P 3000atm D 0.17in A S
4D2 A 0.023 in2 F P A g 32.174 ft
sec2
mass F
g mass 1000.7 lbm Ans.
1.7 Pabs = UghPatm U 13.535 gm
cm3
g 9.832 m
s2
h 56.38cm
Patm 101.78kPa Pabs UghPatm Pabs 176.808 kPa Ans.
1.8 U 13.535 gm cm3
g 32.243 ft
s2
h 25.62in
Patm 29.86in_Hg Pabs UghPatm Pabs 27.22 psia Ans.
Chapter 1 - Section A - Mathcad Solutions
1.4 The equation that relates deg F to deg C is: t(F) = 1.8 t(C) + 32. Solve this equation by setting t(F) = t(C).
Guess solution: t 0
Given t= 1.8t32 Find t() 40 Ans.
1.5 By definition: P F
= A F = mass g Note: Pressures are in gauge pressure.
P 3000bar D 4mm A S
4D2 A 12.566 mm2 F P A g 9.807m
s2
mass F
g mass 384.4 kg Ans.
1.6 By definition: P F
= A F = mass g
FMars K x FMars 4u103m K gMars FMars
mass gMars 0.01m K
kg Ans.
1.12 Given:
z d P d
U g
= and: U M P R T
= Substituting:
z d P d
M P R T g
=
Separating variables and integrating:
Psea PDenver
1 P P
´µ µ¶
d
0 zDenver
M g z R T
§¨ ©
·
¹
´µ µ¶
= d
After integrating: ln PDenver
Psea
§ ¨
©
·
¹
Mg
R T zDenver
=
Taking the exponential of both sides
and rearranging: PDenver Psea e
Mg
R T zDenver
©§¨ ·
¹
=
Psea 1atm M 29 gm
mol g 9.8m
s2 1.10 Assume the following: U 13.5 gm
cm3
g 9.8m s2
P 400bar h P
Ug h 302.3 m Ans.
1.11 The force on a spring is described by: F = Ks x where Ks is the spring constant. First calculate K based on the earth measurement then gMars based on spring measurement on Mars.
On Earth:
F = mass g = K x mass 0.40kg g 9.81m s2
x 1.08cm
F mass g F 3.924 N Ks F
x Ks 363.333N m On Mars:
x 0.40cm
Ans.
wmoon M g moon wmoon 18.767 lbf Ans.
1.14 costbulb 5.00dollars
1000hr 10 hr
day costelec 0.1dollars
kW hr 10 hr day70W costbulb 18.262dollars
yr costelec 25.567dollars yr
costtotal costbulbcostelec costtotal 43.829dollars yr Ans.
1.15 D 1.25ft mass 250lbm g 32.169ft
s2 R 82.06cm3atm
mol K T (10273.15)K zDenver 1 mi M g
R T zDenver 0.194
PDenver Psea e
Mg
R T zDenver
§¨© ·
¹ PDenver 0.823 atm Ans.
PDenver 0.834 bar Ans.
1.13 The same proportionality applies as in Pb. 1.11.
gearth 32.186 ft s2
gmoon 5.32 ft s2
'lmoon 18.76
'learth 'lmoon gearth gmoon
'learth 113.498
M 'learthlbm M 113.498 lbm
Ans.
(b) Pabs F
A Pabs 110.054 kPa Ans.
(c) 'l 0.83m Work F'l Work 15.848 kJ Ans.
'EP mass g' l 'EP 1.222 kJ Ans.
1.18 mass 1250kg u 40m
s EK 1
2mass u 2 EK 1000 kJ Ans.
Work EK Work 1000 kJ Ans.
1.19 Wdot mass g' h
time 0.910.92
=
Wdot 200W g 9.8m
s2
'h 50m Patm 30.12in_Hg A S
4D2 A 1.227 ft2 (a) F PatmAmass g F 2.8642u103lbf Ans.
(b) Pabs F
A Pabs 16.208 psia Ans.
(c) 'l 1.7ft Work F'l Work 4.8691u103ft lb f Ans.
'PE mass g' l 'PE 424.9 ft lb f Ans.
1.16 D 0.47m mass 150kg g 9.813m
s2
Patm 101.57kPa A S
4D2 A 0.173 m2 (a) F PatmAmass g F 1.909u104N
mdot Wdot
g'h0.910.92 mdot 0.488kg
s Ans.
1.22
a) cost_coal
25.00 ton
29 MJ
kg cost_coal 0.95 GJ1
cost_gasoline
2.00 gal
37 GJ m3
cost_gasoline 14.28 GJ1
cost_electricity 0.1000
kW hr cost_electricity 27.778 GJ1
b) The electrical energy can directly be converted to other forms of energy whereas the coal and gasoline would typically need to be converted to heat and then into some other form of energy before being useful.
