• Tidak ada hasil yang ditemukan

Mathcad Solutions for Pressure, Force, and Temperature Calculations

N/A
N/A
Zydan Fathussalam

Academic year: 2024

Membagikan " Mathcad Solutions for Pressure, Force, and Temperature Calculations"

Copied!
724
0
0

Teks penuh

(1)

P 3000atm D 0.17in A S

4˜D2 A 0.023 in2 F P A˜ g 32.174 ft

sec2

mass F

g mass 1000.7 lbm Ans.

1.7 Pabs = U˜g˜hPatm U 13.535 gm

cm3

˜ g 9.832 m

s2

˜ h 56.38cm

Patm 101.78kPa Pabs U˜g˜hPatm Pabs 176.808 kPa Ans.

1.8 U 13.535 gm cm3

˜ g 32.243 ft

s2

˜ h 25.62in

Patm 29.86in_Hg Pabs U˜g˜hPatm Pabs 27.22 psia Ans.

Chapter 1 - Section A - Mathcad Solutions

1.4 The equation that relates deg F to deg C is: t(F) = 1.8 t(C) + 32. Solve this equation by setting t(F) = t(C).

Guess solution: t 0

Given t= 1.8t32 Find t() 40 Ans.

1.5 By definition: P F

= A F = mass g˜ Note: Pressures are in gauge pressure.

P 3000bar D 4mm A S

4˜D2 A 12.566 mm2 F P A˜ g 9.807m

s2

mass F

g mass 384.4 kg Ans.

1.6 By definition: P F

= A F = mass g˜

(2)

FMars K x˜ FMars 4u103m K gMars FMars

mass gMars 0.01m K

kg Ans.

1.12 Given:

z d P d

U ˜g

= and: U M P˜ R T˜

= Substituting:

z d P d

M P˜ R T˜ ˜g

=

Separating variables and integrating:

Psea PDenver

1 P P

´µ µ¶

d

0 zDenver

M g˜ z R T˜

§¨ ©

·

¹

´µ µ¶

= d

After integrating: ln PDenver

Psea

§ ¨

©

·

¹

M˜g

R T˜ ˜zDenver

=

Taking the exponential of both sides

and rearranging: PDenver Psea e

M˜g

R T˜ ˜zDenver

©§¨ ·

˜ ¹

=

Psea 1atm M 29 gm

mol g 9.8m

s2 1.10 Assume the following: U 13.5 gm

cm3

g 9.8m s2

P 400bar h P

U˜g h 302.3 m Ans.

1.11 The force on a spring is described by: F = Ks x where Ks is the spring constant. First calculate K based on the earth measurement then gMars based on spring measurement on Mars.

On Earth:

F = mass g˜ = K x˜ mass 0.40kg g 9.81m s2

x 1.08cm

F mass g˜ F 3.924 N Ks F

x Ks 363.333N m On Mars:

x 0.40cm

(3)

Ans.

wmoon M g˜ moon wmoon 18.767 lbf Ans.

1.14 costbulb 5.00dollars

1000hr ˜10 hr

day costelec 0.1dollars

kW hr˜ ˜10 hr day˜70W costbulb 18.262dollars

yr costelec 25.567dollars yr

costtotal costbulbcostelec costtotal 43.829dollars yr Ans.

1.15 D 1.25ft mass 250lbm g 32.169ft

s2 R 82.06cm3˜atm

mol K˜ T (10273.15)K zDenver 1 mi˜ M g˜

R T˜ ˜zDenver 0.194

PDenver Psea e

M˜g

R T˜ ˜zDenver

§¨© ·

˜ ¹ PDenver 0.823 atm Ans.

PDenver 0.834 bar Ans.

1.13 The same proportionality applies as in Pb. 1.11.

gearth 32.186 ft s2

˜ gmoon 5.32 ft s2

˜ 'lmoon 18.76

'learth 'lmoon gearth gmoon

˜ 'learth 113.498

M 'learth˜lbm M 113.498 lbm

(4)

Ans.

(b) Pabs F

A Pabs 110.054 kPa Ans.

(c) 'l 0.83m Work F˜'l Work 15.848 kJ Ans.

'EP mass g˜'˜ l 'EP 1.222 kJ Ans.

1.18 mass 1250kg u 40m

s EK 1

2mass u˜ 2 EK 1000 kJ Ans.

Work EK Work 1000 kJ Ans.

1.19 Wdot mass g˜'˜ h

time ˜0.91˜0.92

=

Wdot 200W g 9.8m

s2

'h 50m Patm 30.12in_Hg A S

4˜D2 A 1.227 ft2 (a) F Patm˜Amass g˜ F 2.8642u103lbf Ans.

(b) Pabs F

A Pabs 16.208 psia Ans.

(c) 'l 1.7ft Work F˜'l Work 4.8691u103ft lb˜ f Ans.

'PE mass g˜'˜ l 'PE 424.9 ft lb˜ f Ans.

1.16 D 0.47m mass 150kg g 9.813m

s2

Patm 101.57kPa A S

4˜D2 A 0.173 m2 (a) F Patm˜Amass g˜ F 1.909u104N

(5)

mdot Wdot

g˜'h˜0.91˜0.92 mdot 0.488kg

s Ans.

