Μ Μ Μ Μ = ππ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 1β© π2 β© β¦ ππ, then π1β© π2 β© β¦ ππ is a rough subgroup πΎ in the approximation space (π, π).
Proof. Let (π, π) be an approximation space, πΎ a rough group in V, and π1, π2,... ππ rough subgroup πΎ. We will prove that π1β© π2β© β¦ β© ππ is a rough subgroup of K.
a. Since π β πΜ , for every π π = 1, 2, . . , π, we have π β πΜ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 1β© π2β© β¦ β© ππ. Hence, π1β© π2β© β¦ β© ππ
Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ β β .
b. For every π, π β π1β© π2β© β¦ β© ππ, we have π β π β πΜ , βπ = 1,2, β¦ , π. So π π β π β π1
Μ Μ Μ β© πΜ Μ Μ β© β¦ β© π2 Μ Μ Μ Μ . By hypothesis, π πΜ Μ Μ β© π1 Μ Μ Μ β© β¦ β© π2 Μ Μ Μ Μ = ππ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 1β© π2β© β¦ ππ and hence π β π β πΜ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 1 β© π2β© β¦ β© ππ.
So, π1β© π2β© β¦ β© ππ is a rough subgroup of K in the approximation space (π, π). β
Example 2. Let π = {0Μ , 1Μ , 2Μ , 3Μ , 4Μ , β¦ , 49Μ Μ Μ Μ }. We define a relation π in π, where ππ π if and only if π β π = 6π, for some π β β€ and π π β π. It is easy to show that π is an equivalence relation on π. From this equivalence relation, we have six equivalence classes as follows:
πΈ1 = [1Μ ] = {1Μ , 7Μ , 13Μ Μ Μ Μ , 19Μ Μ Μ Μ , 25Μ Μ Μ Μ , 31Μ Μ Μ Μ , 37Μ Μ Μ Μ , 43Μ Μ Μ Μ , 49Μ Μ Μ Μ }, πΈ2 = [2Μ ] = {2Μ , 8Μ , 14Μ Μ Μ Μ , 20Μ Μ Μ Μ , 26Μ Μ Μ Μ , 32Μ Μ Μ Μ , 38Μ Μ Μ Μ , 44Μ Μ Μ Μ }, πΈ3 = [3Μ ] = {3Μ , 9Μ , 15Μ Μ Μ Μ , 21Μ Μ Μ Μ , 27Μ Μ Μ Μ , 33Μ Μ Μ Μ , 39Μ Μ Μ Μ , 45Μ Μ Μ Μ }, πΈ4 = [4Μ ] = {4Μ , 10Μ Μ Μ Μ , 16Μ Μ Μ Μ , 22Μ Μ Μ Μ , 28Μ Μ Μ Μ , 34Μ Μ Μ Μ , 40Μ Μ Μ Μ , 46Μ Μ Μ Μ }, πΈ5 = [5Μ ] = {5Μ , 11Μ Μ Μ Μ , 17Μ Μ Μ Μ , 23Μ Μ Μ Μ , 29Μ Μ Μ Μ , 35Μ Μ Μ Μ , 41Μ Μ Μ Μ , 47Μ Μ Μ Μ }, πΈ6 = [6Μ ] = {0Μ , 6Μ , 12Μ Μ Μ Μ , 18Μ Μ Μ Μ , 24Μ Μ Μ Μ , 30Μ Μ Μ Μ , 36Μ Μ Μ Μ , 42Μ Μ Μ Μ , 48Μ Μ Μ Μ }.
Let π = {2Μ , 4Μ , 5Μ , 8Μ , 10Μ Μ Μ Μ , 14Μ Μ Μ Μ , 15Μ Μ Μ Μ , 16Μ Μ Μ Μ , 20Μ Μ Μ Μ , 22Μ Μ Μ Μ , 23Μ Μ Μ Μ , 25Μ Μ Μ Μ , 27Μ Μ Μ Μ , 28Μ Μ Μ Μ , 30Μ Μ Μ Μ , 34Μ Μ Μ Μ , 35Μ Μ Μ Μ , 36Μ Μ Μ Μ , 40Μ Μ Μ Μ , 42Μ Μ Μ Μ , 45Μ Μ Μ Μ , 46Μ Μ Μ Μ , 48Μ Μ Μ Μ } β π.