The obvious advantage of coal is that it is cheap if it is used as a heat source. Otherwise it is messy to handle and bulky for tranport and storage.
Gasoline is an important transportation fuel. It is more convenient to transport and store than coal. It can be used to generate electricity by burning it but the efficiency is limited. However, fuel cells are currently being developed which will allow for the conversion of gasoline to electricity by chemical means, a more efficient process.
Electricity has the most uses though it is expensive. It is easy to transport but expensive to store. As a transportation fuel it is clean but batteries to store it on-board have limited capacity and are heavy.
1.24 Use the Matcad genfit function to fit the data to Antoine's equation.
The genfit function requires the first derivatives of the function with respect to the parameters being fitted.
Function being fit: f T A( BC) e
A B T C
§¨
© ·
¹
First derivative of the function with respect to parameter A
A
f T A( BC) d
d
exp A B TC
§¨
©
·
o
¹
First derivative of the function with respect to parameter B
B
f T A( BC) d
d
1
TC exp A B TC
§¨
©
·
¹
o
First derivative of the function with respect to parameter C
C
f T A( BC) d
d
B TC ( )2
exp A B TC
§¨
©
·
¹
o
t
18.5 9.5
0.2 11.8 23.1 32.7 44.4 52.1 63.3 75.5
§¨ ¨
¨ ¨
¨ ¨
¨ ¨
¨ ¨
¨ ¨
¨ ©
·
¸ ¸
¸ ¸
¸ ¸
¸ ¸
¸ ¸
¸
¹
Psat
3.18 5.48 9.45 16.9 28.2 41.9 66.6 89.5 129 187
§¨ ¨
¨ ¨
¨ ¨
¨ ¨
¨ ¨
¨ ¨
¨ ©
·
¸ ¸
¸ ¸
¸ ¸
¸ ¸
¸ ¸
¸
¹
T t273.15 lnPsat ln Psat( )
Array of functions used by Mathcad. In this case, a0 = A, a1 = B and a2 = C.
Guess values of parameters
F T a( )
exp a0 a1 Ta2
§
¨ ©
·
¹
exp a0 a1 Ta2
§
¨ ©
·
¹
1
Ta2 exp a0 a1 Ta2
§
¨ ©
·
¹
a1 Ta2
2 exp a0a1 Ta2
§
¨ ©
·
¹ ª «
« «
« «
« «
« «
« ¬
º »
» »
» »
» »
» »
» ¼
guess
15 3000
50
§¨ ¨
¨©
·
¸
¹
Apply the genfit function
A B C
§¨ ¨
¨©
·
¸
¹
genfit T Psat( guessF)
A B C
§¨ ¨
¨©
·
¸
¹
13.421 2.29u103
69.053
§ ¨
¨ ¨
©
·
¸
¹
Ans.
Compare fit with data.
240 260 280 300 320 340 360
0 50 100 150 200
Psat
f T A( BC)
T
To find the normal boiling point, find the value of T for which Psat = 1 atm.
This is an open-ended problem. The strategy depends on age of the child, and on such unpredictable items as possible financial aid, monies earned by the child, and length of time spent in earning a degree.
c)
The salary of a Ph. D. engineer over this period increased at a rate of 5.5%, slightly higher than the rate of inflation.
i 5.511 % i Find i( )
C2
C1 = (1i)t2t1 Given
C2 80000dollars C1 16000dollars yr
t2 2000 yr t1 1970
b)
The increase in price of gasoline over this period kept pace with the rate of inflation.
C2 1.513dollars C2 C1(1i)t2t1 gal
i 5%
C1 0.35dollars t2 2000 gal
t1 1970 a)
1.25
Tnb273.15K 56.004 degC Ans.
Tnb 329.154 K
Tnb B
A ln Psat
§¨
kPa©
·
¹
C
§ ¨
¨ ©
·
¹
K Psat 1atm
t1 20 degC CP 4.18 kJ kg degC
MH2O 30 kg
t2 t1
'Utotal MH2OCP
t2 20.014 degC Ans.
(d) For the restoration process, the change in internal energy is equal but of opposite sign to that of the initial process. Thus
Q 'Utotal Q 1.715kJ Ans.Ans.
(e) In all cases the total internal energy change of the universe is zero.
2.2 Similar to Pb. 2.1 with mass of water = 30 kg.
Answers are: (a) W = 1.715 kJ
(b) Internal energy change of the water = 1.429 kJ
(c) Final temp. = 20.014 deg C (d) Q = -1.715 kJ
Chapter 2 - Section A - Mathcad Solutions
2.1 (a) Mwt 35 kg g 9.8 m
s2
'z 5 m
Work Mwt'g z Work 1.715 kJ Ans.
