• Tidak ada hasil yang ditemukan

Identifikasi Konsep Geometri yang Terkandung dalam Tenun Pa'binti' Kerajinan Masyarakat Toraja

N/A
N/A
Jumar Anggun Dwitama

Academic year: 2024

Membagikan " Identifikasi Konsep Geometri yang Terkandung dalam Tenun Pa'binti' Kerajinan Masyarakat Toraja"

Copied!
10
0
0

Teks penuh

(1)

Marilyn Lazarus1* Ari Wibowo2 , , Angela3

2 Jil. 7 – No. 1, tahun (2023), halaman 82-91

| ISSN 2548-8201 (Cetak) | 2580-0469) (Dalam Talian) |

Perkenalan

[email protected],

Adapun pembelajaran matematika dapat dilakukan melalui pendekatan budaya yang disebut etnomatik.

Budaya dapat diterapkan di sekolah melalui

pembelajaran berbasis budaya. Menurut Sardjiyo dan Pannen (putri, 2017:21) mengatakan pembelajaran berbasis budaya adalah model pembelajaran yang mengutamakan aktivitas siswa dengan beragam budaya yang dimiliki.

Indonesia merupakan negara yang kaya akan budaya yang berasal dari berbagai suku. Setiap daerah di Indonesia mempunyai budaya berbeda yang diwariskan secara turun temurun dari nenek moyang (Rizky dan Wibisono, 2015).

Kebudayaan yang tumbuh dan berkembang di masyarakat harus dijaga dan dilestarikan agar kebudayaan yang dimiliki Indonesia tidak punah. Selain itu, nilai-nilai budaya penting untuk ditanamkan pada setiap individu agar setiap individu mampu memahami, memaknai dan menyadari pentingnya nilai-nilai budaya dalam menjalankan aktivitas kehidupan.

Penanaman nilai budaya dapat diterapkan melalui keluarga, pendidikan dan lingkungan masyarakat (Fajriya, 2018:114).

(Mathematics Education/ Universitas Kristen Indonesia Toraja, Indonesia)

Pembelajaran berbasis budaya sangat bermanfaat bagi siswa.

Kegiatan ibadah juga mengundang partisipasi siswa agar tidak bosan (Hakpantria, 2022).

[email protected], [email protected]

Hal ini dikarenakan siswa sangat memerlukan pembelajaran yang menarik agar matematika yang dianggap sulit oleh siswa dapat lebih dipahami dan menjadi pembelajaran bermakna secara kontekstual yang erat kaitannya dengan kelompok budaya (Muttaqin, 2018) (Marmi, 2020: 1).

1,2,3

1 3

Kerajinan Masyarakat Toraja

Identifikasi Konsep Geometri yang Terkandung dalam Tenun Pa'binti'

Diterima: 26/02/2023 Diterbitkan: 01/03/2023 Terima: 16/01/2023

* Penulis yang sesuai. Surel:

Kata Kunci: Etnomatika, Konsep Matematika, Motif Kain Tenun Toraja Abstrak

Abstrak

Indonesia adalah negara yang kaya akan budaya yang berasal dari berbagai suku bangsa. Budaya dapat diterapkan disekolah melalui pembelajaran berbasis budaya. Toraja adalah salah satu suku di indonesia yang memiliki beragam kebudayaan. Kerajinan anyaman merupakan salah satu kebudayaan yang ditekuni oleh masyarakat Toraja sejak dahulu sampai sekarang. Tenun pa’binti’ merupakan suatu kerajinan anyaman masyarakat Toraja khususnya daerah Sa’dan yang dibuat dari benang. Pada tenun pa’binti’ terdapat konsep-konsep matematika di dalamnya berupa bangun datar. Tujuan penelitian ini untuk mengetahui konsep geometri yang terdapat pada kerajinan anyaman tenun pa’binti’ masyarakat Toraja.

Indonesia merupakan negara yang kaya akan budaya dari berbagai suku. Budaya dapat diterapkan di sekolah melalui pembelajaran berbasis budaya.

Toraja merupakan salah satu suku di Indonesia yang memiliki beragam budaya. Kerajinan anyaman merupakan salah satu kebudayaan yang ditekuni masyarakat Toraja sejak zaman dahulu hingga sekarang. Tenun pa’binti’ merupakan kerajinan tenun masyarakat Toraja khususnya daerah Sa’dan yang berbahan dasar benang. Pada tenun pa’binti didalamnya terdapat konsep matematika yang berbentuk bangun datar. Tujuan dari penelitian ini adalah untuk mengetahui konsep geometri yang terdapat pada kerajinan tenun pa’binti masyarakat Toraja. Penelitian ini menggunakan metode deskriptif kualitatif untuk mengkaji dan memahami lebih dalam tentang etnomatik pada kerajinan tenun tenun masyarakat Toraja. Lokasi penelitian berada di wilayah Toraja Utara yaitu di Lembang Sa'dan Ulusalu kecamatan Sa'dan. Hasil dari penelitian ini adalah terdapatnya konsep geometri pada kerajinan tenun pa’binti masyarakat Toraja dimana konsep geometri yang terdapat pada kerajinan tenun pa’binti antara lain; segitiga datar, belah ketupat, persegi, dan jajar genjang.

Penelitian ini menggunakan metode deskriptif kualitatif untuk mempelajari dan memahami lebih dalam tentang etnomatika pada kerajinan anyaman tenun masyarakat Toraja. Lokasi penelitian yaitu berada di daerah Toraja Utara yakni dilembang Sa’dan Ulusalu kecamatan Sa’dan.

