See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/301248402
Inulin: Properties, health benefits and food applications
Article in Carbohydrate Polymers · April 2016
DOI: 10.1016/j.carbpol.2016.04.020
CITATIONS
77
READS
4,666 9 authors, including:
Some of the authors of this publication are also working on these related projects:
time resolved nanoparticlesView project
Establishment of functional and neutraceutical food research section at the National Institute of Food Science and Technology, University of Agriculture, Faisalabad, PakistanView project
Muhammad Shoaib Jiangnan University 33PUBLICATIONS 158CITATIONS
SEE PROFILE
A. Shehzad
University of Agriculture Faisalabad 63PUBLICATIONS 242CITATIONS
SEE PROFILE
Omar Mukama
Chinese Academy of Sciences 12PUBLICATIONS 82CITATIONS
SEE PROFILE
Allah Rakha
University of Agriculture Faisalabad 32PUBLICATIONS 377CITATIONS
SEE PROFILE
All content following this page was uploaded by Muhammad Shoaib on 15 October 2017.
The user has requested enhancement of the downloaded file.
ContentslistsavailableatScienceDirect
Carbohydrate Polymers
jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l
Review
Inulin: Properties, health benefits and food applications
Muhammad Shoaib
a,b,∗, Aamir Shehzad
a,∗, Mukama Omar
c, Allah Rakha
a,
Husnain Raza
a,b, Hafiz Rizwan Sharif
b, Azam Shakeel
a, Anum Ansari
a, Sobia Niazi
a,baNationalInstituteofFoodScienceandTechnology,FacultyofFood,NutritionandHomeSciences,UniversityofAgriculture,Faisalabad38040,Pakistan
bStateKeyLaboratoryofFoodScienceandTechnology,SchoolofFoodScienceandTechnology,JiangnanUniversity,Wuxi,Jiangsu,PRChina
cKeyLaboratoryofCarbohydrateChemistryandBiotechnology,SchoolofBiotechnology,JiangnanUniversity,Wuxi,Jiangsu,PRChina
a r t i c l e i n f o
Articlehistory:
Received21January2016
Receivedinrevisedform23March2016 Accepted6April2016
Availableonline8April2016 Keywords:
Inulin Dietaryfiber Prebiotics Oligo-fructose Fructose
a b s t r a c t
Inulinisawatersolublestoragepolysaccharideandbelongstoagroupofnon-digestiblecarbohydrates calledfructans.InulinhasattainedtheGRASstatusinUSAandisextensivelyavailableinabout36,000 speciesofplants,amongst,chicoryrootsareconsideredastherichestsourceofinulin.Commonly,inulin isusedasaprebiotic,fatreplacer,sugarreplacer,texturemodifierandforthedevelopmentoffunctional foodsinordertoimprovehealthduetoitsbeneficialroleingastrichealth.Thisreviewprovidesadeep insightaboutitsproduction,physicochemicalproperties,roleincombatingvariouskindsofmetabolic anddietrelateddiseasesandutilizationasafunctionalingredientinnovelproductdevelopment.
©2016ElsevierLtd.Allrightsreserved.
Contents
1. Introduction...445
1.1. Chemicalstructure...445
1.2. Production...445
1.3. Physicochemicalproperties...446
2. Nutritionalandhealthbenefits ... 446
2.1. Functionasdietaryfiber...446
2.2. Caloricvalue...446
2.3. Effectonlipidmetabolism...446
2.4. Effectonconstipationandstoolfrequency...447
2.5. Bifidogeniceffect ... 447
2.6. Reductioninriskofgastrointestinaldiseases...448
2.7. Enhanceabsorptionofcalcium,magnesiumandiron...448
2.8. Regulationoffoodintakeandappetite...449
2.9. Stimulationofimmunesystem...449
2.10. Intestinalacceptability...450
3. Foodapplications...450
3.1. Fiberenrichment...450
3.2. Asaprebiotic ... 450
3.3. Asafatreplacer...451
3.4. Asasugarreplacer...451
4. Conclusion...452
References...452
∗Correspondingauthorsat:StateKeyLaboratoryofFoodScienceandTechnology,SchoolofFoodScienceandTechnology,JiangnanUniversity,Wuxi,Jiangsu,PRChina.
E-mailaddresses:shoaib[email protected](M.Shoaib),[email protected](A.Shehzad).
http://dx.doi.org/10.1016/j.carbpol.2016.04.020 0144-8617/©2016ElsevierLtd.Allrightsreserved.
M.Shoaibetal./CarbohydratePolymers147(2016)444–454 445
Fig.1.Chemicalchairstructureofinulin[GFn].
1. Introduction
Inulin,owingtoitspresenceinover3000vegetables,isconsid- eredtobeextensivelydistributedinvariousplants,beingpresent (Wichienchotetal.,2011).Ithasbeenapartofourdailyfoodintake forcenturies contributingtonutritionalproperties andexhibits significant technological benefits (Giarnetti, Paradiso, Caponio, Summo,&Pasqualone,2015;KalyaniNair,Kharb,&Thompkinson, 2010).In theearly1800s, a German scientistnamed Valentine RosediscoveredinulinfromtherootsofElecampane(Inulahele- nium)andwaslateronnamedinulinbyThomsonin1817.Inulin spherocrystalsweredetectedindahlia,Jerusalemartichokeand elecampane by Julius Sachs in 1864. Natural sources of inulin includechicory roots,Jerusalemartichoke,dahliatubers,yacon, asparagus,leek,onion,banana,wheatandgarlic(Table1)(Bornet, 2008;Roberfroid,2007).Synthetically,inulintypefructansarepre- paredfromsucrose(Cooperetal.,2015).Inuliniswidelyusedin theprocessedfoodsasafatorsugarreplacerortoimpartdesir- ablecharacteristicsanditgivesonly25–35%energyascomparedto digestiblecarbohydrates.Thesweetnesslevelofinulinisabout10%
ofthesucrose.Itisaversatileingredientowingtoitshealthbenefits, specificallyincreasedmineralabsorptionandalsoconsideredas FermentableOligo-,Di-,MonosaccharidesandPolyols(FODMAP), groupofcarbohydrateswhich arereadily digestedin thecolon bydrawingwaterintocolontomanageconstipationandrelated ailments.Italsopromotesthegrowthofmicro-floraindigestive tractandisconsideredasanappropriateingredienttopreparelow caloricfoodsfordiabeticstomanagebloodsugarlevels.
1.1. Chemicalstructure
-(2-1)-d-frutosylfructosebondsarepresentbetweenthefruc- toseunitsofinulinand-configurationofanomericcarbon,making it indigestible in human small intestine, however, can be fer- mentedinlargeintestinebytheintestinalmicro-flora(Apolinario etal.,2014).Inulin-typefructanconsistsoflinear(2→1)-linked
-d-fructosylunits attachedtothefructosyl moietyof sucrose.