(b) 'Utotal Work 'Utotal 1.715 kJ Ans.
(c) By Eqs. (2.14) and (2.21): dUd PV( )= CPdT Since P is constant, this can be written:
MH2OCPdT = MH2OdUMH2OPdV
Take Cp and V constant and integrate: MH2OCP'
t2t1 = UtotalQ34 800J W34 300J
'Ut34 Q34W34 'Ut34 500J Ans.
Step 1 to 2 to 3 to 4 to 1: Since 'Ut is a state function, 'Ut for a series of steps that leads back to the initial state must be zero. Therefore, the sum of the
'Ut values for all of the steps must sum to zero.
'Ut41 4700J 'Ut23 ''Ut12'Ut34 Ut41 'Ut23 4000J Ans.
Step 2 to 3: 'Ut23 4u103J Q23 3800J
W23 'Ut23Q23 W23 200J Ans.
For a series of steps, the total work done is the sum of the work done for each step.
W12341 1400J
2.4 The electric power supplied to the motor must equal the work done by the motor plus the heat generated by the motor.
i 9.7amp E 110V Wdotmech 1.25hp
Wdotelect iE Wdotelect 1.067u103W
Qdot WdotelectWdotmech Qdot 134.875 W Ans.
2.5 Eq. (2.3): 'Ut = QW
Step 1 to 2: 'Ut12 200J W12 6000J
Q12 'Ut12W12 Q12 5.8u103J Ans.
Step 3 to 4:
'U 12kJ Q 'U Q 12kJ Ans.
2.13Subscripts: c, casting; w, water; t, tank. Then mc'Ucmw'Uwmt'Ut = 0
Let C represent specific heat, C = CP = CV Then by Eq. (2.18)
mc'Cc tcmw'Cw twmt'Ct tt = 0
mc 2 kg mw 40 kg mt 5 kg Cc 0.50 kJ
kg degC
Ct 0.5 kJ
kg degC
Cw 4.18 kJ kg degC
tc 500 degC t1 25 degC t2 30 degC (guess) Given mcCc
t2tc = mwCwmtCt t2t1t2 Find t
2 t2 27.78 degC Ans.W41 W12341W12W23W34 W41 4.5u103J Ans.
Step 4 to 1: 'Ut41 4700J W41 4.5u103J
Q41 'Ut41W41 Q41 200 J Ans.
Note: Q12341 = W12341
2.11 The enthalpy change of the water = work done.
M 20 kg CP 4.18 kJ kg degC
't 10 degC
Wdot 0.25 kW 'W M C'P t
Wdot 'W 0.929 hr Ans.
2.12 Q 7.5 kJ 'U 12kJ W 'UQ
W 19.5kJ Ans.
A 3.142 m2
mdot UuA mdot 1.571u104kg s
Wdot mdot g' z Wdot 7.697u103kW Ans.
2.18 (a) U1 762.0 kJ
kg P1 1002.7 kPa V1 1.128 cm3
gm H1 U1P1V1 H1 763.131kJ
kg Ans.
(b) U2 2784.4 kJ
kg P2 1500 kPa V2 169.7 cm3
gm H2 U2P2V2 'U U2U1 'H H2H1 'U 2022.4kJ
kg Ans. 'H 2275.8kJ
kg Ans.
2.15 mass 1 kg CV 4.18 kJ kg K
(a) 'T 1K 'Ut mass C'V T 'Ut 4.18 kJ Ans.
(b) g 9.8m s2
'EP 'Ut
'z 'EP
mass g 'z 426.531 m Ans.
(c) 'EK 'Ut u
'EK 1 2mass
u 91.433m
s Ans.
2.17 'z 50m U 1000kg
m3
u 5m s
D 2m A S
4D2
mdot C p
T3T1 mdot2CPT3T2 = Qdot T3CPmdot1mdot2 = Qdotmdot1CPT1mdot2CPT2 mdot1 1.0kgs T1 25degC mdot2 0.8kg
s T2 75degC
CP 4.18 kJ kg K Qdot 30kJ
s
T3 Qdotmdot1CPT1mdot2CPT2 mdot1mdot2
CP T3 43.235 degC Ans.2.25By Eq. (2.32a): 'H 'u2
2 = 0 'H = CP'T By continuity,
incompressibility u2 u1 A1 A2
= CP 4.18 kJ kg degC
2.22 D1 2.5cm u1 2m
s D2 5cm
(a) For an incompressible fluid, U=constant. By a mass balance, mdot = constant = u1A1U = u2A2U
u2 u1 D1 D2
§ ¨
©
·
¹
2
u2 0.5m
s Ans.