Kata Kunci : Etnomatika, Konsep Matematika, Motif Kain Tenun Toraja

Hasil dari penelitian ini yaitu terdapat konsep geometri pada kerajinan anyaman tenun pa’binti’ masyarakat Toraja dimana konsep geometri yang terdapat pada anyaman tenun pa’binti’ antara lain ; bangun datar segitiga, bangun datar belah ketupat, bangun datar persegi, dan bangun datar jajargenjang.

(2)

Dari uraian di atas dapat disimpulkan bahwa sejak dahulu masyarakat Toraja sudah mengenal ilmu matematika khususnya geometri bahkan sudah menggeluti proses pembuatan tenun tenun khususnya pa'binti'.

Namun belum diketahui secara pasti oleh masyarakat Toraja bahwa terdapat unsur geometris pada motif tenun pa'binti' yang mereka buat. Pada motif tenun tenun pa'binti' masyarakat Toraja khususnya daerah Sa'dan.

Menurut Hiabert dan Capenter 1992, mengingatkan semua pihak bahwa pengajaran matematika di sekolah dengan matematika yang ditemui anak dalam kehidupan sehari-hari sangatlah berbeda. Oleh karena itu, pembelajaran matematika sangat diperlukan untuk memberikan muatan atau kedudukan matematika antara matematika dalam dunia sehari-hari berdasarkan budaya lokal dan matematika di sekolah. Pemikiran etnomatika akan mampu memperkaya pengetahuan matematika yang ada. Oleh karena itu, jika perkembangan etnomatematika telah banyak dipelajari, maka bukan tidak mungkin matematika diajarkan sejarah secara sederhana dengan mengambil budaya lokal.

Penulis mengangkat judul ini guna memahami konsep geometri seperti apa saja yang terkandung dalam motif kerajinan tenun pa’binti’ masyarakat Toraja.

Kita akan menemukan konsep geometri sepetri datar.

Berdasarkan uraian di atas, bahwa matematika sebagai salah satu cabang ilmu pengetahuan mempunyai peranan penting dalam kehidupan sehari-hari. Hal ini terlihat dari aktivitas yang dilakukan masyarakat Toraja seperti pada proses pembuatan anyaman anyaman pa’binti’. Atas dasar itulah tampa menyadari bahwa matematika selalu mempunyai peranan penting dalam setiap aktivitas yang kita lakukan sehari-hari.

Hal ini perlu diketahui karena motif pada kerajinan tenun masyarakat Toraja merupakan salah satu keunikan yang ada di Toraja yang perlu dilestarikan. Hal ini dikarenakan para pemuda di Toraja sudah mulai khawatir akan hal tersebut sehingga peneliti ingin melakukan penelitian guna memberikan pemahaman tentang motif-motif pada kain tenun khususnya tenun pa’binti’ masyarakat Toraja dan dapat melestarikannya.

dan diterapkan dalam proses pembelajaran di sekolah.

Toraja merupakan salah satu suku di Indonesia yang mempunyai beragam kebudayaan. Sebagai masyarakat yang agresif, Toraja masih sangat lekat dengan perebadan tradisional yang diwariskan secara turun temurun dari nenek moyang masyarakat Toraja. Kerajinan tangan tenun

merupakan salah satu kebudayaan yang digeluti masyarakat

Toraja sejak zaman dahulu untuk memenuhi kebutuhan pokok sehari-hari.

Tenun merupakan salah satu bentuk kerajinan tangan yang terus diproduksi oleh sebagian kecil masyarakat Toraja.

Terkait dengan penelitian yaitu Identifikasi Konsep Geometri yang Terdapat pada Kerajinan Anyaman Tenun Pa'binti' Masyarakat Toraja, peneliti tertarik untuk mendeskripsikan dan mendalami Konsep Geometri yang terdapat pada tenun tenun pa'binti'.

Kata matematika berasal dari kata latim mathematic yang aslinya diambil dari bahasa yunani mathematica yang berarti belajar.

Tenun dibuat dari ciri khas dengan menggunakan bahan dasar benang. Tepatnya di kawasan sa'dan lembang sa'dan ulusalu merupakan tempat pembuatan kerajinan pa'tannun, contoh kerajinan tenun yang dibuat oleh masyarakat Toraja adalah tenun pa'binti'. Tenun Pa'binti' merupakan kerajinan tenun masyarakat Toraja khususnya Sa'dan yang berbahan dasar benang, dan jika diperhatikan pada kerajinan tenun pa'binti' banyak sekali mengandung konsep geometri.

Perekataan berasal dari kata mathema yang berarti pengetahuan dan pengetahuan atau pengetahuan, sciensi.

Kata mathenein juga berkaitan dengan kata lain yang hampir sama yaitu mathein atau mathenein yang artinya belajar atau berpikir. Jadi dari asal kata tersebut dapat disimpulkan bahwa Matematika adalah ilmu yang diperoleh melalui penalaran berpikir.

Dalam kain pa’binti’ ini ilmu matematika yang

diterapkan adalah berhitung. Menghitung banyaknya benang yang akan ditenun sehingga membentuk motif yang akan dibuat oleh penenun dan motif yang dibuat mempunyai

konsep matematika dan juga peralatan pembuatannya didalamnya.

Menurut Nasutison dalam Arifin (2017:1) mengemukakan bahwa istilah matematika berasal dari bahasa Yunani, mathein dan mathenem yang berarti belajar.