1.22

a) cost_coal

25.00 ton

29 MJ

˜kg cost_coal 0.95 GJ1

cost_gasoline

2.00 gal

37 GJ m3

˜ cost_gasoline 14.28 GJ1

cost_electricity 0.1000

kW hr˜ cost_electricity 27.778 GJ1

b) The electrical energy can directly be converted to other forms of energy whereas the coal and gasoline would typically need to be converted to heat and then into some other form of energy before being useful.

The obvious advantage of coal is that it is cheap if it is used as a heat source. Otherwise it is messy to handle and bulky for tranport and storage.

Gasoline is an important transportation fuel. It is more convenient to transport and store than coal. It can be used to generate electricity by burning it but the efficiency is limited. However, fuel cells are currently being developed which will allow for the conversion of gasoline to electricity by chemical means, a more efficient process.

Electricity has the most uses though it is expensive. It is easy to transport but expensive to store. As a transportation fuel it is clean but batteries to store it on-board have limited capacity and are heavy.

(6)

1.24 Use the Matcad genfit function to fit the data to Antoine's equation.

The genfit function requires the first derivatives of the function with respect to the parameters being fitted.

Function being fit: f T A( BC) e

A B T C

§¨

© ·

¹

First derivative of the function with respect to parameter A

A

f T A( BC) d

d

exp A B TC

§¨

©

·

o

¹

First derivative of the function with respect to parameter B

B

f T A( BC) d

d

1

TC exp A B TC

§¨

©

·

˜

¹

o

First derivative of the function with respect to parameter C

C

f T A( BC) d

d

B TC ( )2

exp A B TC

§¨

©

·

˜

¹

o

t

18.5 9.5

0.2 11.8 23.1 32.7 44.4 52.1 63.3 75.5

§¨ ¨

¨ ¨

¨ ¨

¨ ¨

¨ ¨

¨ ¨

¨ ©

·

¸ ¸

¸ ¸

¸ ¸

¸ ¸

¸ ¸

¸

¹

Psat

3.18 5.48 9.45 16.9 28.2 41.9 66.6 89.5 129 187

§¨ ¨

¨ ¨

¨ ¨

¨ ¨

¨ ¨

¨ ¨

¨ ©

·

¸ ¸

¸ ¸

¸ ¸

¸ ¸

¸ ¸

¸

¹

(7)

T t273.15 lnPsat ln Psat( )

Array of functions used by Mathcad. In this case, a0 = A, a1 = B and a2 = C.

Guess values of parameters

F T a( )

exp a0 a1 Ta2

§

¨ ©

·

¹

exp a0 a1 Ta2

§

¨ ©

·

¹

1

Ta2 exp a0 a1 Ta2

§

¨ ©

·

˜

¹

a1 Ta2

2 exp a0

a1 Ta2

§

¨ ©

·

˜

¹ ª «

« «

« «

« «

« «

« ¬

º »

» »

» »

» »

» »

» ¼

guess

15 3000

50

§¨ ¨

¨©

·

¸

¹

Apply the genfit function

A B C

§¨ ¨

¨©

·

¸

¹

genfit T Psat( guessF)

A B C

§¨ ¨

¨©

·

¸

¹

13.421 2.29u103

69.053

§ ¨

¨ ¨

©

·

¸

¹

Ans.

Compare fit with data.

240 260 280 300 320 340 360

0 50 100 150 200

Psat

f T A( BC)

T

To find the normal boiling point, find the value of T for which Psat = 1 atm.

(8)

This is an open-ended problem. The strategy depends on age of the child, and on such unpredictable items as possible financial aid, monies earned by the child, and length of time spent in earning a degree.

c)

The salary of a Ph. D. engineer over this period increased at a rate of 5.5%, slightly higher than the rate of inflation.

i 5.511 % i Find i( )

C2

C1 = (1i)t2t1 Given

C2 80000dollars C1 16000dollars yr

t2 2000 yr t1 1970

b)

The increase in price of gasoline over this period kept pace with the rate of inflation.

C2 1.513dollars C2 C1˜(1i)t2t1 gal

i 5%

C1 0.35dollars t2 2000 gal

t1 1970 a)

1.25

Tnb273.15K 56.004 degC Ans.

Tnb 329.154 K

Tnb B

A ln Psat

§¨

kPa

©

·

¹

C

§ ¨

¨ ©

·

¹

˜K Psat 1atm

(9)

t1 20 degC˜ CP 4.18 kJ kg degC˜

˜ MH2O 30 kg˜

t2 t1

'Utotal MH2O˜CP

t2 20.014 degC Ans.

(d) For the restoration process, the change in internal energy is equal but of opposite sign to that of the initial process. Thus

Q 'Utotal Q 1.715kJ Ans.Ans.

(e) In all cases the total internal energy change of the universe is zero.

2.2 Similar to Pb. 2.1 with mass of water = 30 kg.

Answers are: (a) W = 1.715 kJ

(b) Internal energy change of the water = 1.429 kJ

(c) Final temp. = 20.014 deg C (d) Q = -1.715 kJ

Chapter 2 - Section A - Mathcad Solutions

2.1 (a) Mwt 35 kg˜ g 9.8 m

s2

˜ 'z 5 m˜

Work Mwt˜'g˜ z Work 1.715 kJ Ans.

(b) 'Utotal Work 'Utotal 1.715 kJ Ans.

(c) By Eqs. (2.14) and (2.21): dUd PV( )= CP˜dT Since P is constant, this can be written:

MH2O˜CP˜dT = MH2O˜dUMH2O˜P˜dV

Take Cp and V constant and integrate: MH2O˜CP˜'

t2t1 = Utotal
(10)

Q34 800J W34 300J

'Ut34 Q34W34 'Ut34 500J Ans.