(b) 'EK 1
2u22 1 2u12
'EK 1.875 J
kg Ans.
2.23 Energy balance: mdot3H3
mdot1H1mdot2H2 = Qdot Mass balance: mdot3mdot1mdot2 = 0Therefore: mdot1
H3H1 mdot2H3H2 = Qdotor
u2 3.5m
s molwt 29 kg kmol
Wsdot 98.8kW ndot 50kmol
hr CP 7 2R 'H CP
T2T1 'H 6.402u103 kJkmol By Eq. (2.30):
Qdot 'H u22 2
u12 2
§ ¨
©
·
¹
molwtª
« ¬
º »
¼
ndotWsdot Qdot 9.904kW Ans.2.27By Eq. (2.32b): 'H 'u2
2 g c
= also V2
V1 T2 T1
P1 P2
=
By continunity,
constant area u2 u1 V2 V1
= u2 u1 T2 T1
P1 P2
= 'u2 = u22u12 'u2 u12 A1
A2
§ ¨
©
·
¹
2 1
ª« «¬ º»
»¼
= 'u2 u12 D1
D2
§ ¨
©
·
¹
4 1
ª« «¬ º»
»¼
=
SI units: u1 14 m
s D1 2.5 cm D2 3.8 cm 'T u12
2 C P 1 D1 D2
§ ¨
©
·
¹
4
ª«
«¬ º»
»¼
'T 0.019 degC Ans.D2 7.5cm
'T u12
2 C P 1 D1 D2
§ ¨
©
·
¹
4
ª«
«¬ º»
»¼
'T 0.023 degC Ans.Maximum T change occurrs for infinite D2:
D2 fcm 'T u12
2 C P 1 D1 D2
§ ¨
©
·
¹
4
ª«
«¬ º»
»¼
'T 0.023 degC Ans.2.26 T1 300K T2 520K u1 10m s
H2 2726.5 kJ
kg
By Eq. (2.32a): Q H2H1 u22u12
2 Q 2411.6kJ
kg Ans.
2.29 u1 30 m
s H1 3112.5 kJ
kg H2 2945.7 kJ
kg u2 500 m
s (guess)
By Eq. (2.32a): Given H2H1 u12u22
= 2 u2 Find u
2u2 578.36m
s Ans.
D1 5 cm V1 388.61 cm3
gm V2 667.75 cm3
gm 'H = CP'T 7
2R
T2T1 'u2 u12 T2 =T1 P1 P2
§
¨ ©
·
¹
2 1
ª« «¬ º»
»¼
=
P1 100 psi P2 20 psi u1 20 ft
s T1 579.67 rankine R 3.407 ft lb f
mol rankine molwt 28 gm mol
T2 578 rankine (guess)
Given 7
2R
T2T1 u12 2 T2T1 P1 P2
§
¨ ©
·
¹
2 1
ª« «¬ º»
»¼
molwt=
T2 Find T
2 T2 578.9 rankine Ans.119.15 degF
( )
2.28 u1 3 m
s u2 200 m
s H1 334.9 kJ
kg
By Eq. (2.23): Q n C P
t2t1 Q 18.62kJ Ans.2.31 (a) t1 70 degF t2 350 degF n 3 mol
CV 5 BTU mol degF
By Eq. (2.19):
Q n C V
t2t1 Q 4200 BTU Ans.Take account of the heat capacity of the vessel:
mv 200 lb m cv 0.12 BTU lbmdegF
Q
mvcvn C V t2t1 Q 10920 BTU Ans.(b) t1 400 degF t2 150 degF n 4 mol Continuity: D2 D1 u1V2
u2V1
D2 1.493 cm Ans.
2.30 (a) t1 30 degC t2 250 degC n 3 mol CV 20.8 J
mol degC
By Eq. (2.19): Q n C V
t2t1 Q 13.728 kJ Ans.Take into account the heat capacity of the vessel; then mv 100 kg cv 0.5 kJ
kg degC
Q
mvcvn C V t2t1 Q 11014 kJ Ans.(b) t1 200 degC t2 40 degC n 4 mol
CP 29.1 joule mol degC
Wdot Wsmdot Wdot 39.52 hp Ans.