Kata matematika diduga berkaitan erat dengan kata Sansekerta, medha atau widya yang berarti kecerdasan, penemuan atau kecerdasan. Sedangkan James dalam Arifin (2017:1) menyatakan bahwa istilah matematika adalah ilmu logika, mengenai bentuk, susunan, besaran, dan konsep yang berkaitan satu sama lain. Matematika dibagi menjadi tiga bagian besar, yaitu aljabar, analisis, dan geometri. Tapi ada

Konsep matematika yang terkandung di dalamnya adalah garis, garis mendatar, dua garis sejajar, dua garis berpotongan, persegi, belah ketupat, segitiga dan

jajargenjang. Konsep matematika yang terdapat pada motif kain tenun pa’binti’ di atas dapat digunakan untuk

pembelajaran matematika melalui budaya lokal. Dengan demikian pembelajaran matematika akan lebih bermakna dan tidak lagi menyulitkan ketika memberikan pandangan kepada siswa yang kesulitan memahami materi pada saat proses pembelajaran, karena dengan ini siswa akan dapat memahami dengan cepat pada saat proses pembelajaran matematika, karena hal ini sudah familiar bagi siswa. siswa dan terkenal di lingkungan budayanya sendiri (Panggarra dan Trivena, 2021).

(3)

Pengertian Geometri menurut Novelia Sondan (2018:1) adalah Geometri merupakan salah satu ilmu matematika yang diterapkan dalam dunia arsitektur, juga merupakan salah satu cabang ilmu yang berkaitan dengan bentuk, komposisi dan proporsi. Alders (Saimah. 2020) juga menyatakan bahwa geometri merupakan salah satu cabang matematika yang mempelajari tentang titik, garis, bidang dan benda ruang serta sifat-sifatnya, ukuran dan hubungannya antara satu dengan yang lain.

Dalam Kamus Besar Bahasa Indonesia (2008:610), tenun adalah hasil kerajinan berupa bahan (kain) yang terbuat dari benang (katun, sutera, dan sebagainya) dengan cara disisipkan minggu secara melintang pada lungsinnya. Dalam pengertian lain dikatakan bahwa menenun adalah menyusun benang-benang mendatar dan membujur dengan kerapatan dan memakai corak yang berbeda-beda.

Dari definisi di atas, penulis menyimpulkan bahwa matematika adalah ilmu yang mempelajari tentang struktur, ukuran, susunan, besaran, konsep dan hubungan di dalamnya.

Istilah matematika pertama kali digunakan pada tahun 1960 oleh matematikawan Brazil. D'Ambrosio (dalam Rudhito 2020:25) mengatakan etnomatika disebut sebagai matematika yang dipraktikkan dalam suatu budaya. Kebudayaan yang dimaksud adalah kebiasaan-kebiasaan tingkah laku manusia dalam lingkungannya seperti tingkah laku manusia dalam masyarakat, suku, bangsa, kelompok pekerja lainnya. Menurut Shirley (dalam Wahyuni, dkk:115) mengemukakan bahwa etnomatika adalah ilmu matematika yang tumbuh dan berkembang sesuai dengan budaya masyarakat. Dari pendapat tersebut disimpulkan bahwa dalam etnomatika adalah mempelajari tentang bagaimana matematika dihasilkan dan ditransfer menurut berbagai macam budaya.

Lokasi penelitian ini terletak di salah satu daerah di Toraja Utara yaitu di Lembang Sa’dan Ulusalu kecamatan Sa’dan.

Sumber data yang digunakan dalam penelitian ini adalah data primer dan data sekunder.

Sedangkan menurut Margisit (2018:23) etnomatika adalah ilmu yang digunakan untuk memahami bagaimana matematika diadaptasi dari suatu budaya dan berfungsi untuk menggambarkan hubungan antara budaya dan matematika. Pendapat tersebut menyimpulkan bahwa etnomatika adalah ilmu yang diadaptasi untuk memenuhi hubungan antara budaya dan matematika.

Kebudayaan Toraja mempunyai seperangkat prinsip atau pedoman hidup yang selalu mereka renungkan dan gunakan dalam aktivitas sehari-hari (Hakpantria, Patintingan & Saputra, 2022).

pendapat yang mengatakan bahwa matematika dibagi menjadi empat bagian yaitu aritmatika, aljabar, geometri dan analisis dengan aritmatika meliputi teori bilangan dan statistika. Mustafa dalam TriWijayanti (2011:1) menyebutkan bahwa matematika adalah ilmu tentang besaran, bentuk, susunan dan ukuran, yang pokok adalah cara dan proses pencariannya dengan konsep yang tepat dengan simbol yang konsisten, sifat dan jumlah hubungan antar besaran. dan mengukur, baik dalam abstrak matematika murni maupun dalam keterkaitan manfaat dalam matematika terapan. Dari definisi tersebut dapat disimpulkan bahwa matematika adalah ilmu tentang metode dan proses untuk menemukan konsep (bentuk, susunan dan ukuran) serta simbol-simbol tetap yang berkaitan dengan manfaat matematika terapan.

Kehadiran peneliti dalam hal ini sangat penting dan utama, sebagaimana dikatakan Moleong bahwa dalam penelitian kualitatif kehadiran peneliti sendiri atau bantuan orang lain merupakan alat pengumpulan data yang utama. Sehingga hadirnya peneliti sebagai instrumen dan pengumpul data dalam penelitian.

Metode

Menurut Sparedley dalam Zainal (2018:2) metode etnografi digunakan untuk menggambarkan, menjelaskan dan menganalisis unsur-unsur budaya suatu masyarakat atau kelompok etnis.

berasal dari bahasa Yunani geo yang berarti bumi atau tanah dan metrio yang berarti ukuran berat.