Grepresentsglucose unit,F denotes unitsof fructose, whereas ndenotesnumber offructoseunits.Inchicoryinulin,thenum- beroffructoseunit varyfrom2to60indicatinga combination ofoligomersandpolymers(Roberfroid,2005).Fig.1.showsthe chemicalstructureofinulincompounds.
TheDP(Degreeofpolymerization)andbrancheshaveaneffect onthefunctionalityoftheinulin.Plantsinulinhaverelativelylow
Fig.2. Productionlineofinulinfromchicoryroots.Adoptedfrom(Zhuetal.,2016).
DP(maximally<200)whichdependsonplantspecies,climaticcon- ditionsandtheplant’sphysicalcondition.Inulinpresentinbacteria hasaveryhighDP,rangingfrom10,000toabove100,000;further- more,abacterialinulinis15%morebranchedthantheplantinulin (Cho&Samuel,2009).
1.2. Production
Commercially most of the inulin is produced from chicory, however,dahlia andJerusalemartichokeare alsoconsideredas goodsourcesforindustrialproductionintemperateareas(Flamm, Glinsmann,Kritchevsky,Prosky,&Roberfroid,2001).Besides,this somenewplants withhighinlinecontents have beenreported (Table1).Chicoryisabi-yearlyplantbelongingtotheAsteraceae family.During thefirstyearofgrowth,chicoryplantspersistin thevegetativephaseandformonlyleaves,taprootsandfibrous roots.Therootstockshaveresemblancewithsmalloblongsugar beets(Boeckner,Schnepf,&Tungland,2001;Kelly,2008).Inulin productiongoesthroughtwostages.Inthefirstphaseextraction andinitialpurificationofrawsyrupisdone,whichisfurtherrefined to produce commercial product (above 99.5%) during second phaseofprocessing.Someadvancedtechnologieslike,supercrit- icalcarbondioxide(CO2)(Mendes,Cataldo,daSilva,Nogueira,&
Freitas,2005)ultrasound(Lingyunetal.,2007)simultaneousultra- sonic/microwave(Lou,Wang,Wang,&Zhang,2009)andpulsed electric field (PEF) (Loginova, Shynkaryk, Lebovka, & Vorobiev, 2010)arealsobeingimplicatedintheinulinextractionprocess forgettinghigheryieldsofpurifiedfinalproductwithlessenergy consumption.Butintheclassicalpurificationprocessinorderto removeimpuritiesfromtheextractedjuice,clarificationrequires multiplesteps(pre-liming,limingand carbonation)atrelatively high temperature (80–90◦C) as shown in Fig. 2 (Franck & De Leenheer,2005).Thismayleadtothehydrolysisofinulinmolecules intheextractedjuiceandmayalsointroduceadditionalcalcium ionsintoclarifiedjuicewhichrequiresfurtherpurificationtreat- ments(Kim,Faqih,&Wang,2001).Membranebasedtechnologies like microfiltrationand ultrafiltration are alsoreported toease theselaboriousandtimeconsumingsteps.Theresultantinulinhav- ingDPrangingbetween3and60imitatestheoriginalDPpresent inchicory.AhighqualitylongchaininulinwithDPmorethan23 isalsoattainable(Cho&Samuel,2009).
Table1
Recentreportsonplantswithinulincontent.
Inulinsource Plantpart Inulincontent(g/100g)a Reference
Yacon(Smallanthussonchifolius) Roots 35 (Castro,Céspedes,Carballo,Bergenståhl,&Tornberg, 2013)
SweetLeaf(Steviarebaudiana) 18–23 (Lopesetal.,2015)
Garlic,Chinesegarlic(Alliumsativum) Bulb 14–23 (Álvarez-Borroto,Ruano-Nieto,Calle-Mi ˜naca,&
Lara-Fiallos,2015;Judprasong,Tanjor,Puwastien,&
Sungpuag,2011;Zhang,Huang,Zeng,Wu,&Peng, 2013)
Barley(Hordeumvulgare) Grains 18–20 (Nemethetal.,2014)
Chicory(Cichoriumintybus) Root 11–20 (Figueira,Park,Brod,&LuisHonório,2004)
Jerusalemartichoke(Helianthustuberosus) Tuber 12–19 (Bachetal.,2015,nullChapterBach,Clausen&
Edelenbos,2015;Judprasongetal.,2011;Lietal., 2015;Ruiz-Aceituno,Garcia-Sarrio,Alonso-Rodriguez, Ramos,&Sanz,2016)
Asparagus(Asparagussp.) Roots 15 (Chietal.,2011)
Agave(Agavesp.) Stem 12–15 (Moreno-Viletetal.,2016,nullChapterMoreno-Vilet,
Camacho-Ruiz,&Portales-Pérez,2016)
Dendelion(Taraxacumofficinale) Roots 12–15 (Kango,2008)
Dahlia(Dahliapinatacav.) Tuber 10–12 (Kosasih,Pudjiraharti,Ratnaningrum,&Priatni,2015;
Zhuetal.,2016)
Suma(Pfaliaglomerate) Roots 11.45 (Caleffietal.,2015)
Onions(Red&White),shallot(Alliumcepa,Alliumsp.) Bulb 5–9 (Judprasongetal.,2011)
Burdock(Arctiumsp.) Roots 8.3–9.9 (Louetal.,2009)
1.3. Physicochemicalproperties
Inulin,beinga distinctive foodelement,offersmany impor- tantdietarybenefitsalongwithcertainindustrialpropertiesforits extensiveuseinfoodapplications(Roberfroid,2005).Chicoryinulin isawhitepowderwithfineparticleshavinggreaterclarity.The neutralflavoroftheinulinoffersnoaftertaste.Although,long-chain inulinisnotsweet,however,regularchicoryinulinwhencompared tosucrosecarriesasweetnesslevelofabout10%(Valluru&Van denEnde,2008).Inulinbehavessimilartobulkingingredientsand alongwithhighlevelsofartificialsweetenerslikeaspartameand acesulfameK,itprovidesagoodmouthfeelwithalittleaftertaste (Franck,2002).Suchblendscanalsoshowanimportantquantita- tivesweetnessrecipe.
Chicoryinulinis moderately dissolvedin water (nearly 10%
at25◦C)whichenablesitsadditioninaqueousmediumwithout any precipitation. Use of heated water at 50–100◦C is recom- mendedtomake inulinsolution.Chicoryinulinsolutions areof relativelylow viscositye.g., for 5%solution, 1.65mPasat 10◦C andfor30%solution,100mPa.s(KalyaniNairetal.,2010).Freez- ingand boilingpointsofwaterareaffectedbyinulintoasmall extent (e.g., 15% chicory inulin reduces the freezing point by 0.5◦C).LowpH,hightemperatureandlessdry-substanceenviron- mentsarethecriticalparametersforinulinhydrolysis(Roberfroid, 2000; Roberfroid, 2007). Further, -(2-1) bonds between the fructoseunitscanbe(partially)hydrolyzedinhighlyacidicenvi- ronment.