Therefore, the lower approximation and the upper approximation of π are as follows:
π= πΈ4 = {4Μ , 10Μ Μ Μ Μ , 16Μ Μ Μ Μ , 22Μ Μ Μ Μ , 28Μ Μ Μ Μ , 34Μ Μ Μ Μ , 40Μ Μ Μ Μ , 46Μ Μ Μ Μ }
πΜ = πΈ1βͺ πΈ2 βͺ πΈ3βͺ πΈ4βͺ πΈ5βͺ πΈ6 = π
The rough set π is the ordered pair of the lower approximation and the upper approximation written as π΄ππ(π) = ({4Μ , 10Μ Μ Μ Μ , 16Μ Μ Μ Μ , 22Μ Μ Μ Μ , 28Μ Μ Μ Μ , 34Μ Μ Μ Μ , 40Μ Μ Μ Μ , 46Μ Μ Μ Μ }, π).
Next, we define the binary operation +50 on rough set π. We will show that β©π, +50βͺ is a rough group.
1. π+50π β πΜ , for every π, π β π.
2. Association property holds in πΜ , i.e., (π+50π)+50π = π+50(π+50π), for every π, π β πΜ .
3. There exists the rough identity element 0 β πΜ , such that for every π¦ β π, π¦(+50)0 = 0(+50)π¦ = π¦.
4. For every π¦ β π, there is a rough inverse element of π¦, i.e., π¦β1β π such that π¦+50π¦β1= π¦β1+50π¦ = 0.
Hence, β©π, +50βͺ is a rough group on the approximation space (π, π).
368
Next, let πΌ = {2Μ , 4Μ , 20Μ Μ Μ Μ , 22Μ Μ Μ Μ , 28Μ Μ Μ Μ , 30Μ Μ Μ Μ , 46Μ Μ Μ Μ , 48Μ Μ Μ Μ }. We have πΌΜ = πΈ2βͺ πΈ4 βͺ πΈ6. Since πΌ β π and each element of πΌ have a rough inverse in πΌ, then I is a rough subgroup of π. Now, let π½ = {2Μ , 5Μ , 23Μ Μ Μ Μ , 27Μ Μ Μ Μ , 45Μ Μ Μ Μ , 48Μ Μ Μ Μ } and π½Μ = πΈ2βͺ πΈ3 βͺ πΈ5βͺ πΈ6. We will show that π½ is a rough subgroup of π. Since π½ β π and each element of π½ has a rough inverse in π½, then π½ is a rough subgroup of π.
The two rough subgroups constructed in the previous section can be obtained.
πΌ β© π½ = {2Μ , 48Μ Μ Μ Μ }
πΌ β© π½
Μ Μ Μ Μ Μ Μ = {0Μ , 2Μ , 6Μ , 8Μ , 12Μ Μ Μ Μ , 14Μ Μ Μ Μ , 18Μ Μ Μ Μ , 20Μ Μ Μ Μ , 24Μ Μ Μ Μ , 26Μ Μ Μ Μ , 30Μ Μ Μ Μ , 32Μ Μ Μ Μ , 36Μ Μ Μ Μ , 38Μ Μ Μ Μ , 42Μ Μ Μ Μ , 44Μ Μ Μ Μ , 48Μ Μ Μ Μ }
The same can be obtained.
πΌΜ β© π½Μ = {0Μ , 2Μ , 6Μ , 8Μ , 12Μ Μ Μ Μ , 14Μ Μ Μ Μ , 18Μ Μ Μ Μ , 20Μ Μ Μ Μ , 24Μ Μ Μ Μ , 26Μ Μ Μ Μ , 30Μ Μ Μ Μ , 32Μ Μ Μ Μ , 36Μ Μ Μ Μ , 38Μ Μ Μ Μ , 42Μ Μ Μ Μ , 44Μ Μ Μ Μ , 48Μ Μ Μ Μ }
Consequently πΌΜ β© π½Μ = πΌ β© π½Μ Μ Μ Μ Μ Μ =πΈ2 βͺ πΈ6
= {0Μ , 2Μ , 6Μ , 8Μ , 12Μ Μ Μ Μ , 14Μ Μ Μ Μ , 18Μ Μ Μ Μ , 20Μ Μ Μ Μ , 24Μ Μ Μ Μ , 26Μ Μ Μ Μ , 30Μ Μ Μ Μ , 32Μ Μ Μ Μ , 36Μ Μ Μ Μ , 38Μ Μ Μ Μ , 42Μ Μ Μ Μ , 44Μ Μ Μ Μ , 48Μ Μ Μ Μ }
Next, it will be indicated that πΌ β© π½ = {2Μ , 48Μ Μ Μ Μ } is a rough subgroup of Y.
i. 2Μ (+50)48Μ Μ Μ Μ = 0Μ β πΌ β© π½Μ Μ Μ Μ Μ Μ , ii. (2Μ )β1 = 48Μ Μ Μ Μ β πΌ β© π½.