Step 1 to 2 to 3 to 4 to 1: Since 'Ut is a state function, 'Ut for a series of steps that leads back to the initial state must be zero. Therefore, the sum of the

'Ut values for all of the steps must sum to zero.

'Ut41 4700J 'Ut23 ''Ut12'Ut34 Ut41 'Ut23 4000J Ans.

Step 2 to 3: 'Ut23 4u103J Q23 3800J

W23 'Ut23Q23 W23 200J Ans.

For a series of steps, the total work done is the sum of the work done for each step.

W12341 1400J

2.4 The electric power supplied to the motor must equal the work done by the motor plus the heat generated by the motor.

i 9.7amp E 110V Wdotmech 1.25hp

Wdotelect iE˜ Wdotelect 1.067u103W

Qdot WdotelectWdotmech Qdot 134.875 W Ans.

2.5 Eq. (2.3): 'Ut = QW

Step 1 to 2: 'Ut12 200J W12 6000J

Q12 'Ut12W12 Q12 5.8u103J Ans.

Step 3 to 4:

(11)

'U 12˜kJ Q 'U Q 12kJ Ans.

2.13Subscripts: c, casting; w, water; t, tank. Then mc˜'Ucmw˜'Uwmt˜'Ut = 0

Let C represent specific heat, C = CP = CV Then by Eq. (2.18)

mc˜'Cc˜ tcmw˜'Cw˜ twmt˜'Ct˜ tt = 0

mc 2 kg˜ mw 40 kg˜ mt 5 kg˜ Cc 0.50 kJ

kg degC˜

˜ Ct 0.5 kJ

kg degC˜

˜ Cw 4.18 kJ kg degC˜

˜

tc 500 degC˜ t1 25 degC˜ t2 30 degC˜ (guess) Given mc˜Cc˜

t2tc =

mw˜Cwmt˜Ct ˜

t2t1

t2 Find t

2 t2 27.78 degC Ans.

W41 W12341W12W23W34 W41 4.5u103J Ans.

Step 4 to 1: 'Ut41 4700J W41 4.5u103J

Q41 'Ut41W41 Q41 200 J Ans.

Note: Q12341 = W12341

2.11 The enthalpy change of the water = work done.

M 20 kg˜ CP 4.18 kJ kg degC˜

˜ 't 10 degC˜

Wdot 0.25 kW˜ 'W M C˜'P˜ t

Wdot 'W 0.929 hr Ans.

2.12 Q 7.5 kJ˜ 'U 12˜kJ W 'UQ

W 19.5kJ Ans.

(12)

A 3.142 m2

mdot U˜u˜A mdot 1.571u104kg s

Wdot mdot g˜'˜ z Wdot 7.697u103kW Ans.

2.18 (a) U1 762.0 kJ

˜kg P1 1002.7 kPa˜ V1 1.128 cm3

˜ gm H1 U1P1˜V1 H1 763.131kJ

kg Ans.

(b) U2 2784.4 kJ

˜kg P2 1500 kPa˜ V2 169.7 cm3

˜ gm H2 U2P2˜V2 'U U2U1 'H H2H1 'U 2022.4kJ

kg Ans. 'H 2275.8kJ

kg Ans.

2.15 mass 1 kg˜ CV 4.18 kJ kg K˜

(a) 'T 1K 'Ut mass C˜'V˜ T 'Ut 4.18 kJ Ans.

(b) g 9.8m s2

'EP 'Ut

'z 'EP

mass g˜ 'z 426.531 m Ans.

(c) 'EK 'Ut u

'EK 1 2˜mass

u 91.433m

s Ans.

2.17 'z 50m U 1000kg

m3

u 5m s

D 2m A S

4D2

(13)

mdot C˜ p˜

T3T1 mdot2˜CP˜

T3T2 = Qdot T3˜CP˜

mdot1mdot2 = Qdotmdot1˜CP˜T1mdot2˜CP˜T2 mdot1 1.0kg

s T1 25degC mdot2 0.8kg

s T2 75degC

CP 4.18 kJ kg K˜ Qdot 30kJ

s

T3 Qdotmdot1˜CP˜T1mdot2˜CP˜T2 mdot1mdot2

˜CP T3 43.235 degC Ans.

2.25By Eq. (2.32a): 'H 'u2

2 = 0 'H = CP˜'T By continuity,

incompressibility u2 u1 A1 A2

= ˜ CP 4.18 kJ kg degC˜

˜ 2.22 D1 2.5cm u1 2m

s D2 5cm

(a) For an incompressible fluid, U=constant. By a mass balance, mdot = constant = u1A1U = u2A2U

u2 u1 D1 D2

§ ¨

©

·

¹

2

˜ u2 0.5m

s Ans.

(b) 'EK 1

2u22 1 2u12

'EK 1.875 J

kg Ans.

2.23 Energy balance: mdot3˜H3

mdot1˜H1mdot2˜H2 = Qdot Mass balance: mdot3mdot1mdot2 = 0

Therefore: mdot1˜

H3H1 mdot2˜

H3H2 = Qdot

or

(14)

u2 3.5m

s molwt 29 kg kmol

Wsdot 98.8kW ndot 50kmol

hr CP 7 2˜R 'H CP˜

T2T1 'H 6.402u103 kJ

kmol By Eq. (2.30):

Qdot 'H u22 2

u12 2

§ ¨

©

·

¹

˜molwt

ª

« ¬

º »

¼

˜ndotWsdot Qdot 9.904kW Ans.