Inulin shows gelling properties at high level (for standard chicoryinulin>25%andforlong-chaininulin>15%)andmakesa gellingstructureafterwardsshearing.Whentheinulinistotally dissolvedinwateroranyotheraqueousmedium,withshearing instrument like a rotor-stator mixer or homogenizer, it results intheformationofawhitecreamy structurethat caneasilybe addedinfoodsasafatreplacerupto100%(Imeson,2010).The gellingpropertyofinulinisgreatlyinfluencedbyinulinconcentra- tion,quantityoftotaldrysubstance,shearingfactors(forexample temperature,time,speed,orpressure)andmoreoverbythekind ofshearing instrument used; however,it is notaffected bypH (betweenpH4and9).Further,Cryo-electronmicroscopyrevealed thatsuchinulingelsaremadeupofa3-Dstructurewhicharenor- mallynon-solublesubmicroninulinfragmentsinwater(Zimeri&
Kokini,2002).
2. Nutritionalandhealthbenefits
Inulinprovides numerous nutritionaland health benefitsto humans,someofthemareshowninFig.3
2.1. Functionasdietaryfiber
Currently,dietaryfiberis consideredas akey ingredient for improvinghumanhealthandtheattentiontowardsdietaryfiber enrichedfoodshasbeenintensifiedmanifoldsduetoitshealthpro- motingproperties.Thebasiccharacteristicsofdietaryfiberare:
impervious tohydrolysis by the gastric secretions and absorp- tioninthesmallintestinewhilefermentablebythemicrofloraof largeintestine(Roberfroid,2007;Turner&Lupton,2011;Wong, De Souza, Kendall, Emam, & Jenkins,2006).Inulin is a storage carbohydrateinplants,havingfructosemoietiesjoinedby-(2-1)- d-frutosyllinkagesandisresistanttodigestioninthehumansmall intestineduetothe-configurationofanomericC-2butitcanbe fermentedinlargeintestine(Apolinarioetal.,2014).Almost90%of theinulinpassestothecolonanddigestedbybacteriapresentthere (Cherbut,2002).Itisthusasignificantcomponentofthedietary fibercomplexandislabeledasdietaryfiberonfooditems.
2.2. Caloricvalue
Thelowcaloricvalue(1.5kcal/gor6.3kJ/g)ofinulinisdueto itsnon-digestibilityincontrasttoitsconstituentmonosaccharide moieties.Bytheactionofintestinalbacteria,inulinistransformed intoshort-chainfattyacids(likeacetate,propionate,andbutyrate), lactate,bacterialfuelandgases(Nyman,2002).Merely,shortchain fattyacidsandlactatecanaddtotheenergymetabolismofhost organism.Bacteriaandhostcellcanalsousesomepartofshort chainfattyacids.OntheevidenceofIn-vitroandIn-vivoresults,the energyrateofinulinandoligofructosewasreportedtobe1.5kcal/g (Roberfroid,1999).Furtherscientificobservationshavealsoproved lessenergyaccountofinulin,where,theenergyvaluerangingfrom 1and1.5kcal/gisbeingusedforfoodtagging(Flammetal.,2001).
2.3. Effectonlipidmetabolism
The addition of non-digestible carbohydrate like inulinto a dietcandecreasetheriskofhightriacylglycerolconcentrations.
M.Shoaibetal./CarbohydratePolymers147(2016)444–454 447
Fig.3. Overviewofinulinfermentation,absorptionincolonanditsfunctioninhumanbody.
Letexier,Diraison,andBeylot(2003)concludedfromastudythat incorporationof high-performanceinulini.e.,10g/dtoacarbo- hydrate rich and reduced lipid food exerted positive outcome on plasma lipids of human by lowering blood lipogenesis and plasmatriacylglycerolconcentrationstherebyreducingtheriskof atherosclerosis(Letexieretal.,2003).However,WilliamsandJack- sonstudiedtheeffectofinulinoroligofructosesupplementationon bloodlipids(LDL-cholesterolandtriacylglycerol)intenhumanvol- unteers.Threeofthemhadnoeffectofinulinoroligofructoseon bloodcholesterollevelsortriacylglycerol.However,threevolun- teersshowedconsiderablereductionsintriacylglycerol,whereas amoderatedecreaseinLDL-cholesterolwasfoundinremaining fourpersons(Williams&Jackson,2002).Inulinsupplementation indietofhypercholesterolemicsmightimprovebloodlipidpro- files.Inulinandoligofructoseexertsystemiceffectbyalteringthe bloodmetabolismoflipidsindifferentexperimentalanimals.Ani- malhaveshownthat inulininfluenceslipidmetabolismmainly byloweringtriglyceridemiaandslightlydecreasescholesterolemia (Delzenne,Daubioul,Neyrinck,Lasa,&Taper,2002).Variousstudies onhumansareevidentthatinulinismoreefficientascomparedto oligofructoseinreducingtriglyceridemia,whileinanimals(partic- ularlyinrats);bothwerefoundtohavesimilareffect.Concerning themechanism, inulinand oligofructoseadditiontoarat’sfeed loweredthelipidbreakdowninliverbysuppressingtheproduc- tionofthegenesresponsibleforlipogensisofenzyme.Inhumans, theprocessoccursinthesamewaybutthemechanismthathow inulinactuallyaffects lipid metabolismis stillunder discussion (Roberfroid,2007).Studiesonrodentsdemonstratethatinulinand oligofructosecandecreasetheplasmacholesterolandtriacylglyc- erol.Additionally,itcanopposetriacylglycerol’saccumulationin liverandhasfavorableinfluencesonhepaticsteatosis.Thedecrease inliverlipogenesisisperhapsthemainmechanismaccountablefor thedecreaseinplasmatriacylglycerol’slevels,bothinhumansand animals,whilethemechanismofthehypocholesterolaemicaction isstillunclear.
2.4. Effectonconstipationandstoolfrequency
Inulinisasolublefiberwhichisnotdigestedbyhumanenzymes andproducesdistinctivefiber-alikeresultsontheeffectivenessof
thegut,thus,loweringthepHofintestine,providingassistancein relievingconstipationandincreasingstoolloadorrate(knownas bulkingeffect),havingsimilarfecalbulkingeffectofothersoluble fiberslikepectinandguargum(Andersonetal.,2009).Thereisan increaseof1.5–2gofwetfecalweightbyconsumingeverygramof inulin.Thiscanalsobeimitatedbyanenhanceddryweightoffecal secretion.Inulinandoligofructoseresultsinimprovedstoolfre- quencyandconsistency(DenHond,Geypens,&Ghoos,2000).The improvementismoreinparticipantshavingdecreasedinitialstool frequency.Themostwidespreadgastrointestinalproblemamongst elderpeopleissurelytheconstipation.Deficiencyoffluidintake andlessconsumptionoffiberrichfoodscanpromoteconstipation (Rubel,Pérez,Manrique,&Genovese, 2015; Russell,Rasmussen,
&Lichtenstein,1999).Similarly alteredconstitutionoftheshort chainfattyacidsandmicro-bioticcoloniesresultsinvariationsin theintestinalactivity.Inoldage,probioticandprebioticsstrains facilitatetoeaseconstipation(Kolida&Gibson,2007).Owingto prebioticactionofinulin,itactsasasubstrateforprobiotics.Chicory inulin(20–40g/day)had asufficientcatharticresultinrelieving constipation(Fernández-Ba ˜nares,2006;Kolida&Gibson,2007).