2.34 H1 307 BTU lbm
H2 330 BTU lbm
u1 20 ft
s molwt 44 gm
mol V1 9.25 ft3
lbm
V2 0.28 ft3 lbm
D1 4 in D2 1 in
mdot S
4D12u1
V1 mdot 679.263lb hr
u2 mdot V2 S 4D22
u2 9.686 ft
sec Ws 5360 BTU lbmol
Eq. (2.32a): Q H2H1 u22u12
2 Ws
molwt
Q 98.82BTU
lbm CP 7 BTU
mol degF
By Eq. (2.23):
Q n C P
t2t1 Q 7000BTU Ans.2.33 H1 1322.6 BTU lbm
H2 1148.6 BTU
lbm
u1 10 ft
s V1 3.058 ft3
lbm
V2 78.14 ft3 lbm
D1 3 in D2 10 in
mdot 3.463u104 lb mdot sec
S
4D12u1 V1
u2 mdot V2 S
4D22
u2 22.997 ft
sec
Eq. (2.32a): Ws H2H1 u22u12
2 Ws 173.99BTU
lb
'H 17.4 kJ
mol Ans.
Q n'H Q 602.08 kJ Ans.
'U QW
n 'U 12.41 kJ
mol Ans.
2.37 Work exactly like Ex. 2.10: 2 steps, (a) & (b). A value is required for PV/T, namely R.
T1 293.15 K T2 333.15 K R 8.314 J
mol K P1 1000 kPa P2 100 kPa (a) Cool at const V1 to P2
(b) Heat at const P2 to T2 CP 7
2R CV 5
2R Ta2 T1 P2
P1
Ta2 29.315 K
Qdot mdot Q Qdot 67128BTU
hr Ans.
2.36 T1 300 K P 1 bar n 1 kg 28.9 gm
mol
n 34.602 mol
V1 83.14 bar cm 3 mol K
T1
P V1 24942cm3 mol
W n
V1 V2
V P
´µ
¶ d
= = n P
V1V2 = n P V13 V 1Whence W nP2V1 W 172.61kJ Ans.
Given: T2 T1 V2 V1
= = T13 Whence T2 3 T 1
CP 29 joule mol K
'H CP
T2T1Re
22133 55333 110667 276667
§ ¨
¨ ¨
¨ ©
·
¸ ¸
¹
Re DUu P
o
u 1 1 5 5
§ ¨
¨ ¨
¨ ©
·
¸ ¸
¹
m D s
2 5 2 5
§ ¨
¨ ¨
¨ ©
·
¸ ¸
¹
cm
Note:HD = H/D in this solution HD 0.0001
P 9.0 10 4 kg m s U 996 kg
m3 2.39
'H 1.164 kJ Ans.
'H 'Ha'Hb mol
'U 0.831 kJ Ans.
'U 'Ua'Ub mol
'Ub 6.315u103 J 'Ub 'HbP2
V2V1 mol'Ha 7.677u103 J 'Ha 'UaV1
P2P1 molV2 0.028 m3 V2 R T 2 mol
P2 V1 2.437u103 m3
V1 R T 1 mol P1
'Ua 5.484u103 J 'Ua CV'Ta mol
'Hb 8.841u103 J 'Hb CP'Tb mol
'Ta 263.835K 'Ta Ta2T1
'Tb 303.835 K 'Tb T2Ta2
Cost 799924 dollars Ans.
Cost 15200 Wdot
§¨
kW©
·
¹
0.573
Wdot 1.009u103kW Wdot mdot H
2H1Assume that the compressor is adiabatic (Qdot = 0). Neglect changes in KE and PE.
H2 536.9 kJ
kg H1 761.1kJ
mdot 4.5kg kg s 2.42
'P'L Ans.
0.632
0.206
11.254
3.88
§ ¨
¨ ¨
¨ ©
·
¸ ¸
¹
kPa 'P'L 2 m
D U fF u2
§¨ ©
·
¹
o
mdot Ans.
0.313 1.956 1.565 9.778
§ ¨
¨ ¨
¨ ©
·
¸ ¸
¹
kg mdot Uu S s
4D2
§ ¨
©
·
¹
o
fF
0.00635 0.00517 0.00452 0.0039
§ ¨
¨ ¨
¨ ©
·
¸ ¸
¹
fF 0.3305 ln 0.27HD 7
§¨
Re©
·
¹
0.9
ª
« ¬
º »
¼ ª «
¬
º »
¼
2
ª«
«¬ º»
»¼
o
a bit of algebra leads to
Work c
P1 P2
P P Pb
´µ µ¶
d
Work 0.516 J
gm Ans.
Alternatively, formal integration leads to
Work c P2P1 b ln P2b P1b
§ ¨
©
·
¹
§
¨ ©
·
¹
Work 0.516 Jgm Ans.