2.27By Eq. (2.32b): 'H 'u2

2 g˜ c

= also V2

V1 T2 T1

P1 P2

= ˜

By continunity,

constant area u2 u1 V2 V1

= ˜ u2 u1 T2 T1

˜ P1 P2

= ˜ 'u2 = u22u12 'u2 u12 A1

A2

§ ¨

©

·

¹

2 1

ª« «¬ º»

˜

»¼

= 'u2 u12 D1

D2

§ ¨

©

·

¹

4 1

ª« «¬ º»

˜

»¼

=

SI units: u1 14 m

˜ s D1 2.5 cm˜ D2 3.8 cm˜ 'T u12

2 C˜ P 1 D1 D2

§ ¨

©

·

¹

4

ª«

«¬ º»

˜

»¼

'T 0.019 degC Ans.

D2 7.5cm

'T u12

2 C˜ P 1 D1 D2

§ ¨

©

·

¹

4

ª«

«¬ º»

˜

»¼

'T 0.023 degC Ans.

Maximum T change occurrs for infinite D2:

D2 f˜cm 'T u12

2 C˜ P 1 D1 D2

§ ¨

©

·

¹

4

ª«

«¬ º»

˜

»¼

'T 0.023 degC Ans.

2.26 T1 300K T2 520K u1 10m s

(15)

H2 2726.5 kJ

˜kg

By Eq. (2.32a): Q H2H1 u22u12

2 Q 2411.6kJ

kg Ans.

2.29 u1 30 m

˜ s H1 3112.5 kJ

˜kg H2 2945.7 kJ

˜kg u2 500 m

˜ s (guess)

By Eq. (2.32a): Given H2H1 u12u22

= 2 u2 Find u

2

u2 578.36m

s Ans.

D1 5 cm˜ V1 388.61 cm3

˜ gm V2 667.75 cm3

˜ gm 'H = CP˜'T 7

2˜R˜

T2T1 'u2 u12 T2 =

T1 P1 P2

§

˜

¨ ©

·

¹

2 1

ª« «¬ º»

˜

»¼

=

P1 100 psi˜ P2 20 psi˜ u1 20 ft

˜s T1 579.67 rankine˜ R 3.407 ft lb˜ f

mol rankine˜ molwt 28 gm mol

T2 578 rankine˜ (guess)

Given 7

2˜R˜

T2T1 u12 2 T2

T1 P1 P2

§

˜

¨ ©

·

¹

2 1

ª« «¬ º»

˜

»¼

˜molwt

=

T2 Find T

2 T2 578.9 rankine Ans.

119.15 degF˜

( )

2.28 u1 3 m

˜ s u2 200 m

˜ s H1 334.9 kJ

˜kg

(16)

By Eq. (2.23): Q n C˜ P˜

t2t1 Q 18.62kJ Ans.

2.31 (a) t1 70 degF˜ t2 350 degF˜ n 3 mol˜

CV 5 BTU mol degF˜

˜ By Eq. (2.19):

Q n C˜ V˜

t2t1 Q 4200 BTU Ans.

Take account of the heat capacity of the vessel:

mv 200 lb˜ m cv 0.12 BTU lbm˜degF

˜

Q

mv˜cvn C˜ V ˜

t2t1 Q 10920 BTU Ans.

(b) t1 400 degF˜ t2 150 degF˜ n 4 mol˜ Continuity: D2 D1 u1˜V2

u2˜V1

˜ D2 1.493 cm Ans.

2.30 (a) t1 30 degC˜ t2 250 degC˜ n 3 mol˜ CV 20.8 J

mol degC˜

˜

By Eq. (2.19): Q n C˜ V˜

t2t1 Q 13.728 kJ Ans.

Take into account the heat capacity of the vessel; then mv 100 kg˜ cv 0.5 kJ

kg degC˜

˜

Q

mv˜cvn C˜ V ˜

t2t1 Q 11014 kJ Ans.

(b) t1 200 degC˜ t2 40 degC˜ n 4 mol˜

CP 29.1 joule mol degC˜

˜

(17)

Wdot Ws˜mdot Wdot 39.52 hp Ans.

2.34 H1 307 BTU lbm

˜ H2 330 BTU lbm

˜ u1 20 ft

˜s molwt 44 gm

˜mol V1 9.25 ft3

lbm

˜ V2 0.28 ft3 lbm

˜ D1 4 in˜ D2 1 in˜

mdot S

4˜D12˜u1

V1 mdot 679.263lb hr

u2 mdot V2 S 4˜D22

˜ u2 9.686 ft

sec Ws 5360 BTU lbmol

˜

Eq. (2.32a): Q H2H1 u22u12

2 Ws

molwt

Q 98.82BTU

lbm CP 7 BTU

mol degF˜

˜ By Eq. (2.23):

Q n C˜ P˜

t2t1 Q 7000BTU Ans.

2.33 H1 1322.6 BTU lbm

˜ H2 1148.6 BTU

lbm

˜ u1 10 ft

˜s V1 3.058 ft3

lbm

˜ V2 78.14 ft3 lbm

˜ D1 3 in˜ D2 10 in˜

mdot 3.463u104 lb mdot sec

S

4˜D12˜u1 V1

u2 mdot V2 S

4˜D22

˜ u2 22.997 ft

sec

Eq. (2.32a): Ws H2H1 u22u12

2 Ws 173.99BTU

lb

(18)

'H 17.4 kJ

mol Ans.