Dari beberapa pengertian geometri di atas, penulis dapat menyimpulkan bahwa geometri adalah salah satu cabang ilmu matematika yang membahas tentang titik, garis, bidang, ukuran dan bangun datar, bangun ruang serta hubungannya satu sama lain. Kerajinan kain tradisional Toraja atau disebut kain jika melihat motif tenun Toraja mempunyai konsep matematika khususnya konsep geometri. Dengan adanya konsep geometri yang terdapat pada kain tenun Toraja, disadari bahwa nilai matematis suda tertanam pada komunitas pengrajin kain tenun Toraja. Beberapa motif tersebut dapat digunakan sebagai media pembelajaran di sekolah untuk mengenalkan konsep matematika khususnya pada bangunan geometri sehingga memudahkan pemahaman konsep geometri. Motif kain tenun Toraja mengandung bangun datar yaitu persegi, belaketupat, jajar genjang, segitiga, bahkan berkonsep siku.

Geometri merupakan salah satu cabang matematika yang mempelajari benda, luas permukaan, titik, garis, dan sudut beserta hubungan yang tercipta, sifat-sifat dan segala ukuran yang berlaku dalam ruang. Geometri itu sendiri

Dalam penelitian ini yang digunakan adalah penelitian deskriptif kualitatif dengan pendekatan etnografi.

1. Data primer adalah data fakta obyektif yang diperoleh dari penelitian langsung yaitu dari responden. Data primer dalam penelitian ini diambil langsung dari lokasi penelitian. Hasil observasi yang dimasukkan dalam primer dalam penulisan ini adalah

(4)

konsep geometri pada motif tenun tenun masyarakat Pa'binti' Toraja.

Waktu untuk melakukan observasi dan wawancara pada hari Minggu tanggal 10 Juli 2022 pukul 08.00-10.30.

Lokasi dimana peneliti melakukan penelitian berada di Rante- Rante, Lembang Sa'dan dan Ulusalu, kecamatan Sa'dan, kabupaten Toraja Utara.

2. Wawancara

2. Tahap wawancara

Pada bab ini peneliti akan menguraikan dan

menjelaskan data dan hasil penelitian terhadap permasalahan yang telah dirumuskan pada bab 1. Pada bab ini akan dibahas mengenai hasil penelitian yang telah dilakukan oleh peneliti. Secara garis besar, hasil penelitian ini memuat gambaran tahapan-tahapan yang dilakukan peneliti. Secara garis besar hasil penelitian ini meliputi tahap observasi dan tahap wawancara. Sebelum melakukan penelitian, peneliti terlebih dahulu melakukan perencanaan dalam melaksanakan penelitian.

Dalam penelitian ini pengumpulan data terbesar bersumber dari wawancara. Yang akan dilakukan peneliti dalam teknik ini adalah dengan mengajukan

beberapa pertanyaan kepada narasumber tentang tenun pa’binti’.

Pada tahap ini peneliti melakukan wawancara terhadap seorang informan dimana informan yang dipilih peneliti adalah seorang perajin tenun pa’binti’ dengan berpedoman pada pedoman wawancara yang telah dibuat sebelumnya.

Ada beberapa pertanyaan yang diajukan kepada informan diantaranya pertanyaan yang diajukan kepada informan yang meliputi pertanyaan umum dan pertanyaan tentang konsep geometri. Dengan tahap wawancara ini peneliti memperoleh data yang diinginkan dari informan.

4. Dokumentasi

Pengrajin tenun pa’binti’ menjadi narasumber yang akan diwawancarai oleh peneliti.

Oleh karena itu peneliti mempersiapkan sarana yang akan digunakan dalam melakukan penelitian, misalnya kertas, polpen, HP, dan benda-benda pendukung dalam melakukan wawancara dan observasi. Selain itu, peneliti juga

merencanakan waktu yang diperlukan untuk melakukan penelitian dan memberikan pemberitahuan kepada informan sebelum melakukan wawancara.

Tabel 1. Gambar Bidang pada Motif Tenun Pa'binti' (Gambar Bidang Segitiga)

Pesawat

2. Data sekunder adalah data yang berupa data yang diolah atau diperoleh secara tidak langsung melalui buku, jurnal, penelitian, masa lalu dan bahan/lembaga terkait.

Teknik pengumpulan data merupakan hal yang paling langka dalam penelitian, karena tujuan utama penelitian ini adalah memperoleh data. Pengumpulan data dapat dilakukan melalui berbagai sumber dan berbagai cara.

1. Tahap observasi

Pada tahap ini peneliti melakukan observasi terhadap tenunan pa’binti’. Pada tahap ini peneliti mulai mengamati pola tenun pa’binti’.

Oleh karena itu, teknik pengumpulan data dalam penelitian ini terdiri dari 4 bagian, yaitu:

tenun dan mulai menganalisis jenis konsep geometri yang ada pada tenun pa’binti’, pada tahap ini peneliti menganalisis dan mengukur pola motif pada tenun pa’binti’ dengan menggunakan alat ukur yaitu; meter dan busur lingkaran.

Angka Selain ketiga teknik diatas, teknik yang juga akan

dilakukan peneliti adalah dengan melakukan dokumentasi.

1. Observasi

3. Studi Sastra

Peneliti akan mengambil gambar motif pada pa’binti’

tenun kai masyarakat toraja.

Studi literatur ini dimaksudkan untuk mengungkap berbagai teori yang relevan dengan permasalahan yang akan diteliti. Teknik ini dilakukan dengan cara membaca, mempelajari dan mengkaji literatur motif tenun pada kain tenun pa’binti’. Kajian pustaka untuk kepentingan peneliti ini berupa literatur teknik dan literatur non teknis. Literatur teknis seperti: laporan kajian penelitian dan karya tulis berupa makalah teoritis atau filosofis.