3.5 N = ab P a 3.9 10 6atm1 b 0.1109atm2 P1 1 atm P2 3000 atm V 1 ft 3 (assume const.) Combine Eqs. (1.3) and (3.3) for const. T:
Work V P1
P2
P ab P ( )P
´µ
¶ d
Work 16.65 atm ft 3 Ans.
Chapter 3 - Section A - Mathcad Solutions
3.1 E 1 U T
d U d
§ ¨
©
·
¹
= N 1
U P d U d
§ ¨
©
·
¹
=
P T
At constant T, the 2nd equation can be written:
dU
U = NdP ln U2 U1
§ ¨
©
·
¹
= N' P N 44.18106
bar1 U2= 1.01U1 'P ln 1.01( )
N 'P 225.2 bar P2= 226.2 bar Ans.
3.4 b 2700 bar c 0.125 cm3
gm P1 1 bar P2 500 bar
Since Work
V1 V2
V P
´µ
¶ d
=
P2 1 bar T1 600 K CP 7
2R CV 5 2R (a) Constant V: W= 0 and 'U = Q = CV'T
T2 T1 P2 P1
'T T2T1 'T 525K 'U CV'T Q and 'U 10.91 kJ
mol Ans.
'H CP'T 'H 15.28 kJ
mol Ans.
(b) Constant T: 'U = 'H = 0 and Q = W
Work R T 1ln P2 P1
§ ¨
©
·
¹
Q and Work 10.37 kJmol Ans.
(c) Adiabatic: Q = 0 and 'U = W = CV'T 3.6 E 1.2 10 3degC1 CP 0.84 kJ
kg degC
M 5 kg
V1 1 1590
m3
kg P 1 bar t1 0 degC t2 20 degC With beta independent of T and with P=constant,
dV
V = EdT V2 V1exp
ª¬
Et2t1º¼
'V V2V1 'Vtotal M'V 'Vtotal 7.638u105m3 Ans.Work 'P Vtotal (Const. P) Work 7.638joule Ans.
Q M C P
t2t1 Q 84 kJ Ans.'Htotal Q 'Htotal 84 kJ Ans.
'Utotal QWork 'Utotal 83.99 kJ Ans.
3.8 P1 8 bar
Step 41: Adiabatic T4 T1 P4 P1
§ ¨
©
·
¹
R CP
T4 378.831 K
'U41 CV
T1T4 'U41 4.597u103 J mol 'H41 CPT1T4 'H41 6.436u103 J mol Q41 0 J
mol Q41 0 J
mol
W41 'U41 W41 4.597u103 J mol
P2 3bar T2 600K V2 R T 2
P2 V2 0.017 m3 mol
Step 12: Isothermal 'U12 0 J
mol 'U12 0 J
mol
'H12 0 J
mol 'H12 0 J mol J CP
CV T2 T1 P2 P1
§ ¨
©
·
¹
J1 J
T2 331.227 K 'T T2T1
'U CV'T 'H CP'T W and 'U 5.586 kJ
mol Ans. 'H 7.821 kJ
mol Ans.
3.9 P4 2bar CP 7
2R CV 5
2R
P1 10bar T1 600K V1 R T 1
P1 V1 4.988u103 m3 mol
Step 34: Isobaric 'U34 CV
T4T3 'U34 439.997 J mol'H34 CP
T4T3 'H34 615.996 J molQ34 CP
T4T3 Q34 615.996 J molW34 R
T4T3 W34 175.999 J mol3.10 For all parts of this problem: T2 = T1 and
'U = 'H = 0 Also Q = Work and all that remains is
to calculate Work. Symbol V is used for total volume in this problem.
P1 1 bar P2 12 bar V1 12 m 3 V2 1 m 3 Q12 RT1ln P2
P1
¨ §
©
·
¹
Q12 6.006u103 J molW12 Q12 W12 6.006u103 J mol
P3 2bar V3 V2 T3 P3V3
R T3 400 K
Step 23: Isochoric 'U23 CV
T3T2 'U23 4.157u103 J mol'H23 CP
T3T2 'H23 5.82u103 J molQ23 CV
T3T2 Q23 4.157u103 J molW23 0 J
mol W23 0 J
mol
P4 2 bar T4 378.831 K V4 R T 4
P4 V4 0.016 m3 mol
Pi P1 V1 V2
§ ¨
©
·
¹
J
(intermediate P) Pi 62.898 bar
W1
PiV2P1V1
J 1 W1 7635 kJ
Step 2: No work. Work W1 Work 7635 kJ Ans.