2.5. Bifidogeniceffect
Thelargeintestineretainsmorethan400kindsofbacteriawhich implythedrysolidcontentofcolonabove50%.Everyindividual constituentoftheintestinalmicrofloraisdistinctivewithenor- mousinter-individualdifferences(Zoetendal,Vaughan,&DeVos, 2006).Ingeneral,thebacteriaofintestinecanbedistributedinto 3 groupsonthebasis oftheirpossibleeffects suchas: (1)Lac- tobacilliandBifidobacteria; (2)possiblypathogenicbacteria,like somespeciesofClostridiaand(3)furthercommensalbacteria,such asBacteroides,alsopossessespositiveandnegativecharacteristics.
Thoughthereisnocertaintybutnormallyitisunderstoodthata gutmicroflorathatcontainsLactobacilliandBifidobacteriainhigh quantityisgoodforhealth(Eckburgetal.,2005;KamarulZaman, Chin,Rai,&Majid,2015).
Themicrobialenvironmentofthelargeintestineisnecessary forphysicalconditionandimbalancescanleaddiseases(Kleessen, Hartmann,&Blaut,2001).Inulinstimulatesthedevelopmentand metabolicactionofalimitednumberofbacteriainthecolon,par-
ticularlyBifidobacteriaand Lactobacilli,and thus promotestheir health.Thisisreferredasaprebioticorbifidogeniceffect.Probi- oticsarethelivemicro-organismshavinghostbeneficialeffectsby enhancingmicrobialbalanceinintestine,whereas,prebioticsare indigestiblefoodcomponentshavingbeneficialeffectsbyenhanc- ingtheactivityandgrowthofoneormorecolonicbacteria(Karimi, Azizi,Ghasemlou,&Vaziri,2015;Roberfroid,2000).
In-vitrotrialshavedemonstratedthatthecolonicfermentation dependsonchainlengthoftheinulin.Fermentationtimeofshort- DPfractionsistwotimeshigherthanlongchaininulin.Thus,the long-chaininulinpartpossessuniquecharacterfortheinitiation ofthemetabolicactioninthelastpartofthecolon(Cho&Samuel, 2009).Oliveira,Perego,Oliveira,andConverti(2011)determined thattheadditionofinulinatalowconcentrationinlowfatmilk hasconsiderablyenhancedthegrowthandsustainabilityofLac- tobacillusacidophilus,LactobacillusrhamnosusandBifidobacterium lactis.Thusinulincanbeusedasafatreplacerinnon-fatfunctional dairyproducts,providingapproximatelythesamesensorychar- acteristics(Akın,Akın,&Kırmacı,2007;Cruzetal.,2010).Inulin incorporationindifferentproductsimprovedtheirfirmnessasa resultof increasedmicrobial activitycaused by metabolicrela- tionsbetweenlacticacidbacteriaandpartialinulinmetabolization (DeSouzaOliveira,Perego,DeOliveira,&Converti,2011).Patients sufferingfrom intestinalirregularity and someserious diseases showedthat inulin and oligofructose re-establishedthemicro- bialstability incase when themicrobial populationofgutwas changedthushinderedthedevelopmentof diseases.Thenutri- tionaluseofinulinandoligofructoseprovidesafavorablewayto encouragemicrobialbalanceandassistsinovercomingthedifficul- tiesoftheepitheliabyprebioticaction.Thismayprovidethehost defenseagainstattackandtranslocationofmicrobes(endogenous andexogenous)andintheinhibitionofGITdiseases(Bosscher,Van Loo,&Franck,2006).
2.6. Reductioninriskofgastrointestinaldiseases
Inulinexertsfavorablepropertiesindecreasingtheriskofmany diseases of theintestinal tract, particularlyirritable bowel dis- eases(IBD)andcoloncancer.Ulcerativecolitis(UC)andCrohn’s diseasearejointlycalledasinflammatory boweldiseases (IBD).
BotharechronicinflammatoryailmentsofGITthatinfluenceup to500for every100,000individuals in thewesternworld.IBD isusuallyconsideredaswesternworlddisease,anditsincidence hasincreased significantlyduringthepast fewdecades (Sartor, 2004).Lateststudy,haveshownthatacombinationofanumber ofgenetic,environmentalandimmunologicalfactorsaffectsIBD (Mendis,Leclerc,&Simsek,2016).Manipulatingthecomposition ofintestinalmicroflorabyusingprobioticsand/orprebioticscanbe employedastherapeuticapproachinpreventingchronicintestinal inflammation.
Hoentjen et al. (2005) determined that feeding inulin and oligofructosemixtureby5g/kgbodyweightdecreasescolitis in transgenicrats.Reductionincolitisandimprovementingrowth ofintestinalBifidobacteriaand Lactobacillihasbeenobservedby usingthecombinationofinulinandtheprobioticmicroorganisms L.acidophilusLa-5plusBifidobacteriumlactistotheHLA-B27trans- genicrats.Thiscombination therapy notonly loweredmucosal pro-inflammatorycytokinesbutalsoenhancedtheimmuneregu- latorytransforminggrowthfactor-(Schultzetal.,2004).Further, thecombination of inulin with lactulose has shown to reduce inflammationindextransodiumsulphate(DSS)-inducedcolitisrats (Videlaetal.,2001).Inulinhasbeenprovedtobehelpfulinthe treatmentofchronicpouchitisafterremovalofcolonforulcera- tivecolitis.VidelaandFurrieconcludedfromastudyin18active ulcerativecolitispatientsthat,theuseofprebioticsandprobiotics incombination(i.e.,B.longumandaprebioticblendofinulinand
oligofructose)causereductionofintestinalinflammation(Furrie etal.,2005;Weltersetal.,2002).
The significant reduction of Crohn’s disease in 10 patients and an enhanced growth of intestinal Bifidobacteria using 15g oligofructoseandinulincombinationfor21dayshasbeeneluci- dated(Lindsayetal.,2006)Inulinincombinationwitholigofructose hasshownimprovementinthemetabolicfunctionsofthemicro- flora (Cummings, Christie, & Cole,2001; Van Loo et al., 1999).
