• Tidak ada hasil yang ditemukan

Immortalisasi sel dan tumorigenesis

N/A
N/A
Protected

Academic year: 2023

Membagikan "Immortalisasi sel dan tumorigenesis"

Copied!
22
0
0

Teks penuh

(1)

I MMORTALISASI SEL DAN

TUMORIGENESIS

1

Dalam kultur sel/secara in vivo

 Ada sel yang masuk ke

stadium senescence sederhana/

replicative senescence

Sel senescence  metabolisme aktif tapi tidak dapat masuk kembali ke dalam siklus sel

2

(2)

Kapasitas pembelahan sel pada organisme menurun dengan bertambah- nya umur seseorang

Mekanisme penghitungan jumlah sel dalam tubuh : cell autonomous 

intrinsik sel dan tidak dipengaruhi oleh interaksi antar sel dengan lingkungan dan dengan tubuh secara keseluruhan

~ “generational clock” bergantung pada molekul intrasel :

Disintesis pada awal tahapan perkembangan (developmental stage) dan tidak disintesis sesudah stadium perkembangan

Terdapat dalam konsentrasi yang tinggi dalam sel embrio

Mengalami pengenceran dengan faktor 2 kali pada keturunannyahal ini yang mungkin menyebabkan senescence karena senyawa tersebut berada di bawah nilai ambang

(3)

P

EMBATAS REPLIKASI SEL

: S

TRESS FISIOLOGIS PADA SEL

Replikasi sel dipengaruhi :

Kadar oksigen

Kadar oksigen yang rendahpeningkatan replikasi sel

Kadar oksigen yang tinggiKemungkinan

terakumulasinya kerusakan oksidatifsenescence  bentuk guanin teroksidasi 4 x lipat ; ROS

Feeder layer (kultur sel)  akibat CDK inhibitor

Level CDK inhibitor : p16INK4A dan p21Cip1 meningkat pada kultur sel di atas plastiksenescence

5

P EMBATAS PROLIFERASI : TELOMER

6

DNA linear tidak stabil

DNA linear yang ditransfeksikan ke dalam selberfusi dengan DNA genom dengan bantuan nuklease dan ligase

Telomer

pada ujung kromosommemungkinkan DNA linear stabil dari kerja enzim

Mencegah fusi ujung-ujung DNA dari kromosommencegah fusi kromosom

Barbara McClintock : kromosom yang kehilangan telomerfusi

pembentukan megakromosom yang memiliki 2 atau lebih sentromer

(4)

7

Telomer :

Terdiri atas : hexanukleotida 5’-TTAGGG-3’, yang berulang sampai 1000 kali dan tersusun secara tandem

Memendek pada

keturunan sel

berikutnya dalam

siklus sel

jadi

tidak melindungi

kromosom lagi

(5)

T ELOMER

Terdiri dari untai kaya G & untai kaya C

Untai kaya G jauh lebih panjang  T-loop  bantu lindungi ujung DNA linear

9

Struktur T-loop

DNA Telomer berikatan dengan protein-protein :

Pengontrol panjang telomer

Pelindung telomer

10

Telomerase

3 komponen telomerase

• Telomerase reverse transcriptase (TERT)

• Telomerase-associated protein 1 (TEP1) – regulatory function (? not known for sure)

• Telomerase RNA subunit

(6)

Pemendekan Telomer  berkaitan dengan masalah replikasi ujung DNA

11

12

(7)

Beberapa sel immortal dapat memelihara telomer tanpa bantuan telomerase  10-15%

Gunakan mekanisme ALT (alternative lengthening of telomer

Terjadi pergantian telomer

tergantung pada mekanisme tipe interkromosom copy choice 

Gunakan polimerase biasa untuk perpanjang telomer

13

F UNCTION OF TELOMERASE AND CONSEQUENCE OF ITS ACTIVATION

Function Consequence examples of

telomerase activation

Elongation of telomeres Elongation of cellular lifespan or immortalization

Maintenance of chromosomal

structure Telomerase is transiently expressed

in each S phase in normal cells Addition of malignant potential Tumor formation with

nontumorigenic ALT cells Promotion of stem cell proliferation e.g. increased hair growth

DNA repair? Required to form DNA damage foci

following irradiation

Self-renewal capacity Required to reprogram fibroblasts to iPS cells

14

(8)

Sel pada tubuh manusia mengalami mitosis 10

16

, mencit 10

11

 resiko manusia terkena kanker lebih tinggi

15

Regulation of telomerase in the hierarchy of the normal and leukemic 16

hematopoietic stem cell

(9)

Douglas Hanahan & Robert A. Weinberg, The hallmarks of cancer,

Cell 100:57–70, 2000.

Besides losing the ability to correctly determine if their environment is appropriate for division & the characteristics necessary for the immune system to remove them as damaged cells, cells on the path to tumor & cancer formation also gain several capacities: they evade apoptosis, produce their own growth factors, become insensitive to growth

suppressors & cell contact signals, gain telomerase activity

& overcome the Hayflick limit, &

express angiogenic factors &

molecules needed during metastasis.

lung fibroblast 55 times, heart 26, kidney 40, and skin 43

S EL KANKER IMMORTAL

Peningkatan jumlah sel pada kanker secara teoritis

Kultur sel – 50-60 doubling

60 cells doubling 1018sel = 109cm3= 106kg (theoretically)

(10)

Pada kanker, tidak semua sel survive, ada sel-sel apoptosis

T ELOMERASE

(11)

21

Carcinogenesis and immortalization of human cells in vivo. Normal somatic cells, even stem cells or lymphocytes that have a capacity of telomerase activation upon proliferation, cannot be immortalized in vivo.