(d) Step 1: heat at const V1 to P2 W1= 0 Step 2: cool at const P2 to V2
W2 P2
V2V1 Work W2 Work 13200 kJ Ans.(e) Step 1: cool at const P1 to V2
W1 P1
V2V1 W1 1100 kJ (a) Work n R TlnP2 P1
§ ¨
©
·
¹
= Work P1V1 ln P2 P1
§ ¨
©
·
¹
Work 2982 kJ Ans.
(b) Step 1: adiabatic compression to P2
J 5 3
Vi V1 P1 P2
§ ¨
©
·
¹
1 J
(intermediate V) Vi 2.702 m3
W1
P2ViP1V1
J 1 W1 3063 kJ
Step 2: cool at const P2 to V2
W2 P2
V2Vi W2 2042 kJWork W1W2 Work 5106 kJ Ans.
(c) Step 1: adiabatic compression to V2
P1 100 kPa P2 500 kPa T1 303.15 K CP 7
2R CV 5
2R J CP
CV
Adiabatic compression from point 1 to point 2:
Q12 0 kJ
mol 'U12= W12= CV'T12 T2 T1 P2 P1
§ ¨
©
·
¹
J1 J
'U12 CV
T2T1 'H12 CPT2T1 W12 'U12 'U12 3.679 kJmol 'H12 5.15 kJ
mol W12 3.679 kJ
mol Ans.
Cool at P2 from point 2 to point 3:
T3 T1 'H23 CP
T3T2 Q23 'H23 'U23 CVT3T2 W23 'U23Q23Step 2: heat at const V2 to P2 W2= 0
Work W1 Work 1100 kJ Ans.
3.17(a) No work is done; no heat is transferred.
'Ut = 'T = 0 T2 = T1 = 100 degC Not reversible (b) The gas is returned to its initial state by isothermal compression.
Work n R T ln V1 V2
§ ¨
©
·
¹
= but n R T = P2V2
V1 4 m 3 V2 4
3m3 P2 6 bar Work P2V2 ln V1
V2
¨ §
©
·
¹
Work 878.9 kJ Ans.3.18 (a)
Work 1.094 kJ mol
(b) If each step that is 80% efficient accomplishes the same change of state, all property values are unchanged, and the delta H and delta U values are the same as in part (a). However, the Q and W values change.
Step 12: W12 W12
0.8 W12 4.598 kJ
mol
Q12 'U12W12 Q12 0.92 kJ mol
Step 23: W23 W23
0.8 W23 1.839 kJ
mol
Q23 'U23W23 Q23 5.518 kJ mol
Step 31: W31 W310.8 W31 3.245 kJ mol
Q31 W31
Q31 3.245 kJ mol 'H23 5.15 kJ
mol 'U23 3.679 kJ
mol Ans.
Q23 5.15 kJ
mol W23 1.471 kJ
mol Ans.
Isothermal expansion from point 3 to point 1:
'U31= 'H31= 0 P3 P2 W31 R T 3 ln P1 P3
¨ §
©
·
¹
Q31 W31 W31 4.056 kJ
mol Q31 4.056 kJ
mol Ans.
FOR THE CYCLE: 'U = 'H = 0
Q Q12Q23Q31 Work W12W23W31 Q 1.094 kJ
mol
(b) Adiabatic: P2 P1 V1 V2
§ ¨
©
·
¹
J
T2 T1 P2 P1
V2 V1
T2 208.96 K P2 69.65 kPa Ans.
Work P2V2P1V1
J 1 Work 994.4kJ Ans,
(c) Restrained adiabatic: Work= 'U = 'Pext V
Pext 100 kPa Work Pext
V2V1 Work 400kJ Ans.n P1V1
R T 1 'U = n C'V T T2 Work
n C V T1 T2 442.71 K Ans.
P2 P1 V1 V2
T2 T1
P2 147.57 kPa Ans.
FOR THE CYCLE:
Q Q12Q23Q31 Work W12W23W31 Q 3.192 kJ
mol Work 3.192 kJ
mol
3.19Here, V represents total volume.
P1 1000 kPa V1 1 m 3 V2 5 V 1 T1 600 K CP 21 joule
mol K
CV CPR J CP CV
(a) Isothermal: Work n R T1ln V1 V2
¨ §
©
·
¹
= P2 P1 V1
V2
T2 T1 T2 600 K P2 200 kPa Ans.
Work P1V1 ln V1 V2
¨ §
©
·
¹
Work 1609kJ Ans.W23 0 kJ
mol 'U23 CV
T3T2 Q23 'U23 'H23 CPT3T2 Q23 2.079 kJmol 'U23 2.079 kJ
mol 'H23 2.91 kJ mol
Process: Work W12W23 Work 2.502 kJ
mol Ans.
Q Q12Q23 Q 0.424 kJ
mol Ans.