Clinicalandexperimentalevidencedemonstratedthattheircom- binationenhancedthegutmucosalbarrierandcouldassistinthe inhibitionofIBD.Theinflammationinhibitoryresultsofoligofruc- tose and inulin have been evaluated in the rats due to same histologicalhumanulcerativeconditionswithdistalcolitisbrought bydextransodiumsulphate.Bothinulinandoligofructoseenhance theshortchain fattyacidsproduction andprefer Lactobacillior Bifidobacteriaproduction(Guarner,2005).
Coloncanceralsoreferred ascolorectalcancer, rectalcancer, orbowelcancer,resultsfromcoloncellmutation(portionsofthe largeintestine),orintheappendix.Itisoneofthemostcommon reasonsofdeathduetocancerinthepeopleofdevelopedcoun- tries.Someanalysisdemonstratesthatbasicallycolonandrectal cancersaregeneticallysimilar(CancerGenomeAtlas,2012).Rectal bleedingandanemiaarethecommonsignsofcolorectalcancer thatare occasionallyrelated toweightlossand changedbowel habits.Concerningtheriskofcoloncancer,studiesinratsandmice demonstratesthatinulinandoligofructosehavetheabilitytopre- ventcoloncarcinogenesiscausedbythechemicalsandincrease symbioticpreparationswithlacticacidbacteria(Pool-Zobel,2005).
Studiessuggestthatsymbioticformulationofinulinenriched witholigofructoseincombinationwithLactobacillusrhamnosusand Bifidobacteriumlactisisabletodecreasetheriskofcoloncancer inhumans (Rafteret al.,2007).Furtherresearchershave found that inulin HP and synergy are more beneficial as compare to oligofructosesincethelong-chainmoleculestakemoretimefor fermentation inlargeintestine, thusextendingitsinfluencesin thedistalcolon.Certainly,thesmalloligomersarefermentedin advance in the proximalcolon and therefore cannot reachthe distal colon.InulinHP andsynergytakeaction generallyinthe progressionofthecancer,bydecreasingtheamountandmassof lesionsaswellasloweringthechanceofdevelopmentofthese lesionstomalignancy(Poulsen,Molck,&Jacobsen,2002).Inulin andoligofructosethereforehelpinthepreventionofoncogenesis.
Thesetwomechanismsexplainedthebeneficialroleofinulinin modulationofcolonicmicroflora,changeintheshort-chainfatty acids composition;particularlyanincrease in butyrate produc- tionthroughanaerobicfermentation.Secondly,fructanslikeinulin improveandpromoteimmunesystemofgastrointestine,specif- icallytheintestinalresistance(Pool-Zobel,2005;VanLoo,Clune, Bennett,&Collins,2005).
2.7. Enhanceabsorptionofcalcium,magnesiumandiron
Fortheoptimizationofbonemass,sufficientconsumptionof calciumincombinationwithitsenhancedabsorptionisrequired.
Dailyrecommendeddietaryintakeofmagnesiumdiffersformales from350to420mg/dayandforfemalesfrom280to320mg/day.
In case of calcium it accounts for 800mg/day in males, while 800–1000mg/dayinfemales(Gupta,Lakshmi,&Prakash,2006).
Theproximalpartofsmallintestineisthechiefspotofmineral assimilationin humans,whereas,vitaminDcontrolsthis action by producing cytosolic calcium binding protein and calbindin D9K.Furtheraccumulationofcalciumbyintestinescanalsotake placebyapassiveparacellularway,viathetightjunctionsamong mucosalcells.Thisprocessisnon-saturable,dose-dependent,vita- minDindependentandfollowsacrossbothintestines(Weaver&
Liebman,2002).Fermentablesubstances assisttoattaincalcium
M.Shoaibetal./CarbohydratePolymers147(2016)444–454 449 equilibriumviatransformingthechiefsiteofmineralabsorption
tothelargeintestine(Scholz-Ahrens,Schaafsma,vandenHeuvel,
&Schrezenmeir,2001).
Manytheorieshavebeenproposedaboutthecontributionof inulinandoligo-fructosetotheenhancedmineralabsorption.One waymightbethereductionofintestinalpH,ascolonicfermenta- tionofinulinproducesshortchainfattyacidsoradditionalorganic acidsthatresultsindecreasedpHoflargeintestine(Coxam,2005).
Infact,calciumpresentindietasamineralorinassociationwith othercomponentsshouldbeessentiallyinionizedformpriortoits absorption.Subsequently,thelowpHincreasesthebioavailability ofcalcium.Thusitresultsinimprovementofcalciumabsorption throughpassivediffusioninthesmallintestineandthefirstpart ofthelargeintestine.Furthermore,byionexchangesystemthere isapossibilitythatshortchainfattyacidsinfluencethecalcium absorption(Scholz-Ahrens&Schrezenmeir,2002).Additionally,by changingtheactionofvitaminDreceptorandincreasingcalbindin D9K,inulinandoligo-fructosecanamendtrans-cellularactivecal- ciumtransport.Anotherwayofincreasingmineralincorporation is amplifyingbutyrateyield or somepolyaminethrough which inulin and oligofructose can incidentally stimulate cell growth andincreasetheintestinalabsorptiveregion(Scholz-Ahrensetal., 2001).
Researchtrialsonanimals(commonlyrats)haveshownthat inulin-typefructansremarkablyenhancedthemineralabsorption, particularlycalciumandmagnesium(Weaver,2005).Indevelop- ing male rats,5 or 10% of chicory inulindiet enhanced whole bodybonemineralcontent(BMC)andbonemineraldensity(BMD) (Roberfroid,2002).Inanotherstudy,combinationofoligo-fructose and inulinwere given toadolescent girls for 3 weeks,calcium absorptionwasenhancedby18%(Griffin,Davila,&Abrams,2002).
FurtherstudiesongirlsshowedenhancedCaabsorptionwitholigo- fructose-enrichedinulindietwhichweresupplementedwithinulin at8g/day(Bosscheretal.,2006).