Q n˜'H Q 602.08 kJ Ans.

'U QW

n 'U 12.41 kJ

mol Ans.

2.37 Work exactly like Ex. 2.10: 2 steps, (a) & (b). A value is required for PV/T, namely R.

T1 293.15 K˜ T2 333.15 K˜ R 8.314 J

mol K˜ P1 1000 kPa˜ P2 100 kPa˜ (a) Cool at const V1 to P2

(b) Heat at const P2 to T2 CP 7

2˜R CV 5

2˜R Ta2 T1 P2

P1

˜ Ta2 29.315 K

Qdot mdot Q˜ Qdot 67128BTU

hr Ans.

2.36 T1 300 K˜ P 1 bar˜ n 1 kg˜ 28.9 gm

˜mol

n 34.602 mol

V1 83.14 bar cm˜ 3 mol K˜

˜ T1

˜ P V1 24942cm3 mol

W n

V1 V2

V P

´µ

¶ d

= ˜ = n P˜ ˜

V1V2 = n P˜ ˜

V13 V˜ 1

Whence W n˜P˜2˜V1 W 172.61kJ Ans.

Given: T2 T1 V2 V1

= ˜ = T1˜3 Whence T2 3 T˜ 1

CP 29 joule mol K˜

˜ 'H CP˜

T2T1
(19)

Re

22133 55333 110667 276667

§ ¨

¨ ¨

¨ ©

·

¸ ¸

¹

Re D˜U˜u P

o



u 1 1 5 5

§ ¨

¨ ¨

¨ ©

·

¸ ¸

¹

m D s

2 5 2 5

§ ¨

¨ ¨

¨ ©

·

¸ ¸

¹

cm

Note:HD = H/D in this solution HD 0.0001

P 9.0 10˜ 4 kg m s˜ U 996 kg

m3 2.39

'H 1.164 kJ Ans.

'H 'Ha'Hb mol

'U 0.831 kJ Ans.

'U 'Ua'Ub mol

'Ub 6.315u103 J 'Ub 'HbP2˜

V2V1 mol

'Ha 7.677u103 J 'Ha 'UaV1˜

P2P1 mol

V2 0.028 m3 V2 R T˜ 2 mol

P2 V1 2.437u103 m3

V1 R T˜ 1 mol P1

'Ua 5.484u103 J 'Ua CV˜'Ta mol

'Hb 8.841u103 J 'Hb CP˜'Tb mol

'Ta 263.835K 'Ta Ta2T1

'Tb 303.835 K 'Tb T2Ta2

(20)

Cost 799924 dollars Ans.

Cost 15200 Wdot

§¨

kW

©

·

¹

0.573

˜

Wdot 1.009u103kW Wdot mdot H˜

2H1

Assume that the compressor is adiabatic (Qdot = 0). Neglect changes in KE and PE.

H2 536.9 kJ

˜kg H1 761.1kJ

mdot 4.5kg kg s 2.42

'P'L Ans.

0.632

0.206

11.254

3.88

§ ¨

¨ ¨

¨ ©

·

¸ ¸

¹

kPa 'P'L 2 m

D ˜U ˜fF ˜u2

§¨ ©

·

¹

o



mdot Ans.

0.313 1.956 1.565 9.778

§ ¨

¨ ¨

¨ ©

·

¸ ¸

¹

kg mdot U˜u S s

˜4D2

§ ¨

©

·

¹

o



fF

0.00635 0.00517 0.00452 0.0039

§ ¨

¨ ¨

¨ ©

·

¸ ¸

¹

fF 0.3305 ln 0.27˜HD 7

§¨

Re

©

·

¹

0.9

ª

« ¬

º »

¼ ª «

¬

º »

¼

2

ª«

˜

«¬ º»

»¼

o



(21)

a bit of algebra leads to

Work c

P1 P2

P P Pb

´µ µ¶

˜ d

Work 0.516 J

gm Ans.

Alternatively, formal integration leads to

Work c P2P1 b ln P2b P1b

§ ¨

©

·

˜

¹

§

¨ ©

·

˜

¹

Work 0.516 J

gm Ans.

3.5 N = ab P˜ a 3.9 10˜ 6˜atm1 b 0.1˜109˜atm2 P1 1 atm˜ P2 3000 atm˜ V 1 ft˜ 3 (assume const.) Combine Eqs. (1.3) and (3.3) for const. T:

Work V P1

P2

P ab P˜ ( )P˜

´µ

¶ d

˜ Work 16.65 atm ft˜ 3 Ans.

Chapter 3 - Section A - Mathcad Solutions

3.1 E 1 U T

d U d

§ ¨

©

·

˜

¹

= N 1

U P d U d

§ ¨

©

·

˜

¹

=

P T

At constant T, the 2nd equation can be written:

dU

U = N˜dP ln U2 U1

§ ¨

©

·

¹

= N'˜ P N 44.1810

6

˜ ˜bar1 U2= 1.01˜U1 'P ln 1.01( )

N 'P 225.2 bar P2= 226.2 bar˜ Ans.