Sedangkan literatur non teknis seperti: biografi, dokumen, manuskrip, catatan, katalog, dan bahan lain yang dapat digunakan sebagai penunjang wawancara.

Hasil studi literatur ini dapat dijadikan masukan dan landasan dalam menjelaskan dan merinci permasalahan yang akan diteliti.

Meninjau lokasi yang akan diteliti dan mengamati hal yang akan diteliti. Observasi peneliti akan mengamati secara langsung kegiatan pembuatan kerajinan anyaman pa’binti’ sebagai objek penelitian.

Motif tenun Pa'binti'

Hasil dan Diskusi

(5)

Passekong Kandaure Ayah.

Tabel 2. Gambar Bidang pada Motif Tenun Pa'binti' (Gambar Bidang Belah Ketupat)

Pesawat

Pada gambar diatas merupakan pola tenun pa'binti' dimana pada pola anyaman tersebut terdapat konsep geometri. Konsep geometri yang terbentuk adalah segitiga, yang dapat kita lihat pada gambar samping.

Berdasarkan hasil observasi dan wawancara terhadap motif pa'sekong sangpali', pa'singki' bungkang dan pa'dice, motif tersebut berbentuk bangun datar segitiga karena memenuhi syarat segitiga, yaitu mempunyai 3 sudut, dan banyaknya ketiga sudutnya adalah 180º, panjang kedua

sisinya lebih panjang dari sisi yang lain, sehingga bangun datar yang terbentuk dari motif di atas berbentuk segitiga dimana dapat kita lihat seperti pada tabel disamping.

Angka

Sosok

pesawat belah ketupat

Motif tenun Pa'binti'

Berdasarkan hasil observasi dan wawancara informan yang menjelaskan bahwa jumlah benang yang digunakan dapat dihitung dan penenunnya tidak

menggunakan alat ukur khusus melainkan menggunakan benang yang diregangkan. Jumlah benang ini membentuk segitiga karena pada tahap penenunan pertama jumlah benang yang dimumikan dari dalam benang rendemen terdiri dari satu benang kemudian tahap kedua diangkat dua benang, tahap ketiga diangkat tiga benang, tahap keempat diangkat empat benang diangkat dan tahap kelima adalah lima benang diangkat. Sehingga benang- benang yang timbul dari tahap pertama sampai tahap kelima membentuk tiga titik sudut. Oleh karena itu, dapat disimpulkan bahwa motif pa'sekong sangpali', paruki pa'sikki'bungkang dan pa'dadu termasuk dalam bangun datar segitiga.

Pada gambar diatas merupakan pola anyaman pa'binti' dimana pada pola anyaman tersebut terdapat konsep geometri, yang kita lihat seperti bangun datar yang terbentuk dari motif pada gambar diatas. Berdasarkan hasil observasi dan wawancara terhadap motif pa'singki' bungkang, passekong kandaure, pa'bunga dan pa'kalosi berbentuk bangun datar yaitu membangun belaketupat datar karena motif tersebut mempunyai syarat membangun bela ketupat datar, yaitu; mempunyai 4 sisi yang sama panjang, jumlah kedua sudut yang berhadapan adalah 180º, dan jumlah keempat sudut jika disandingkan adalah 360º. Jadi bangunlah sebuah flat yang dibentuk dari Pa'sekong sangpali

Pa'bunga Pa'singki Bungkang

Pa'kalosi Pergilah

Sosok

bidang segitiga

(6)

Gambar Pesawat Motif tenun Pa'binti' motif diatas yaitu belah ketupat dimana bisa kita lihat pada

gambar di tabel samping.

Pa'sekong sangpali'

sisi-sisinya sama panjang, keempat sudutnya siku-siku, sisi- sisi yang berhadapan sama panjang dan sejajar, dan jumlah keempat sudutnya adalah 360º, sehingga bangun datar yang terbentuk dari motif di atas adalah persegi, dimana kita dapat melihat seperti pada gambar di tabel di sampingnya.

Sosok bidang jajar genjang

Pada gambar diatas merupakan pola anyaman pa'binti' dimana pada pola anyaman tersebut terdapat konsep geometri.

Berdasarkan hasil observasi dan wawancara terhadap motif pa'singki' bungkang dan pa'sekong kandaure bangun datar yang terbentuk yaitu membangun jajargenjang datar karena motif tersebut mempunyai syarat jajargenjang yaitu: sisi yang berhadapan dan sejajar sama panjang , sudut-sudut yang berhadapan sama panjang, jumlah sudut-sudut yang berhadapan sama besar, jumlah keempat sudut jika disandingkan adalah 360º, maka bangunlah sebuah bangun datar

Sebuah bintang

Pergilah Berdasarkan hasil observasi dan wawancara dari

informan yang menjelaskan bahwa jumlah benang yang digunakan dapat dihitung dan penenun tidak menggunakan alat ukur khusus melainkan menggunakan benang yang direntangkan, untuk motif pa'sekong kandaure, paruki' pa' singki' bungkang, pa'kalosi. Jumlah benang ini membentuk belah ketupat karena pada tahap penenunan pertama jumlah benang yang diangkat dari dalam benang rendent terdiri dari satu benang, kemudian tahap kedua dua benang terangkat, tahap ketiga tiga benang terangkat, tahap keempat empat benang terangkat, tahap kelima lima benang diangkat, lalu yang keenam

Pada gambar diatas merupakan pola tenun tenun pa'binti' dimana pada pola tenun tersebut terdapat konsep geometri dimana kita dapat melihat bangun datar yang terbentuk pada gambar di samping. Berdasarkan hasil observasi dan wawancara motif bangun datar pa'star yang terbentuk yaitu bangun datar persegi, karena motif tersebut mempunyai kondisi bangun datar persegi yaitu; memiliki 4 tahap jumlah benang yang diangkat empat, tahap tujuh jumlah benang yang diangkat tiga, tahap delapan jumlah benang yang diangkat dua tahap menjadi sembilan jumlah benang yang diangkat satu. Sehingga benang yang timbul dari tahap pertama sampai tahap kesembilan membentuk empat titik sudut dan empat sisi yang sama panjang. Jadi dapat disimpulkan bahwa motif paruki pa'sikki'bungkang, passekong kandaure, dan pa'kalosi termasuk dalam bangun datar belaketupat.