Studiesdemonstrated that a synergy (combinationof inulin andoligofructose)wasmorevigorousthanusingthemindividu- allyinincreasingCaandMgabsorption(Coudray,Tressol,Gueux,
&Rayssiguier,2003).Ithasbeenprovedthatinulin-typefructans showtheireffectonmineralabsorptionevenafterovaricalsurgery infemalerats.So,itshouldbehypothesizedthat,infemalerats, thesethingsarenotdependentonhormonesandinulin-typefruc- tanscanbeadvantageousinpostmenopausalwomen(Tahirietal., 2003).Inhumans,inulin-typefructanshavelittleinfluenceinsmall intestineformineralabsorption,andtheirbeneficialimpactoncal- ciumormagnesiumabsorptionareprobablyinfluencedbychanges in thelast partof the intestine facilitated bythe action ofthe microflora(Holloway,Moynihan,Abrams,Kent,Hsu&Friedlander, 2007). The beneficial effects of inulin are not only evident in adolescents (Griffin & Abrams, 2005; Griffin, Hicks, Heaney, &
Abrams,2003)butalsopostmenopausalwomen(Tahirietal.,2003;
Takaharaetal.,2000).However,onlyfewstudieshasdemonstrated thebeneficialimpactofinulinonmineralabsorptioninadultmen (Roberfroid,2000).Differencesinabilityofcalciumabsorptionare duetogeneticpolymorphisms,it hasbeenconsideredthat few genotypescouldpossiblyattainmorebenefitsfromutilizationof inulin-typefructans,particularlysynergy(Griffinetal.,2003).Both trialsandhumandatavalidatesthesuppositionthattheadvan- tageousresultsofinulin-typefructansaimnotmerelyonmineral absorptionbutalsoadditionalroleinbonestrengthing,particularly bonedensity,bonemineralization,bonegrowthandresorption,i.e., boneturnover(Coxam,2005).
CurrentstudiesalsodeterminetheeffectsofinulinonFeabsorp- tion,especiallyinacaseofitsdeficiency.Irondeficiencyisavery commonnutritionaldisorderinhumans.Though,foodfortification andironsupplementshavebeenutilizedtoeffectivelypreventthis problem(Clark,2009).Youngweaningpigletsarethoughttobe
aproperprototypeforexaminingironnutritioninhumandueto theirresemblancesintheinternalstructureoftheGITsystemor digestivemakeup.SolublelevelofFeincolonofanemicpigscan beenhancedbysupplementationofdietat4%alongwithincreased bloodHBlevelsanditssaturationefficacy.Sulfidedegreewasfound tobelowerandthepositiveeffectsofinulinareconsideredtobe linkedwithlowersulfide degreeinthecolon (Yasuda,Roneker, Miller,Welch,&Lei,2006).
2.8. Regulationoffoodintakeandappetite
Theproceduretoregulateappetiteiscomplicatedandincludes theinteractionbetweenseveralorexigenicandanorexigenichor- monesthataresecretedbytheGITandperipheraltissuesofbody, asafoodfeedback.Thesehormonesgivemessagestothehypotha- lamus(part ofbrain)toidentifythesenseofcraving orsatiety (Smitkaetal.,2013).Cholecystokinin(CCK),PP-foldpeptide(PYY) andglucagon-likepeptide-l(GLP-l)(appetitehidingpeptides)in thebloodatelevatedlevelarelinkedwithlessersubjectivehunger assessmentanddecreasedfoodingestion.Incontrast,duringfast- ingghrelinhormonestimulateshungerandconsequentlybegins foodingestion(Dateetal.,2000;Drucker,2002).
Experimental data was collected relating to the function of inulinandoligofructoseonGIThormonetomodifyblood levels whichaffectedappetite.Shortchainfattyacids(SCFs)(basically acetate,propionateandbutyrate)wereproducedbyfermentation ofinulinincolon(Tarini&Wolever,2010).HighlevelofSCFsin thecoloniclumenmayenhancetheexpressionofglucagon-like peptide-l(GLP-l)inthemucosathusincreasebloodGLP-llevels andlowerthelevelsofhormoneghrelin(Cho&Samuel,2009).This hasbeenshowninmanyexperimentalmodels(like,ratsfedona regularorhigh-fatdiet,overweightanddiabeticrats)andiscon- stantlylinkedwithaconsiderablylessenergy(andfood)ingestion, alongwithlessbodymassand fataccumulationintissue(from high-fatdiets).ResearchdatadeterminedtheregulationofGLP-1 andghrelinproductionbyinulin-typefructansasonesignificance appetiteregulation.Earlierhumandataislikelytovalidatesuchan influence,whichatrestrequiresadditionalandbroadinvestigation (Delzenne,Cani,Daubiou,&Neyrinck,2005).
2.9. Stimulationofimmunesystem
The immune system is possibly thehighly complex system in humanbody. It is comprised of masses of fully distinctcell types,eachcellwithitsowngroupofsignalingmolecules,mech- anismofantigensandeffectorfunctions.Complexityofimmune systemallows it torespondtoforeign substances and protects frominvasionbypathogenicorganisms,thusitprotectsthebody fromprobably harmfulsubstances byidentifyingandacting on antigens(Norvell,2013,nullChapter).Severalresearchtrialshave showntheimmune-modulatingeffectsofinulinandoligo-fructose (Schley&Field,2002).Thesestudiesdemonstratedthatinulinand oligo-fructoseindirectlystimulatedTcellfunctions,NKcellsand phagocyticactivitiesthroughalterationinconcentrationoflactic acidbacteriainthegastrointestinaltract,whichnotonlyprotects micefrompathogensbutalsofromtumor(Kelly-Quagliana,Nelson,
&Buddington,2003).Variousnutritionalsupplementsimproved thevaccineefficiencybystimulatingtheimmunesystem(deVrese etal.,2005).
Inastudyonmice,mixtureofinulinandoligofructose(70:30) and suboptimal low dose of Salmonella typhirnuriurn via oral shot has shown to stimulate immune responses, thus increas- ing oral vaccine efficacy. Anti-salmonella antibody responses improvedin miceby blood Salmonella immunoglobulinG and fecalimmunoglobulinA. Thecombinedtreatmentofinulinand oligo-fructoseinmiceshowedthatrateofvaccinationprotection
enhancedfrom40%to73% (Benyacoubetal.,2008).Inanother study,dietscomprisingofcellulose,oligo-fructoseorinulinwere fedtomiceforatimeperiodofsixweeks.Resultsshowedthatinulin andoligo-fructosesupplementeddietenhancedNKcellactivityand peritonealmacrophageactivity(Kelly-Quaglianaetal.,2003).
Studiesonagedpersonalsshowedthatsuitabledietarysupple- mentscouldstimulateimmunesystemhoweveragefactorwasalso associatedwithmodulationintheimmune system.Inastudya dietarysupplementcomprisingproteins,vitaminB12,vitaminE, vitaminB9,Lactobacillus paracaseiwitha combination ofinulin andoligo-fructosewasfedtohealthyelderlyvolunteersforfour months,beforeimmunizationagainstInfluenzavirusandPneumo- coccus.After120days,theNKcellactivitywasenhancedbythe dietarysupplement.NKcellactionisoneofthemostimportant immunesysteminoppositiontoviralillness.Furthermore,volun- teerswhofollowedthedietarysupplementforoneyearwerefound toreportlessinfection(Bunoutetal.,2004).Furtherstudyshowed improvementofvaccination-inducedimmuneresponse,ininfants vaccinatedformeaslesandnourishedonbabyfoodssupplemented byasymbioticdietcomprisingofinulinandoligo-fructose.After vaccination,particularIgG-antibodylevelsweregreaterusingthe symbiotic,demonstratinganimprovedimmuneresponsetovac- cination(Hegar,Boediarso,Firmansyah,&Vandenplas,2004).All thesementionedfunctionsinimmunesystemarepostulatedthat inulinanditsderivedcompoundshasadirectinteractionwiththe gut-associatedlymphoidtissuesofmice(Roberfroid,2005).How- ever,thisinteractionhasnotyetbeenfoundinhuman-beings.