3.4 b 2700 bar˜ c 0.125 cm3

˜ gm P1 1 bar˜ P2 500 bar˜

Since Work

V1 V2

V P

´µ

¶ d

=

(22)

P2 1 bar˜ T1 600 K˜ CP 7

2˜R CV 5 2˜R (a) Constant V: W= 0 and 'U = Q = CV˜'T

T2 T1 P2 P1

˜ 'T T2T1 'T 525K 'U CV˜'T Q and 'U 10.91 kJ

mol Ans.

'H CP˜'T 'H 15.28 kJ

mol Ans.

(b) Constant T: 'U = 'H = 0 and Q = W

Work R T˜ 1ln P2 P1

§ ¨

©

·

˜

¹

Q and Work 10.37 kJ

mol Ans.

(c) Adiabatic: Q = 0 and 'U = W = CV˜'T 3.6 E 1.2 10˜ 3˜degC1 CP 0.84 kJ

kg degC˜

˜ M 5 kg˜

V1 1 1590

m3

˜kg P 1 bar˜ t1 0 degC˜ t2 20 degC˜ With beta independent of T and with P=constant,

dV

V = E˜dT V2 V1˜exp

ª¬

E˜

t2t1

º¼

'V V2V1 'Vtotal M˜'V 'Vtotal 7.638u105m3 Ans.

Work 'P˜ Vtotal (Const. P) Work 7.638joule Ans.

Q M C˜ P˜

t2t1 Q 84 kJ Ans.

'Htotal Q 'Htotal 84 kJ Ans.

'Utotal QWork 'Utotal 83.99 kJ Ans.

3.8 P1 8 bar˜

(23)

Step 41: Adiabatic T4 T1 P4 P1

§ ¨

©

·

¹

R CP

˜ T4 378.831 K

'U41 CV˜

T1T4 'U41 4.597u103 J mol 'H41 CP˜

T1T4 'H

41 6.436u103 J mol Q41 0 J

mol Q41 0 J

mol

W41 'U41 W41 4.597u103 J mol

P2 3bar T2 600K V2 R T˜ 2

P2 V2 0.017 m3 mol

Step 12: Isothermal 'U12 0 J

mol 'U12 0 J

mol

'H12 0 J

˜mol 'H12 0 J mol J CP

CV T2 T1 P2 P1

§ ¨

©

·

¹

J1 J

˜ T2 331.227 K 'T T2T1

'U CV˜'T 'H CP˜'T W and 'U 5.586 kJ

mol Ans. 'H 7.821 kJ

mol Ans.

3.9 P4 2bar CP 7

2R CV 5

2R

P1 10bar T1 600K V1 R T˜ 1

P1 V1 4.988u103 m3 mol

(24)

Step 34: Isobaric 'U34 CV˜

T4T3 'U34 439.997 J mol

'H34 CP˜

T4T3 'H34 615.996 J mol

Q34 CP˜

T4T3 Q34 615.996 J mol

W34 R˜

T4T3 W34 175.999 J mol

3.10 For all parts of this problem: T2 = T1 and

'U = 'H = 0 Also Q = Work and all that remains is

to calculate Work. Symbol V is used for total volume in this problem.

P1 1 bar˜ P2 12 bar˜ V1 12 m˜ 3 V2 1 m˜ 3 Q12 R˜T1ln P2

P1

¨ §

©

·

˜

¹

Q12 6.006u103 J mol

W12 Q12 W12 6.006u103 J mol

P3 2bar V3 V2 T3 P3˜V3

R T3 400 K

Step 23: Isochoric 'U23 CV˜

T3T2 'U23 4.157u103 J mol

'H23 CP˜

T3T2 'H23 5.82u103 J mol

Q23 CV˜

T3T2 Q23 4.157u103 J mol

W23 0 J

mol W23 0 J

mol

P4 2 bar T4 378.831 K V4 R T˜ 4

P4 V4 0.016 m3 mol

(25)

Pi P1 V1 V2

§ ¨

©

·

¹

J

˜ (intermediate P) Pi 62.898 bar

W1

Pi˜V2P1˜V1

J 1 W1 7635 kJ

Step 2: No work. Work W1 Work 7635 kJ Ans.

(d) Step 1: heat at const V1 to P2 W1= 0 Step 2: cool at const P2 to V2

W2 P2˜

V2V1 Work W2 Work 13200 kJ Ans.

(e) Step 1: cool at const P1 to V2

W1 P1˜

V2V1 W1 1100 kJ (a) Work n R˜ ˜Tln

P2 P1

§ ¨

©

·

˜

¹

= Work P1˜V1 ln P2 P1

§ ¨

©

·

˜

¹

Work 2982 kJ Ans.

(b) Step 1: adiabatic compression to P2

J 5 3

Vi V1 P1 P2

§ ¨

©

·

¹

1 J

˜ (intermediate V) Vi 2.702 m3

W1

P2˜ViP1˜V1

J 1 W1 3063 kJ

Step 2: cool at const P2 to V2

W2 P2˜

V2Vi W2 2042 kJ

Work W1W2 Work 5106 kJ Ans.

(c) Step 1: adiabatic compression to V2

(26)

P1 100 kPa˜ P2 500 kPa˜ T1 303.15 K˜ CP 7

2˜R CV 5

2˜R J CP

CV

Adiabatic compression from point 1 to point 2:

Q12 0 kJ

˜mol 'U12= W12= CV˜'T12 T2 T1 P2 P1

§ ¨

©

·

¹

J1 J

˜ 'U12 CV˜

T2T1 'H12 CP˜

T2T1 W12 'U12 'U12 3.679 kJ

mol 'H12 5.15 kJ

mol W12 3.679 kJ

mol Ans.