Hence {2Μ , 48Μ Μ Μ Μ } is a subgroup rough of π.
Proposition 2. Let (π, π) be an approximation space, and πΎ, πΏ, πππ π be rough groups. π1 and π2 are a rough subgroup of π and π1 β π2 where πΜ Μ Μ = π1 Μ Μ Μ 2. If a sequence
πΎΜ β πΏΜ π β ππ Μ
is a rough πΜ Μ Μ 1-exact sequence, then πΎΜ β πΏΜ π β ππ Μ is a rough πΜ Μ Μ 2-exact sequence.
Proof. We assume that the sequence πΎΜ β πΏΜ π β ππ Μ is a rough π1-exact sequence. Based on Definition 1, we have im (π) = πβ1(πΜ Μ Μ ). 1 Since πΜ Μ Μ = π1 Μ Μ Μ 2, we have im (π) = πβ1(πΜ Μ Μ ). In 2
other words, the sequence πΎΜ β πΏΜ π β ππ Μ is π2-exact rough in π. β
Example 3. Let β€9= {0Μ , 1Μ , 2Μ , 3Μ , 4Μ , 5Μ , 6Μ , 7Μ , 8Μ } is a set of integers modulo 9 and +9 modulo 9 summation operations. We define a relation π on β€9 as follows. For every π, π β β€9, ππ π if and only if π β π = 4π, for some π β β€. From this equivalence relation, we have four equivalence classes as follows:
πΈ1 = {1Μ , 5Μ }, πΈ2 = {2Μ , 6Μ }, πΈ3 = {3Μ , 7Μ }, πΈ4 = {0Μ , 4Μ , 8Μ }.
Next, we construct three rough groups to form a rough U-exact sequence of rough groups. Let π1 = {0Μ , 4Μ , 5Μ }. We have πΜ Μ Μ 1= πΈ1βͺ πΈ4 = {0Μ , 1Μ , 4Μ , 5Μ , 8Μ }.
(1) for every π₯, π¦ β π1, x (+9) y β πΜ Μ Μ 1; (2) association property holds in πΜ Μ Μ 1;
(3) there exists 0Μ β πΜ Μ Μ 1, such that for every π₯Μ β πΜ Μ Μ 1, π₯Μ (+9)0Μ = 0Μ (+9)π₯Μ = π₯Μ ;
369
(4) for every π₯ β π1, there exists π¦ β π1 such that π₯(+9)π¦ = 0Μ or π¦ = π₯β1, that is (0Μ )β1= 0Μ β π1, (4Μ )β1= 5Μ β π1, and (5Μ )β1= 4Μ β π1.
Hence, π1is a rough group.
Now, let π2 = {1Μ , 3Μ , 6Μ , 8Μ }. We have πΜ Μ Μ 2= E1 βͺE2 βͺ E3 βͺ E4 =β€9. (1) for every x, y β π2, x (+9) y β πΜ Μ Μ 2;
(2) association property holds in πΜ Μ Μ 2;
(3) there exists 0Μ β πΜ Μ Μ 2, such that for every π₯Μ β πΜ Μ Μ 2, π₯Μ (+9)0Μ = 0Μ (+9)π₯Μ = π₯Μ ;
(4) for every π₯Μ β π2, there exists π¦Μ β π2 such that π₯Μ (+9)π¦Μ = 0Μ or π¦Μ = (π₯Μ )β1, that is (1Μ )β1= 8Μ β π2, (8Μ )β1 = 1Μ β π2, (3Μ )β1 = 6Μ β π2, and (6Μ )β1= 3Μ β π2.
Hence, π2 is a rough group.