2.10. Intestinalacceptability
Twofactshavedemonstratedtheintestinalacceptabilityofnon- digestibleconstituents.Firstly,theindigestiblecomponentsexert osmoticeffectsthatbroughtaboutanenhancedpresenceofwater inthecolon.Minor compoundsinducea greaterosmoticstress andexcesswatermovesintothecolon.That’swhysorbitoland lactulosehaveaconsiderablygreaterpurgativeeffectthaninulin.
Secondly,therearesomeaftereffectsproducedbythefermented goods,mostlytheproductionofgases(Cho&Samuel,2009).Com- positethattakesmoretimetofermentisbetterthancompounds whichfermentquickly.Thisisthereasoninuliniseasytoendure thanpolyols andshort-chain fructo-oligosaccharides.Flatulence isa recognizedandfrequentlyassumingaftereffects ofdietary fiberingestion(Turner&Lupton,2011).Inastudyof26healthy menandwomenagedbetween18and60yearshavebeengiven afoodsupplementedwith10gofnativeinulinandoligo-fructose perday.Resultsshowedthatinulinconsumedinpracticaldoses weregenerallywell-tolerated.Although,thehigherdosesofinulin andoligo-fructosecausedflatulenceinsomesensitiveindividu- als(Bonnema, Kolberg, Thomas, & Slavin,2010).Further study demonstratedthatshortandlong-termintakesofinulin-richsolu- blechicoryextractgivenatadailydoseof5gwerewelltolerated byhealthysubjects(Ripoll,Flourie,Megnien,Hermand,&Janssens, 2010).
3. Foodapplications
Thewideuseofinulininthefoodsectorisbasedonitstechno- functionalattributes.Inulinisofgreatinteresttodevelophealthy productsbecauseitconcurrentlyrespondstoarangeofconsumer requirements:itisfiber-enriched,prebiotic,lowfatandlowsugar asdetailedinTable2(Franck,2002).Asadietaryfiber,inulingoes throughthegastrointestinaltractlargelyundigested.Inthecolon itfunctionasaprebioticasitisselectivelyfermentedbythebene- ficialmicro-flora,enhancestheirgrowthandstrengthensitsaction againstpathogenicmicroorganisms(VanLoo,2004).Inulincanbe
highlybranchedorlineardependingonthesource.Highlybranched inulinpolymershavemoresolubilityandinthepresenceofwater astheyarecapabletodevelopaparticulategel,thusalteringthe producttextureandprovidinga fat-likemouthfeel(Tungland&
Meyer,2002),whileshort-chainmoleculesenhanceflavor,sweet- nessandareusedtopartiallyreplacesucrose(DeCastro,Cunha, Barreto,Amboni,&PrudÊNcio,2009)
3.1. Fiberenrichment
Technicalanddieteticbenefitsofinulinmakeitagoodchoice tobeusedasanessentialingredientindiet,andmostlyitisused toofferdualbenefits:abetterorganolepticcharacterandasound nutritional make-up (Roberfroid, 2007). As a fiber constituent, inulinmostlyresultsinenhancingtasteandtexture.Inbreakfast cerealsandbakeryitems,inulinoffersimportantimprovementas comparedtootherfibers(Franck,2002).Incorporationofinulin inbakedproductsnotonlykeepsthemmoistandfreshforlong timebutalsoimprovetheircrispiness.Astudyinwhichglutenfree layeredcakeswerepreparedbytheadditionof20%inulininrice flourresultedinanincreaseddietaryfibercontent,reducedfatcon- tentandfavored airincorporationduringmixing(Gulati,2012).
Itssolubilitypermitsfiberadditioninaqueousenvironmentlike drinks,dairyproducts,thickenedbeveragesandtablespreads.A studyconductedininstitutionalizedadultswiththesupplementa- tionofinulintothickenedbeverageswitnessedtheenhancedfiber content,improvedbowelmovementandweightedstoolfrequency increasedby13%(Dahl,Whiting,Isaac,Weeks,&Arnold,2005).
3.2. Asaprebiotic
Foranefficientprebiotic,amoleculeshouldhavesomequalities suchas:itshouldnotbehydrolyzedorabsorbedintheupperpartof theGIT;gutmicro-florashouldbefermentedandbeneficialbacte- riaofcolonshouldbestimulatedbyit(VanLoo,2004).Aspreviously studied,inulinandoligo-fructosewereprovedasthemostwidely examinedprebioticcompoundswiththemostimportantprebiotic efficacy(Gibson,Probert,Loo,Rastall,&Roberfroid,2004).Now, inulinisgraduallybeingusedinfunctionalfoods,particularlyina completevarietyofdairyproductstoenhancetheintensification ofthebeneficialintestinalbacteria(Menne&Guggenbuhl,2000).
Inrecenttimes,researchesshowedthatthelowdoselevelinulin supplementedinskimmilk,considerablyincreasedthegrowthand sustainabilityofLactobacillusacidophilus,Lacto-bacillusrhamnosus andBifidobacteriumlactisinnon-fatfermentedmilk(Oliveiraetal., 2011).Aclinicaltrial conductedin healthynew bornbabiesof fourmonthsofagedemonstratedthatsupplementationof0.8g/dL Orafti® Synergy1 (oligo-fructose-enrichedinulin)in infantsdiet wassafe,effectiveandpromoteda gutmicro-floraclosetothat ofbreastfeeding(Closa-Monasteroloetal.,2013).
Variousprebioticdairy dessertshavinglowfat contenthave beenpreparedusing inulinasa prebiotic, in whichinulin sup- plementationnotonlygivenprebioticeffectbutalsoreducedthe fatcontentandsugarcontent(12%reduction)withoutaffecting its acceptability toconsumers (Arcia, Costell,& Tárrega, 2011).
Asinulinis metabolizedindifferentpartsofthelargeintestine (short-chaininulinintheproximalcolonportionandlong-chain inulininmoredistalcolonicportion),theuseofblendofshortand long-chaininulintoincreasesfermentativeand prebioticeffects issuggestedbyseveralnutritionalstudies(Biedrzycka&Bielecka, 2004;Coudrayetal.,2003).Theblendofshort-chain andlong- chaininulinat50:50ratiosprovidesvariousadditionaladvantages in enhancing prebiotic effectiveness. It increases Ca deposition andmineralcontents ofbonein adultsand provedtobeeffec- tiveinreducingtheamountofgasproductionwhileenhancingor maintainingitsprebioticeffect(Ghoddusi,Grandison,Grandison,
M.Shoaibetal./CarbohydratePolymers147(2016)444–454 451 Table2
FoodusageofInulin.