On the contrary, once telomerase activation occurs in cancer cells, it is usually irreversible and such cancer cells are easily immortalized. Whereas key genes responsible for cellular transformation are heterogenous among the individuals, those for cellular immortalization are considered to be relatively monotonous, mostly ‘‘telomerase’’ except for ALT (alternative lengthening of telomeres) or other rare events

22

(12)

T

ELOMERASE AND POSSIBLE CAUSES TO ITS ACTIVITY IN CANCER

p53 inactivation

C-myc expression

Steroid hormones

www.biocarta.com/pathfiles/h_tertPathway.gif

Sel kanker mengekspresikan telomerase  crisis dapat diatasi

Sel embrionik  diferensiasi

 telomerase menurun

(13)

25

Telomere biology in CML model: Biological properties of CML cells in three hematologically different stages (normal, chronic phase, and blastic phase) are shown in the triangle. The peak telomere lengths in each stage are shown in the lower part of the figure, showing the telomere attrition and disease progression in LSC.

26

(14)

T C

Normal Cells

 little to no Telomerase activity

 Limited life span

 Exception: highly proliferative tissues

Cancer Cells

 High telomerase Activity

 Immortalized

X Yuan, et al. 1999

H AYFLICK L IMIT AND C RISIS

William C. Hahn, 2003

(15)

Clinical significance: Cancer

or absent telomere due to progressive shortening with DNA replication

30

(16)

PEMATAHAN

-

FUSI KROMOSOM

(

BREAKAGE

-

FUSION

-

BRIDGE

/ BFB

CYCLE

)

Kromosom disentrik

Pada manusia

terjadi pula BFB

cycles pada saat

fungsi p53 hilang

(17)

CLINICAL SIGNIFICANCE: CANCER

SELF-RENEWAL OF EPITHELIAL CELL POPULATION BY REPEATED CELL DIVISION Telomeres shorten and uncap

Normal p53 cell cycle checkpoint control

Normal senescent cells stop dividing

Loss of p53 and cell cycle checkpoint control

Mutant cell survives and proliferates Chromosome

fusion

Chromosome bridge Chromosome

breakage Chromosome

translocation

CHROMOSOME BREAKGE-FUSION- BRIDGE CYCLE

Massive chromosomal damage Cell dies due to

catastrophic genomic instability and

DNA damage Telomerase reactivated

Chromosomes are partially stabilized and cell survives

with many mutations CANCER

Pada sel kanker, telomerase ~ onkogen

34

(18)

35

Tidak ada telomerase  bisa menurunkan dan sekaligus meningkatkan kerentanan terhadap kanker

36

(19)

37

38

Hypothetical model of telomeres and telomerase in primary and metastatic lesions of human cancer. Human cancers may be developed from

telomerase-negative normal cells (upper) and telomerase-positive normal cells, typically from normal stem cells through cancer stem cells (lower). In the former mechanism, the population of cancer cells that have activated telomerase in mutational manner increases according to tumor development through clonal selections, while in the latter, cancer cells have high

telomerase activity from an early stage

(20)

39

Transformation and immortalization of human cells in vitro. TERT alone transfection sometimes immortalizes normal fibroblasts but not normal epithelial cells. SV40 early region (SV40ER) immortalizes neither.

Although cotransfection of TERT and SV40ER can immortalize both, they do not have tumorigenicity. Addition of oncogenic ras, mutated H-ras or K-ras, makes

them genuine immortal cancer cells with tumorigenicity

40

(21)

41

42 a, Breast cancer, G5 mTERC-/- p53+/-mouse; b, squamous cell carcinoma, G6 mTERC-/-p53+/- mouse. c, Gross view of caeca from mTERC+/- p53+/- (left), G6 mTERC -/- p53+/- (middle), and G5 mTERC-/- p53+/- (right). d, Histologyof normal caecum, mTERC +/- p53+/-, shows typical colonic villi and ordered nuclei. . e, Adenomatous polyp in the caecum, G5mTERC-/- p53 +/-. Inset, glands remain round with basal nuclei. f, Caecal adenocarcinoma, G5 mTERC-/- p53+/-. Inset, disordered glands and pleiomorphic nuclei. . g,Invasive adenocarcinoma of colon, G5 mTERC-/- p53 +/-. Inset, tumour cells (t) with

a, p53-/- mice. The number of tumours identified (t) and the total number of mice (n) ineach cohort is indicated. Hatched line, G1–G2 mTERC-/-; triangles, G5–G6 mTERC-/-;

circles, G7–G8 mTERC-/-. b, p53+/- mice.

Hatched line, mTERC+/+, mTERC+/- or G1–

G2 mTERC-/-; triangles, G5–G6 mTERC-/-;

circles, G7–G8 mTERC-/- .

(22)

Karyotype chaos in cancer cells

Referensi

Dokumen terkait

However, despite the intellectual dependence of African intellectuals and higher education institutions on the knowledge produced from the Global North, Ndlovu-Gatsheni draws on various