Berdasarkan hasil penelitian dan wawancara informan yang menjelaskan jumlah benang yang digunakan dapat dihitung dan penenun tidak menggunakan alat ukur khusus melainkan menggunakan benang yang diremas. Jumlah benang tersebut membentuk persigi karena pada tahap penenunan pertama jumlah benang yang diangkat dari dalam benang rendent terdiri dari lima benang, tahap kedua jumlah benang yang diangkat sebanyak lima, tahap ketiga jumlah benang yang diangkat berjumlah lima. empat namun mempunyai jarak yang sengaja dikosongkan oleh penenun, tahap keempat dan kelima jumlah benang yang diangkat lima.

Sehingga mulai dari tahap pertama hingga tahap kelima membentuk empat sudut yang sama besarnya dan empat sisi yang sama panjang. Jadi penjelasan motif pa' bintang dapat disimpulkan berbentuk bangun datar persegi.

Tabel 3. Gambar Bidang pada Motif Tenun Pa'binti' (Gambar Bidang Persegi)

Pesawat

Tabel 4. Gambar Bidang pada Motif Tenun Pa'binti' (Gambar Bidang Jajar Genjang)

Angka

Untuk motif pa'bunga tahap pertama jumlah benang yang terangkat dari dalam benang yang suda disampirkan satu benang, tahap kedua jumlah benang yang diangkat dua benang, tahap ketiga jumlah benang yang muncul satu benang, sehingga benang-benang yang timbul dari tahap pertama sampai tahap ketiga berjumlah empat titik sudut dan empat sisi sama panjang.

Sosok bidang persegi

Motif tenun Pa'binti'

Jadi dapat disimpulkan motif pa'bintang termasuk berbadan datar.

(7)

ÿ ABÿ1,5cm

KMÿ1cm Pada motif sangpali pa'sekong jumlah benang ini membentuk

jajar genjang karena pada tahap penenunan pertama sampai tahap kesembilan belas benang yang muncul dari dalam benang yang suda direnden terdiri dari dua benang. Sehingga dari tahap pertama hingga tahap menganyam kesembilanbelas tersebut membentuk empat buah titik sudut dimana jumlah kedua titik sudut tersebut sama besar, dan mempunyai empat sisi, dimana kedua sisi sejajar tersebut mempunyai ukuran panjang yang sama. Jadi dari penjelasan di atas disimpulkan bahwa motif pa'sekong sangpali', paruki dan

pa'sikki'bungkang termasuk dalam bangun datar jajargenjang.

ACÿ1,5cm

ÿ Kÿ50º dan ÿ Aÿ40º

LMÿ0,5cm Konsep geometri yang terkandung dalam motif kain tenun pa’binti’

adalah bangunan datar. Bentuk bangun datar yang terdapat pada anyaman pa’binti’ berbentuk segitiga, persegi, belah ketupat, dan jajargenjang. Dapat disimpulkan bahwa masyarakat Toraja sejak dahulu telah mengenal matematika khususnya geometri bahkan menerapkannya dalam kehidupan sehari-hari. Hal ini dapat kita lihat pada proses pembuatan motif kerajinan tenun pa’binti’.

2. Dua sudut yang berhadapan sama adalah:

adalah

Tabel 5. Konsep Geometris Gambar Bidang Segitiga pada Motif Kain Tenun Pa'binti' Orang Toraja

1. Sisi-sisinya mempunyai panjang sebagai berikut:

2. Kedua sudut yang berhadapan

sama besar, yaitu:

pengukuran yang dilakukan peneliti, diperoleh:

Berdasarkan hasil

ÿL ÿ ÿ65º dan Gambar motif

kain pa'tannun

Samping

pa'sekong sangpali'

Samping

Berdasarkan hasil penelitian dan hasil wawancara informan yang menjelaskan bahwa jumlah benang yang digunakan dapat dihitung dan penenun tidak menggunakan alat ukur khusus melainkan menggunakan benag yang ditolak, untuk pa'singki' motif, jumlah benang ini membentuk satu baris karena pada tahap penenunan pertama sampai tahap kelima belas jumlah benang yang diangkat dari dalam benang sobek berjumlah delapan. Sehingga dari tahap menenun tahap pertama hingga kelimabelas membentuk empat titik sudut yang merupakan penjumlahan kedua titik sudut yang sama besar, dan mempunyai empat sisi, dimana kedua sisi sejajarnya mempunyai panjang yang sama.

Samping

ÿ ÿ70º

Samping

Berdasarkan hasil penelitian yang telah dibahas pada bab sebelumnya, dapat disimpulkan bahwa terdapat etnomatik pada motif kain tenun pa’binti’ masyarakat Toraja khususnya di Sa’dan ulusalu.

Etnomatika yang dimaksud adalah konsep geometri.

