• Tidak ada hasil yang ditemukan

Kelompok Peneliti Nuklir ITB Koordinator: Prof. Dr. Zaki Su'ud

N/A
N/A
Protected

Academic year: 2024

Membagikan "Kelompok Peneliti Nuklir ITB Koordinator: Prof. Dr. Zaki Su'ud"

Copied!
33
0
0

Teks penuh

(1)

Kelompok Peneliti Nuklir ITB Koordinator: Prof. Dr. Zaki Su’ud Koordinator: Prof. Dr. Zaki Su’ud

(2)

PROGRAM SECARA GARIS BESAR

1. Pengembangan SDM Nuklir untuk persiapan PLTN

2. Penyiapan teknologi yang optimal untuk situasi dan kondisi di Indonesia

3. Mengembangkan riset perancangan dan keselamatan PLTN maju khususnya dari GENERATION IV

4. Mengembangkan sistem analisis bagi PLTN

termasuk PLTN GEN IV: Analisa Netronik, Analisa Thermal Hydraulic, Analisa Safety, juga disain dan Thermal Hydraulic, Analisa Safety, juga disain dan analisis Pengungkung

5. Penyiapan skenario penanganan limbah nuklir baik dengan penyimpanan maupun daur ulang

(3)

Pengembangan SDM

Program S1, S2 dan S3 di dalam negeri dan kerjasama

Program S1, S2 dan S3 di dalam negeri dan kerjasama dengan PT di luar negeri untuk S3

Meliputi Bidang Fisika Reaktor dan Keselamatan reaktor (Fisika ITB), Bidang Analisa (Mesin),

Instrumentasi (Fisika, teknik Fisika, Elektro, Mesin), dll

Kerjasama dengan Bapeten, BATAN, dll. Dalam

Kerjasama dengan Bapeten, BATAN, dll. Dalam penyelenggaraan S2 dan S3 khusus

Pengembangan pelatihan khusus baik untuk SDM inti maupun sosialisasi

(4)

SISTEMATIKA RISET NUKLIR DI ITB

1. SPINNORs

1. SPINNORs

2. MODIFIED CANDLE

3. Th Cycle Based Long Life Thermal Reactors

4. Ship Based Reactors

5. Code Development

6. Nuclear Data

6. Nuclear Data

7. Riset Analisa Thermal

(5)

Long Life Pb-Bi Cooled Fast Reactors

(6)

SMALL SIZE Pb-Bi COOLED NUCLEAR POWER REACTORS

Power Range 25MWe ~ 100MWe

Power Range 25MWe ~ 100MWe

Long life operation without refueling

Ideal for remote area (islands): especially outside Java-Bali Area

Current status : Final Optimization especially in safety, thermal system, etc.

safety, thermal system, etc.

Inherent safety

Non proliferation

Fissile self sustain

(7)

Very Small Size Pb-Bi COOLED NUCLEAR POWER REACTORS

Power Range 5MWe ~ 25MWe

Power Range 5MWe ~ 25MWe

Long life operation without refueling

Ideal for remote area (islands): especially outside Java-Bali Area, special purpose

Current status : Final Optimization especially in safety

safety

Inherent safety

Non proliferation

Fissile self sustain

(8)

Medium & Large Size Pb-Bi COOLED

NUCLEAR POWER REACTORS

Power Range 100MWe ~ 2000MWe

Few years operation without refueling

Few years operation without refueling

Ideal for Java-Bali Area, special purpose:Hydrogen Production

Current status : Optimization in Neutronic design , safety and thermal system

Inherent safety

Non proliferation

Non proliferation

Breeding

Economical

Load follower

Cogeneration

(9)

ADS (Accelerator Driven System)

Power range : 100KWe~50MWe

Power range : 100KWe~50MWe

Fast and thermal

High safety performance

Optimization of neutron source design and configuration

Optimization of thermal system

Optimization of thermal system

Safety analysis

(10)

Pb-Bi Corrosion Investigation

Clasical and Quantum Mechanical Based simulation

Clasical and Quantum Mechanical Based simulation

Based on Ab initio Model

Comparation with existing experimental data

Searching for better fit structural material

(11)

Hydrogen Production reactors

Fast: Pb-Bi Cooled, Thermal : HTGR Based

Fast: Pb-Bi Cooled, Thermal : HTGR Based

Selection of Best chemical mechanism

Thermal configuration optimization

Material feasibility

Simulation system

(12)
(13)

MODIFIED CANDLE REACTOR

Region 1

Region 10

Region 1 Region 10

OUT

Region 10 Region 9 Region 8 Region 7 Region 6 Region 5

Region 10 Region 9 Region 8 Region 7 Region 6 Region 5 Region 4

Region 3 Region 2

Region 4 Region 3 Region 2

(14)

Modified Candle Reactors

In this study conceptual design study of Pb-Bi cooled fast reactors which fuel cycle need only natural uranium input reactors which fuel cycle need only natural uranium input has been performed. In this case CANDLE burn-up

strategy is slightly modified by introducing discreet regions.