Let π3 = {1Μ , 3Μ , 4Μ , 5Μ , 6Μ , 8Μ }. We obtain πΜ Μ Μ 3 = E1 βͺE2 βͺ E3 βͺ E4 =β€9. (1) for every x, y β π3, x (+9) y β πΜ Μ Μ 3;
(2) operation (+9) association property holds in πΜ Μ Μ 3;
(3) there exists 0Μ β πΜ Μ Μ 3,such that for every π₯Μ β πΜ Μ Μ 3, π₯Μ (+9)0Μ = 0Μ (+9)π₯Μ = π₯Μ ;
(4) for every π₯Μ β π3, there exists π¦Μ β π3 such that π₯Μ (+9)π¦Μ = 0Μ or π¦Μ = (π₯Μ )β1, that is
(1Μ )β1= 8Μ β π3, (8Μ )β1 = 1Μ β π3, (3Μ )β1 = 6Μ β π3, (6Μ )β1= 3Μ β π3, (4Μ )β1 = 5Μ β π3, and (5Μ )β1 = 4Μ β π3.
Hence, π3 is a rough group.
Next, we form a sequence πΜ Μ Μ 1β ππ Μ Μ Μ 2 β ππ Μ Μ Μ 3. Let π1 = {4Μ , 5Μ } β π3. We obtain πΜ Μ Μ 1 = πΈ1βͺ πΈ4 = {0Μ , 1Μ , 4Μ , 5Μ , 8Μ } is a rough subgroup of π3. We get 4Μ (+9)5Μ = 0Μ β πΜ Μ Μ 1 and (4Μ )β1 = 5Μ β π1. We will show the sequence πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is π1-exact in πΜ Μ Μ 3.
Since πΜ Μ Μ 1β ππ Μ Μ Μ 2, π: π mod 9, and πΜ Μ Μ 2β ππ Μ Μ Μ , π identity function, we obtain 3 im (π) = {π₯ β πΜ Μ Μ |π₯ = π(π2 Μ Μ Μ )} 1
= {π₯ β πΜ Μ Μ |π(π₯) = π2 Μ Μ Μ }1 = πβ1(πΜ Μ Μ ) 1
= {0Μ , 1Μ , 4Μ , 5Μ , 8Μ }
Hence πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is π1-exact in πΜ Μ Μ 3.
Next, we form the second sequence: πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 with π homomorphism rough group π: π mod 9 and π identity function. Then let π2 = {1Μ , 8Μ } β π3. We obtain πΜ Μ Μ 2 = πΈ1βͺ πΈ4 = {0Μ , 1Μ , 4Μ , 5Μ , 8Μ } is a rough subgroup of π3, and 1Μ (+9)8Μ = 0Μ β πΜ Μ Μ 2 and (1Μ )β1 = 8Μ β π2.
We will show the sequence πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is π2- exact in πΜ Μ Μ 3.
Since πΜ Μ Μ 1β ππ Μ Μ Μ 2, π: π mod 9 dan πΜ Μ Μ 2β ππ Μ Μ Μ , π identity function, we have: 3 im (π) = {π₯ β πΜ Μ Μ |π₯ = π(π2 Μ Μ Μ )} 1
= {π₯ β πΜ Μ Μ |π(π₯) = π2 Μ Μ Μ } 2 = πβ1(πΜ Μ Μ ) 2
= {0Μ , 1Μ , 4Μ , 5Μ , 8Μ }
370
Hence πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is π2-exact in πΜ Μ Μ 3.
From Example 3, we can conclude that if the sequence πΜ Μ Μ 1β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is a rough π1-exact sequence and π2 is a subgroup of rough πΜ Μ Μ 3 where π1 β π2 and πΜ Μ Μ = π1 Μ Μ Μ 2, the sequence πΜ Μ Μ 1
β ππ Μ Μ Μ 2β ππ Μ Μ Μ 3 is a rough π2-exact rough in πΜ Μ Μ 3.
CONCLUSIONS
The rough U-exact sequence is a generalization of the rough exact sequence in the rough groups. If πΎ, πΏ, πππ π are rough groups, π1 and π2 are rough subgroups of π and π1 β π2 where πΜ Μ Μ = π1 Μ Μ Μ 2 and the sequence πΎΜ β πΏΜ π β ππ Μ is a rough πΜ Μ Μ 1-exact sequence, then the sequence πΎΜ β πΏΜ π β ππ Μ is a rough πΜ Μ Μ 2-exact sequence. Furthermore, if we have an approximation space (π, π), a rough group πΎ in V, and rough subgroups π1, π2,... ππ in πΎ, and πΜ Μ Μ β© π1 Μ Μ Μ β© β¦ β©2 ππ
Μ Μ Μ Μ = πΜ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 1β© π2β© β¦ ππ, then π1β© π2β© β¦ ππ is a rough subgroup πΎ of the approximation space (π, π).