Sisi BCÿ1cm

Berdasarkan hasil

Sosok bidang segitiga

Paruki' pa'singki' bulgang

Motif yang terdapat pada kain tenun Pa’binti’ masyarakat Toraja khususnya Sa’dan ulusalu yaitu konsep geometri bangun datar segitiga terdapat pada motif pa’sekong sangpali’, paruki’

pa’singki’ bungkang dan pa, bangun dadu datar berbentuk segitiga akan dijelaskan melalui tabel berikut.

Dan

pengukuran yang dilakukan peneliti, diperoleh:

Gambar segitiga

Sisi KLÿ1cm

Dan dari motif diatas yaitu sejajar dimana bisa kita lihat pada gambar

pada tabel disamping.

1. Sisi-sisinya mempunyai panjang sebagai berikut:

Keterangan

K B

A

L M

C

(8)

R B

D

P

C

S

Q

A D R

Q A

Berdasarkan hasil 2. Kedua sudut

yang berhadapan sama besar, yaitu:

ÿ ÿ45º

adalah

Berdasarkan pengukuran yang dilakukan peneliti diperoleh:

pengukuran yang dilakukan oleh C

Passekong kandaure 1. Sisi-sisinya

mempunyai panjang sebagai berikut:

Tabel 7. Konsep Gambar Bidang Belah Ketupat Geometris pada Motif Kain Tenun 'binti' Masyarakat Toraja

1. Mempunyai 4 buah sisi yang sama panjang yaitu :

Sosok bidang persegi

Sisi

ABÿBCÿCDÿDFÿ

Berdasarkan hasil

2. Mempunyai 4 sudut yang sama besar yaitu :

ÿA,ÿB,ÿC danÿD

pengukuran yang dilakukan peneliti, dilakukan:

Keterangan

ACÿ1,2cm

Tabel 6. Konsep Geometri Gambar Bidang Persegi pada Motif Kain Tenun Pa'binti' Masyarakat Toraja.

Berdasarkan hasil

Sisi PRÿ1cm

Paruki'pa'si

Sisi

PQÿQRÿRSÿSPÿ0 Sebuah bintang

motif kain pa'tannun

ÿBCD

Motif yang terdapat pada kain tenun pa'binti' masyarakat Toraja khususnya sa'dan ulusalu yaitu konsep geometri bangunan datar persegi terdapat pada pa'kalosi, paruki' pa'singki' bungkang pa'bunga, motif passekong kandaure. Bangun datar kalicum akan dijelaskan pada tabel berikut.

QRÿ1,5cm

gambar Ayah

ÿABC dengan ADC dan ÿBAD dengan

2. mempunyai dua pasang sudut berhadapan yang sama besarnya yaitu:

Pa'bunga

ÿ ÿ dan

1. Mempunyai empat sisi yang sama panjang, yaitu:

dari dan ÿ Pÿ90º

peneliti, hal ini dilakukan:

1,2cm

Sisi PQÿ1cm

Gambar motif kain pa'tannun

SisiABÿBCÿCDÿ Motif-motif yang terdapat pada kain tenun pa'binti'

masyarakat Toraja khususnya sa'dan ulusalu yaitu konsep geometri bangun datar persegi yang terdapat pada motif pa'bintang bangun

datar persegi akan dijelaskan pada tabel di atas berikut ini. Pa'kalosi

1.Memiliki 4 buah sisi yang sama panjang yaitu :

2. mempunyai dua pasang sudut berhadapan yang sama besar yaitu:

Menggambar Kotak gambar

membuka

Samping

Sosok pesawat belah ketupat

Belah ketupat

,5cm Keterangan

ÿ dengan QPS dan ÿ dengan

pengukuran yang dilakukan peneliti, diperoleh:

B

(9)

ÿBÿDÿ60º

Samping

Kesimpulan

Sisi ADÿBCÿ4cm

Kajian Etnomatematika Pada Kerajinan Anyaman Bambu di Dusun Brajan,Sendangagung,Kecamatan Minggir,Kabupaten Sleman,Daerah Istimewa Yogyakarta dan

Implementasi Dalam Pembelajaran Matematika Tingkat SMP.

Paralel 1. sama panjangnya:

ÿ ÿ ÿ90º

Bangun datar yang dibentuk antara lain: bangun datar segitiga, bangun datar kalif, bangun datar persegi, dan bangun datar sejajar.

Bentuk bangun datar segitiga diperoleh dari motif pa'sekong sangpali', pa'singki'bungkang, pa'dadu. Bangun datar bangun datar belaketupat diperoleh dari pa'singki'bungkang, passekong kandaure, pa'bunga, pa'kalosi. Bangunan datar berbentuk persegi diperoleh dari motif pa'bunga. Bentuk jajargenjang yang datar diperoleh dari motif pa'sekong sangpali' dan pa'singki' bungkang.

langit

Sisi JMÿKLÿ4cm

[4]

Sangpali

Bili, F. M, Sujadi, A. A, & Arigiyati, T. A, 2019. Identifikasi Etnomatika pada Motif kain tenun sumba Barat Daya.

UNION, Volume7 Nomor 1 halaman 115-124

ÿ ÿ ÿ90º

Berdasarkan hasil penelitian diatas dapat disimpulkan bahwa motif pada pola tenun tenun pa’binti’ memenuhi kriteria bangun datar segitiga, persegi dan jajar genjang.

Gambar persegi

[5] Gawen, M., Taga, G., & Meke, K. (2021).

[3] Dewi, Cinthia, Kurnia.2021.

[6] Hakpantria, H., Trivena, T., Patintingan, M. L., & Lolotandung, (2022, November).