'H 'H12'H23 'H 2.91 kJ
mol Ans.
'U 'U12'U23 'U 2.079 kJ
mol Ans.
3.20 T1 423.15 K P1 8bar P3 3 bar CP 7
2R CV 5
2R T2 T1 T3 323.15 K
Step 12: 'H12 0 kJ
mol 'U12 0 kJ
mol If r V1
V2
=
V1 V3
= Then r T1 T3
P3 P1
W12 R T 1ln r()
W12 2.502 kJ
mol Q12 W12 Q12 2.502 kJ mol
Step 23:
P1 1 bar P3 10 bar
'U CV
T3T1 'H CPT3T1 'U 2.079 kJmol Ans. 'H 2.91 kJ
mol Ans.
Each part consists of two steps, 12 & 23.
(a) T2 T3 P2 P1 T2 T1
W23 R T 2ln P3 P2
§ ¨
©
·
¹
Work W23 Work 6.762 kJmol Ans.
Q 'UWork Q 4.684 kJ
mol Ans.
3.21 By Eq. (2.32a), unit-mass basis: molwt 28 gm
mol 'H 1
2'u2
= 0
But 'H = CP'T Whence 'T
u22u12 2 C P=
CP 7 2
R molwt
u1 2.5 m
s u2 50 m
s t1 150 degC
t2 t1 u22u12 2 C P
t2 148.8 degC Ans.
3.22 CP 7
2R CV 5
2R T1 303.15 K T3 403.15 K
Q23 'H23
'U23 CV
T3T2 W23 'U23Q23 Work W12W23 Work 4.972 kJmol Ans.
Q 'UWork Q 2.894 kJ
mol Ans.
For the second set of heat-capacity values, answers are (kJ/mol):
'U = 1.247 'U = 2.079 (a) Work= 6.762 Q = 5.515 (b) Work= 6.886 Q = 5.639 (c) Work= 4.972 Q = 3.725
(b) P2 P1 T2 T3 'U12 CV
T2T1'H12 CP
T2T1 Q12 'H12W12 'U12Q12 W12 0.831 kJ mol
W23 R T 2ln P3 P2
§ ¨
©
·
¹
W23 7.718 kJmol
Work W12W23 Work 6.886 kJ
mol Ans.
Q 'UWork Q 4.808 kJ
mol Ans.
(c) T2 T1 P2 P3 W12 R T 1ln P2
P1
§ ¨
©
·
¹
'H23 CP
T3T2For the process: Work W12W23
Q Q12Q23 Work 5.608 kJ
mol Q 3.737 kJ
mol Ans.
3.24 W12= 0 Work= W23= P2
V3V2 = RT3T2 But T3 = T1 So... Work= R T 2T1 Also W R T 1ln PP1
§ ¨
©
·
¹
= Therefore
ln P P1
§ ¨
©
·
¹
T2T1 T1
= T2 350 K T1 800 K P1 4 bar
P P1exp T2T1 T1
¨ §
©
·
¹
P 2.279 bar Ans.3.23 T1 303.15 K T2 T1 T3 393.15 K P1 1 bar P3 12 bar CP 7
2R CV 5 2R For the process: 'U CV
T3T1 'H CPT3T1'U 1.871 kJ
mol 'H 2.619 kJ
mol Ans.
Step 12: P2 P3 T1
T3
W12 R T 1 ln P2 P1
§ ¨
©
·
¹
W12 5.608 kJ
mol Q12 W12 Q12 5.608 kJ mol
Step 23: W23 0 kJ
mol Q23 'U
TB(final)= TB nA = nB Since the total volume is constant,
2 n ART1 P1
nAR
TATB P2= or 2 T 1
P1
TATB P2
= (1)
(a) P2 1.25 atm TB T1 P2 P1
§ ¨
©
·
¹
J1 J
(2)
TA 2 T 1 P2 P1
TB Q = nA
'UA'UBDefine q Q
nA
= q CV
TATB2 T 1 (3) TB 319.75 K TA 430.25 K q 3.118 kJmol Ans.
3.25 VA 256 cm 3 Define: 'P
P1 = r r 0.0639 Assume ideal gas; let V represent total volume:
P1VB= P2
VAVB From this one finds:'P P1
VA VAVB
= VB VA(r1)
r VB 3750.3 cm3 Ans.
3.26 T1 300 K P1 1 atm CP 7
2R CV CPR J CP CV
The process occurring in section B is a reversible, adiabatic compression. Let P final( )= P2 TA(final) T= A
TA 2 T 1 P2 P1
TB (1) TA 469 K Ans.
q CV
TATB2 T 1 q 4.032<