In this design the reactor cores are subdivided into several parts with the same volume in the axial directions.

The natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel.

This concept is basically applied to all regions, i.e. shifted the core of I’th region into I+1 region after the end of 10 years burn-up cycle .

(15)

Long Life Reactor With Natural Uranium as Fuel Cycle input

BOC EOC

D:X3C:X2B:X1

A:0 C:X3B:X2A:X1Uraniumalam

C:X2B:X1

A:0 B:X2A:X1Uraniumalam

input

(16)

Long Life Reactor With Natural Uranium as Fuel Cycle input

1.05

Keff

1.045 1.04 1.035 1.03 1.025 1.02 1.015

time (y unit)5 6 7 8 9 10

4 3

2 1

1.015 1.01 1.005

(17)
(18)

Thorium(Th) and Protactinium (231Pa) Based

Fuel for Tight Lattice Long Life BWR

(19)

Thorium(Th) and Protactinium (231Pa) Based Fuel for Tight Lattice Long Life BWR

Keff Vs Time

1.003

1.0015 1.002 1.0025

1.001 1.0015

0 3 6 9 12 15 18 21 24

T ime ( M o nt h)

(20)

Thorium(Th) and Protactinium (231Pa) Based Fuel for Tight Lattice Long Life BWR

Active Core Volume(minus reflector)

17635.8 Liter Active Core Volume(minus reflector)

Thermal Power 620 Mwatt

Average Power Density 35.2 Watt/cc Enrichment Uranium-233 8.1% and 11%

Percentage Protactinium-231 6.7%dan12.5%

Reactor operation time 30 year

Excess-reactivity 0.384%

(21)
(22)

SHIP BASED NUCLEAR POWER REACTOR

Pb-Bi Based and Water cooled based

Pb-Bi Based and Water cooled based

Small and very small sized

Ideal for remote area, emergency and temporary development

Status: Final optimization and safety analysis

(23)
(24)
(25)

Group Contant Processing

Fast group constant : general geometry

Fast group constant : general geometry

Thermal system: implementation & toward general geometry

Interface to other code

Paralel computation

(26)

Neutronic Design

Three dimensional system analysis

Three dimensional system analysis

Additional feature

Better user interface

Transport analysis

Special investigation

(27)

Safety Analysis

Three dimensional model

Three dimensional model

Local blockage analysis

Other Hypothetical accident analysis

ADS safety analysis

Paralel Computation

(28)

Monte Carlo Simulation

For shielding and neutronic calculation

For shielding and neutronic calculation

Development of generic subroutine

Paralel Computation

(29)

Paralel Computation

Based on ehternet and dedicated system

Based on ehternet and dedicated system

Based on Socket programming or specially developped system

Development of new algorithm better fit to paralel computation

(30)

TOPIK BESAR: INTEGRATED SYSTEM ANALYSIS CODE

TAHAP I :

TAHAP I :

1. CELL HOMOGENIZATION CODE

2. MULTI GROUP DIFFUSION CALCULATION

3. BURNUP ANALYSIS

(31)

Analisa Thermal

Riset fundamental analisa thermal dengan sampel

Riset fundamental analisa thermal dengan sampel PLTN

Riset Terapan untuk analisa thermal hydraulic dan safety PLTN

Analisa untuk disain dan kehandalan pengungkung

(32)

Sosialisasi Nuklir

Pengembangan sistem simulasi khusus

Pengembangan sistem simulasi khusus

Pelatihan ke Pelajar dan masyarakat

Sosialisasi melalui media massa dan seminar

(33)

Anggota TIM

Prof. Dr Zaki Su’ud

Prof. Dr Zaki Su’ud

Prof. Dr Aryadi S

Dr. Abdul Waris

Dr. Ari Darmawan P

Dr. Rijal K.

Dr. Khairul Basar

Dr. Khairul Basar

Drs. Novitrian MS

Dr. Nathanael

Dll. Total sekitar 15

Referensi

Dokumen terkait