Motif yang terdapat pada kain tenun pa’binti’ masyarakat Toraja khususnya sa’dan ulusalu yaitu konsep geometri bangunan datar persegi ditemukan

Berdasarkan pengukuran yang dilakukan peneliti diperoleh : 1. Sisi-sisi sejajarnya sama

panjang, yaitu :

[2]

Tabel 8. Konsep Gambar Bidang Jajar Genjang Geometri pada Motif Kain Tenun Binti Masyarakat Toraja

ABÿCDÿ0,5cm

ÿ ÿCÿ120º

Referensi

Konsep matematika diperoleh dari kegiatan pengukuran dan wawancara. Pada kegiatan pengukuran sudut dan panjang sisi datar bangunan, sedangkan pada wawancara bangun datar terdapat pada motif pa’binti’ dan khusus motif yang digunakan memuat konsep geometri yaitu bangunan datar. .

Mempunyai 4 titik sudut siku-siku yaitu Paruki'

pa'singki'b

Skripsi. Yogyakarta:FKIP Universitas Sanata Dilarma.

R.

Sisi JKÿMLÿ1cm

Berdasarkan hasil penelitian dari gambar pada kolom diatas tentang pengukuran sisi dan sudut pada benda datar, menurut hasil penelitian dari informan dapat ditentukan jumlah benang yang digunakan pada saat menenun, dan jumlah benang. dipakai sendiri berjumlah 4 helai untuk masing-masing motif diatas dan benagnya mempunyai panjang 30 cm. Dan penenun jika membuat motif penenun tidak menggunakan alat ukur khusus melainkan penenun menggunakan benang yang suda direnden yang ditempati membuat motif tersebut. Jika membuat motif, jarak di dalam motif dibagi dengan benang yang ditempati sehingga menghasilkan

Gambar

motif kain pa'tannun

Pa'sekong

[1] Anandita, G. 2017. Anyaman Bambu sebagai tulangan panel beton pracetak.Lingkungan Binaan Indoneisia, 6(2), 130-135.

motifnya, dan semakin banyak benang maka motifnya semakin besar, namun jika semakin sedikit benang maka motif yang dipilih maka semakin kecil.

2.Memiliki 4 sudut siku- siku yaitu:

Fajriyah, E. (2018). Peran Etnomatematika terkait konsep Matematika dalam mendukung literasi. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 1, pp. 114-119)

:

sisi

Eksplorasi Etnomatematika Bentuk Anyaman Daun Lontar Kebudayaan Lamaholot . Jupika , 52-61.

Sosok bidang jajar genjang

Keterangan

Pelaksanaan Ibadah Singkat Di Gedung pada motif pa'sekong sangpali', paruki' pa'singki'. Membangun

jajargenjang datar akan dijelaskan melalui tabel berikut.

IKLAN

B

JM

pada

C

(10)

Karakter Religius Siswa Kelas V.

[8] Hakpantria, Patintingan, M. L., & Saputra, N.

Jilid 15, No 1 (2019).

[10] Putri, Linda Indiyati. 2017. Eksplorasi Etnomatematika Kesenian Rebana Sebagai Sumber Belajar

Matematika pada Jenjang MI.

Dalam Prosiding Konferensi Internasional tentang Inovasi Sains, Pendidikan, Kesehatan dan Teknologi (Vol. 1, No. 1, pp. 47-52).

(2022). Budaya Longko Sebagai Pembentuk Karakter Pidato Mahasiswa. 2018, 84-88.

Jurnal Ilmiah Pendidikan Dasar (vol 4,no.1)

Marilyn Lasarus was May 11, 1988 in Ujung Pandang.

[9]

[7] Marsigit, M., Setiana, D. S., & Hardiarti, S. (2018).

Mendapat gelar Sarjana Pendidikan (S.Pd.) pada Program Studi Pendidikan Matematika (S1) Universitas Kristen Indonesia Toraja dan Magister Pendidikan (M.Pd.) di Universitas Negeri Makassar. Penulis saat ini adalah dosen tetap Pendidikan Matematika UKI Toraja.

[11] Rudhito,M. Andy.2020. Filsafat Pendidikan Matematika abad-21. Yogyakarta.

Pengembangan Pembelajaran Matematika Berbasis Etnomatematika. Prosiding Seminar Nasional Pendidikan Matematika Etnomatnesia.

[12] Wahyuni, Astri. dkk. 2013.

Panggarra , AS , & Trivena , T. (2021).

Penerapan Metode Jarimatika Meningkatkan Keterampilan

Matematika Siswa Kelas IV SDN 126 Inpres Garampa’. Elementary Journal: Jurnal

Pendidikan Guru Sekolah Dasar, 4(1),

Peran Etnomatematika dalam Membangun Karakter Bangsa. Prosiding Seminar Matematika Dan Pendidikan Matemaika. Universitas Negeri Yogyakarta. ISBN: 978 – 979 – 16353 – 9 – 4.

113-118.

Untuk Berhitung

No.

[13] Wibowo, Arhy. 2019. Implementasi standar proses dan dampak kognitifnya dalam pembelajaran matematika oleh guru yang tersertifikasi dan belum tersertifikasi di Smp Negeri 21 makassar, Universitas Sawerigading Makassar. (Vol 7, No 1 (2019).

71-78. Daftar Riwayat Hidup

[14] Wibowo, Arhy. 2019. Peningkatan Hasil Belajar Matematika Siswa Kelas V SD Inpres Batua II

Bertingkat Makassar Melalui Penerapan Pembelajaran Kooperatif Tipe Numbered Head Together.

Universitas Sawerigading Makassar.

Referensi

Dokumen terkait