Cool at P2 from point 2 to point 3:

T3 T1 'H23 CP˜

T3T2 Q23 'H23 'U23 CV˜

T3T2 W23 'U23Q23

Step 2: heat at const V2 to P2 W2= 0

Work W1 Work 1100 kJ Ans.

3.17(a) No work is done; no heat is transferred.

'Ut = 'T = 0 T2 = T1 = 100 degC˜ Not reversible (b) The gas is returned to its initial state by isothermal compression.

Work n R˜ ˜T ln V1 V2

§ ¨

©

·

˜

¹

= but n R˜ ˜T = P2˜V2

V1 4 m˜ 3 V2 4

3˜m3 P2 6 bar˜ Work P2˜V2 ln V1

V2

¨ §

©

·

˜

¹

Work 878.9 kJ Ans.

3.18 (a)

(27)

Work 1.094 kJ mol

(b) If each step that is 80% efficient accomplishes the same change of state, all property values are unchanged, and the delta H and delta U values are the same as in part (a). However, the Q and W values change.

Step 12: W12 W12

0.8 W12 4.598 kJ

mol

Q12 'U12W12 Q12 0.92 kJ mol

Step 23: W23 W23

0.8 W23 1.839 kJ

mol

Q23 'U23W23 Q23 5.518 kJ mol

Step 31: W31 W31˜0.8 W31 3.245 kJ mol

Q31 W31

Q31 3.245 kJ mol 'H23 5.15 kJ

mol 'U23 3.679 kJ

mol Ans.

Q23 5.15 kJ

mol W23 1.471 kJ

mol Ans.

Isothermal expansion from point 3 to point 1:

'U31= 'H31= 0 P3 P2 W31 R T˜ 3 ln P1 P3

¨ §

©

·

˜

¹

Q31 W31 W31 4.056 kJ

mol Q31 4.056 kJ

mol Ans.

FOR THE CYCLE: 'U = 'H = 0

Q Q12Q23Q31 Work W12W23W31 Q 1.094 kJ

mol

(28)

(b) Adiabatic: P2 P1 V1 V2

§ ¨

©

·

¹

J

˜ T2 T1 P2 P1

˜ V2 V1

˜ T2 208.96 K P2 69.65 kPa Ans.

Work P2˜V2P1˜V1

J 1 Work 994.4kJ Ans,

(c) Restrained adiabatic: Work= 'U = 'Pext˜ V

Pext 100 kPa˜ Work Pext˜

V2V1 Work 400kJ Ans.

n P1˜V1

R T˜ 1 'U = n C˜'V˜ T T2 Work

n C˜ V T1 T2 442.71 K Ans.

P2 P1 V1 V2

˜ T2 T1

˜ P2 147.57 kPa Ans.

FOR THE CYCLE:

Q Q12Q23Q31 Work W12W23W31 Q 3.192 kJ

mol Work 3.192 kJ

mol

3.19Here, V represents total volume.

P1 1000 kPa˜ V1 1 m˜ 3 V2 5 V˜ 1 T1 600 K˜ CP 21 joule

mol K˜

˜ CV CPR J CP CV

(a) Isothermal: Work n R˜ ˜T1ln V1 V2

¨ §

©

·

˜

¹

= P2 P1 V1

V2

˜ T2 T1 T2 600 K P2 200 kPa Ans.

Work P1˜V1 ln V1 V2

¨ §

©

·

˜

¹

Work 1609kJ Ans.
(29)

W23 0 kJ

˜mol 'U23 CV˜

T3T2 Q23 'U23 'H23 CP˜

T3T2 Q23 2.079 kJ

mol 'U23 2.079 kJ

mol 'H23 2.91 kJ mol

Process: Work W12W23 Work 2.502 kJ

mol Ans.

Q Q12Q23 Q 0.424 kJ

mol Ans.

'H 'H12'H23 'H 2.91 kJ

mol Ans.

'U 'U12'U23 'U 2.079 kJ

mol Ans.

3.20 T1 423.15 K˜ P1 8bar˜ P3 3 bar˜ CP 7

2˜R CV 5

2˜R T2 T1 T3 323.15 K˜

Step 12: 'H12 0 kJ

˜mol 'U12 0 kJ

˜mol If r V1

V2

=

V1 V3

= Then r T1 T3

P3 P1

˜ W12 R T˜ 1˜ln r()

W12 2.502 kJ

mol Q12 W12 Q12 2.502 kJ mol

Step 23:

(30)

P1 1 bar˜ P3 10 bar˜

'U CV˜

T3T1 'H CP˜

T3T1 'U 2.079 kJ

mol Ans. 'H 2.91 kJ

mol Ans.

Each part consists of two steps, 12 & 23.

(a) T2 T3 P2 P1 T2 T1

˜

W23 R T˜ 2ln P3 P2

§ ¨

©

·

˜

¹

Work W23 Work 6.762 kJ

mol Ans.

Q 'UWork Q 4.684 kJ

mol Ans.

3.21 By Eq. (2.32a), unit-mass basis: molwt 28 gm

mol 'H 1

2˜'u2

= 0

But 'H = CP˜'T Whence 'T

u22u12 2 C˜ P

=

CP 7 2

R molwt

˜ u1 2.5 m

˜ s u2 50 m

˜ s t1 150 degC˜

t2 t1 u22u12 2 C˜ P

t2 148.8 degC Ans.