Applications Function Concentrationlevel(%w/w) References
Bakeryfoods(bread,cakes) Prebioticandfiber preservationofmoisture Sugarreplacer
2–15 (Nieto-Nieto,Wang,Ozimek,&Chen,2015;
RodriguezFurlan,PerezPadilla,&Campderros, 2014)
Breakfastcereals Fiberandprebiotic
Crispinessandincreaseinsize
2–25 (Foschia,Peressini,Sensidoni,&Brennan, 2013)
Dairyproducts ReplacementoffatandSugarSynergywith sweetness
Textureandmouthfeel Foamstabilization Fiberandprebiotic
2–10 (Meyer,Bayarri,Tarrega,&Costell,2011)
Meatproducts AsafatreplacerTextureandstabilityFiber 2–10 (Keenanetal.,2014;Rodriguez-Garcia,Sahi,&
Hernando,2014)
Frozendesserts Replacementoffatandsugar
Improvetexture Meltingbehavior Fiberandprebiotic Lessenergyvalue
2–10 (Krasaekoopt&Watcharapoka,2014)
Tablespreads ReplacementoffatTextureandspreadability EmulsionstabilityFiberandprebiotic
2–10 (Glibowski,2010)
Fillings ReplacementoffatTextureimprovement 2–30 (Salvatoreetal.,2014)
Salad-dressings ReplacementoffatBodyandmouthfeel 2–10 (Mantzouridou,Spanou,&Kiosseoglou,2012)
Chocolate ReplacementofsugarandfatFiber
Heatresistance(meltingbehavior)
5–30 (Aidoo,Afoakwa&Dewettinck,2014;Aidoo, Afoakwa&Dewettinck,2014)
Fruitpreparations Replacementofsugar Synergywithsweeteners Bodyandmouthfeel Fiberandprebiotic
2–10 (Krasaekoopt&Watcharapoka,2014)
Dieticproductsandmealreplacers Asasugarandfatreplacer
CombinationwithsweetenersLowcaloric value
Bodyandmouthfeel Fiberandprebiotic
2–15 (Brambillasca,Zunino,&Cajarville,2015;
Tiengtam,Khempaka,Paengkoum,&
Boonanuntanasarn,2015)
Tablets Replacementofsugar
Fiberandprebiotic
5–100 (Eissens,Bolhuis,Hinrichs,&Frijlink,2002)
&Tuohy,2007).However,themagnitudeofthesensoryvariations dependsonthecombinationofshortandlong-chaininulinratio andonthetotal inulinconcentration(Bayarri,Chuliá,&Costell, 2010;Ghoddusietal.,2007;Tarrega&Costell,2006)
3.3. Asafatreplacer
Inulinproductsconsistingmainlyoflong-chainmoleculesare appliedforfatreplacement,sinceinthepresenceofwatertheyare capabletodevelopaparticulategel,thusaltertheproducttexture andprovideafat-likemouthfeel(Karimietal.,2015;Tungland&
Meyer,2002).Innon-fatfunctionaldairyfoodsinulincanbeused asafatreplacerandprovidesthemnearlythesamesensorychar- actersasoffullfatproducts(Akınetal.,2007Cruzetal.,2010;
Solowiejetal.,2015).Somescientistshaveanalyzedtheeffectof longchain inulinadditiononphysicaland sensorialfeatures of dairyfoodssuchasyogurtorcustard.Long-chaininulinhasbeen usedin low-fatyogurts toreplacefatwhere it wasexposedto considerablyimprovecreaminess,mouthfeelandsmoothness(Kip, Meye,&Jellema,2006;Modzelewska-KapituŁA&KŁE˛Bukowska, 2009).Additionoflong-chaininulintolowfatcustardsenhanced creaminessandconsistency,alsosameresultswereobtainedbyits additiontofull-fatcustards(Lobato,Grossmann,&Benassi,2009;
Tarrega&Costell,2006).Inulinaddition(2–7%)infreshcaprinemilk cheeseallowsthereplacementoffat,providesacreamiermouth feelandaddsareasonableflavorwithsofteningeffect.However,the softeningeffectrelyontheinulinlevel(Salvatore,Pes,Mazzarello,
&Pirisi,2014).
Fatreplacercanadditionallybeusedinmealreplacers,meat products,saucesandsoups,thuslessfatmeatproductsareavailable havingajuicyandcreamymouthfeelandanenhancedfirmness duetowatercontrol(Cho&Samuel,2009).Theadditionofinulin toadded-fatcontainingmeatproductslikesausagescouldbean
attractiontohealthconsciousconsumersastheyaresignificant tohumannutritioninthesituationofdietaryguidelines(Selgas, Caceres,&Garcia,2005).Theadditionofinulintosausagesresults inreducedfatcontent,improvestexture,andsensorialappraisal.
Fructananalysissuggestedthattheinulinremainedstableduring processingandsuccessiveheattreatment(Keenan,Resconi,Kerry,
&Hamill,2014).Furtherstudiesshowedthatfermentedchicken sausagesmadewithinulinasapartialoilreplacementpersisted stablewithoutanysignificantlossofphysicochemical,microbio- logicalandsensorycharacteristicsduringstorageat4◦Cfor45days (Menegas,Pimentel,Garcia,&Prudencio,2013).Inulinadditionin biscuitstoalevelof15%couldbeusedtoattainfatreplacementand goodsensoryproperties(Laguna,Primo-Martín,Varela,Salvador,
&Sanz,2014).
3.4. Asasugarreplacer
Inulinproductscontain mainlyshort-chainmolecules which enhancethesweetnessofsucroseupto35%,thusitisusefulto partiallyreplacesucrosemolecule’sflavor(DeCastroetal.,2009;
Villegas,Tárrega,Carbonell,&Costell,2010).However,itsHPhigh formiscomparativelylesssweet.Inulinhasbeenprovedanattrac- tiveapplicantasalow-caloriebulkingagentinchocolate,mostlyin combinationwithapolyolwhichreplacessugarcontentswithout anyeffectonfatcontents.Sugarfreechocolateswereproducedby (Farzanmehr&Abbasi,2009;Palazzo,Carvalho,Efraim,&Bolini, 2011;Shah,Jones,&Vasiljevic,2010)replacingsucrosewithinulin (HP)havingdifferentdegreeofpolymerizationandpoly-dextrose and suggested inulinwithhighdegreeof polymerizationasan appropriate ingredient for sucrose free chocolate preparations.
Inulinisalsousedintabletsforthereplacementofsugar.Incus- tards,thesupplementationofshort-chaininulinimprovedflavor and enhancedsweetness,thoughit didnotsignificantly change