AUTHOR CONTRIBUTIONS STATEMENT
FA conducted a study of the design. AF and FF participate in preparing the research design, coordinate and help organize manuscript, and data analysis. All authors read and approved the final manuscript.
REFERENCES
Agusfrianto, F. A., Fitriani, & Mahatma, Y. (2022). Rough rings, rough subrings, and rough ideals. Journal of Fundamental Mathematics and Applications, 5(2), 1β8.
Aminizadeh, R., Rasouli, H., & Tehranian, A. (2019). Quasi-exact sequences of S-acts.
Bulletin of the Malaysian Mathematical Sciences Society, 42(5), 2225-2235.
BaΔΔ±rmaz, N. (2019). Direct products of rough subgroups. EskiΕehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 20(3), 307β
316.
Davvaz, B., & Mahdavipour, M. (2006). Roughness in modules. Information Sciences, 176, 3658β3674.
Davvaz, B., & Malekzadeh, A. (2013). Roughness in modules by using the notion of reference points. Iranian Journal of Fuzzy Systems, 10(6), 109-124.
Davvaz, B., & Parnian-Garamaleky, Y. A. (1999). A note on exact sequences. Bulletin of the Malaysian Mathematical Society, 22, 53β56.
Elfiyanti, G., Muchtadi, I., Nasution, D., & Amartiwi, U. (2016). Abelian property of the category of U-Complexes chain of U-Complexes. International Journal of Mathematical Analysis, 10(17), 849β853.
Faisol, A., Ftriani, & Sifriyani. (2021). Determining the noetherian property of generalized power series modules by using X-sub-exact sequence. Journal of Physics: Conference Series, 1751(1).
Fitriani, F., Wijayanti, I. E., Surodjo, B., & Faisol, A. (2021). The rank of U_V-generated modules. Journal of Mathematics Research, 13(4), 81.
371
Fitriani, Surodjo, B., & Wijayanti, I. E. (2016). On sub-exact sequences. Far East Journal of Mathematical Sciences (FJMS), 100(7), 1055β1065.
Fitriani, Surodjo, B., & Wijayanti, I. E. (2017). On X-sub-linearly independent modules.
Journal of Physicsβ―: Conferences Series, 893.
Fitriani, Wijayanti, I. E., & Surodjo, B. (2018a). A generalization of basis and free modules relatives to a family of r-modules. Journal of Physics: Conference Series, 1097(1).
Fitriani, Wijayanti, I. E., & Surodjo, B. (2018b). Generalization of U-generator and M- subgenerator related to category Ο [ M ]. Journal of Mathematics Research, 10(4), 101β
106.
Hafifullah, D., Fitriani, F., & Faisol, A. (2022). The properties of rough v-coexact sequence in rough group. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 1069β1078.
Isaac, P., & Neelima, C. (2013). Rough ideals and their properties. J Global Research in Mathematical Archives, 1(6), 90-98.
Jesmalar, L. (2017). Homomorphism and isomorphism of rough group. International Journal of Advance Research, Ideas and Innovations in Technology, 3(3), 1382β1387.
Kuroki, N. (1997). Rough ideals in semigroups. Information Sciences, 100(1β4), 139β163.
Mahmood, W. (2016). Roughness in quotient groups. arXiv, 1β13.
Miao, D., Han, S., Li, D., & Sun, L. (2005). Rough group, rough subgroup and their properties. In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing . Springer, Berlin, Heidelberg.
Neelima, C. A., & Isaac, P. (2014). Rough semi prime ideals and rough bi-ideals in rings. Int.
J. Math. Sci. Appl, 4, 29-36.
Nugraha,A, A., Fitriani, F., Ansori, M., & Faisol, A. (2022). The implementation of rough set on a group structure. Jurnal Matematika MANTIK, 8(1), 45-52.
Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341β356.
Setyaningsih, N., Fitriani, F., & Faisol, A. (2021). Sub-exact sequence of rough groups. Al- Jabar: Jurnal Pendidikan Matematika, 12(2), 267-272.
Sinha, A. K., & Prakash, A. (2016). Rough exact sequences of modules. International Journal of Applied Engineering Research, 11(4), 2513-2517.
Wang, C., & Chen, D. (2010). A short note on some properties of rough groups. Computers and Mathematics with Applications, 59(1), 431β436.