3.22 CP 7

2˜R CV 5

2˜R T1 303.15 K˜ T3 403.15 K˜

(31)

Q23 'H23

'U23 CV˜

T3T2 W23 'U23Q23 Work W12W23 Work 4.972 kJ

mol Ans.

Q 'UWork Q 2.894 kJ

mol Ans.

For the second set of heat-capacity values, answers are (kJ/mol):

'U = 1.247 'U = 2.079 (a) Work= 6.762 Q = 5.515 (b) Work= 6.886 Q = 5.639 (c) Work= 4.972 Q = 3.725

(b) P2 P1 T2 T3 'U12 CV˜

T2T1

'H12 CP˜

T2T1 Q12 'H12

W12 'U12Q12 W12 0.831 kJ mol

W23 R T˜ 2ln P3 P2

§ ¨

©

·

˜

¹

W23 7.718 kJ

mol

Work W12W23 Work 6.886 kJ

mol Ans.

Q 'UWork Q 4.808 kJ

mol Ans.

(c) T2 T1 P2 P3 W12 R T˜ 1ln P2

P1

§ ¨

©

·

˜

¹

'H23 CP˜

T3T2
(32)

For the process: Work W12W23

Q Q12Q23 Work 5.608 kJ

mol Q 3.737 kJ

mol Ans.

3.24 W12= 0 Work= W23= P2

V3V2 = R˜

T3T2 But T3 = T1 So... Work= R T˜

2T1 Also W R T˜ 1ln P

P1

§ ¨

©

·

˜

¹

= Therefore

ln P P1

§ ¨

©

·

¹

T2T1 T1

= T2 350 K˜ T1 800 K˜ P1 4 bar˜

P P1exp T2T1 T1

¨ §

©

·

˜

¹

P 2.279 bar Ans.

3.23 T1 303.15 K˜ T2 T1 T3 393.15 K˜ P1 1 bar˜ P3 12 bar˜ CP 7

2˜R CV 5 2˜R For the process: 'U CV˜

T3T1 'H CP˜

T3T1

'U 1.871 kJ

mol 'H 2.619 kJ

mol Ans.

Step 12: P2 P3 T1

T3

˜ W12 R T˜ 1 ln P2 P1

§ ¨

©

·

˜

¹

W12 5.608 kJ

mol Q12 W12 Q12 5.608 kJ mol

Step 23: W23 0 kJ

˜mol Q23 'U

(33)

TB(final)= TB nA = nB Since the total volume is constant,

2 n˜ A˜R˜T1 P1

nA˜R˜

TATB P2

= or 2 T˜ 1

P1

TATB P2

= (1)

(a) P2 1.25 atm˜ TB T1 P2 P1

§ ¨

©

·

¹

J1 J

˜ (2)

TA 2 T˜ 1 P2 P1

˜ TB Q = nA˜

'UA'UB

Define q Q

nA

= q CV˜

TATB2 T˜ 1 (3) TB 319.75 K TA 430.25 K q 3.118 kJ

mol Ans.

3.25 VA 256 cm˜ 3 Define: 'P

P1 = r r 0.0639 Assume ideal gas; let V represent total volume:

P1˜VB= P2˜

VAVB From this one finds:

'P P1

VA VAVB

= VB VA˜(r1)

r VB 3750.3 cm3 Ans.

3.26 T1 300 K˜ P1 1 atm˜ CP 7

2˜R CV CPR J CP CV

The process occurring in section B is a reversible, adiabatic compression. Let P final( )= P2 TA(final) T= A

(34)

TA 2 T˜ 1 P2 P1

˜ TB (1) TA 469 K Ans.

q CV˜

TATB2 T˜ 1 q 4.032<

Gambar

Table 3.1 D  Tr  Z 1  0.37464  1.54226Z  0.26992Z 2 1 T r
Table 3.1 D  Tr  Z 1  0.37464  1.54226Z  0.26992Z 2 1 T r
Table 3.1 D  Tr  Z 1  0.37464  1.54226Z  0.26992Z 2 1 T r
Table 3.1 q T  r &lt;D ˜  T r
+4

Referensi

Dokumen terkait

Aim To analyze the effects of aircraft noise, resting pulse rate, and other factors on the risk of high diastolic blood pressure (DBP) in Indonesian Air Force pilots.. Methods

Sensor is a device that related to the circuit in used to measure various physical properties such as temperature, force, pressure, flow, position, light

Synchronization of Compass Module with Pressure and Temperature Sensor System for Autonomous Underwater Vehicle (AUV) Mohamad Haniff Harun a, 1 , Mohd Shahrieel Mohd Aras b ,

At this stage of testing the performance of the pressure control system, the data used are compressive force and stress data while the material temperature

In conclusion, high aircraft vibration, high average fl ight hours per year, and high resting pulse rate increase risk high systolic blood pressure in air force

Series 1073 2018 042020 doi :10.1088/1742-6596/1073/4/042020 Working-room temperature is associated with increased blood pressure among air traffic controllers in the Jakarta Air

The IoT-based blood pressure and body temperature monitoring device consisting of a series of MPX5100DP sensors and DS18B20 sensors, a series of LCD+I2C and WiFi modulees, a battery

The effect of tactility, composition, pressure and the presence of a diluent on the glass transition temperature of polymers will be shown using molecular dynamics MD and pcff+