• Tidak ada hasil yang ditemukan

MEKANIKA TANAH 1 - Spada UNS

N/A
N/A
Protected

Academic year: 2024

Membagikan "MEKANIKA TANAH 1 - Spada UNS"

Copied!
25
0
0

Teks penuh

(1)

MEKANIKA TANAH 1

TEKANAN REMBESAN DAN UPLIFT (Pertemuan 12)

Disusun oleh:

Tim KBK Geoteknik Prodi Teknik Sipil FT UNS

Lab. Mekanika Tanah FT UNS, Jl Ir Sutami 36 a Surakarta

(2)

TEKANAN REMBESAN

(3)

A. TEKANAN REMBESAN

• Air keadaan statis  tekanan hidrostatis

• Air mengalir  tekanan partikel hidrodinamis  arahnya sesuai aliran

• Besarnya tekanan rembesan  f(i)

• Besarnya gaya rembesan pada pias (dP)

dP = g

w

dh dA

• Besarnya gaya rembesan persatuan volume

D = g

w

i

• Kondisi kritis D = g’= g

w

i

c

 g

eff

= g ’ – D < 0

• Gradien hidroulik kritis i

c

i £ i

c

i

c

= G

s

- 1 SF

1 + e

(4)

UPLIFT

(5)

Uplift pressure on Hydraulic Structures

21 m

6 m

Impervious layer

k k

k

x

z

a d

30 m

42 m

a b c d e f

Nf = 2 Nd = 7

m 7 3

21 

N

d

h H

Point a 

p

a

   21  6   3  g

w

 24 g

w

Point b 

p

b

   21  6   2  3  g

w

 21 g

w

Point f 

p

f

   21  6   6  3  g

w

 9 g

w

Method 1

(6)

21 m

6 m

Impervious layer

k k

k

x

z

a d

30 m

42 m

a b c d e f

Nf = 2 Nd = 7

m 7 3

21 

N

d

h H

Total head at point a (from datum) 

21 18 m 7

6  

 H

N h n

d d a

Uplift pressure at point a, by using Bernoulli Equation 

Datum

nd = 0

1 3 2

5 4 6

7

a a

w w

w

a

h z

p  g   g ( 18  (  6 ))  24 g

Method 2

(7)

21 m

6 m

Impervious layer

k k

k

x

z

a d

30 m

42 m

a b c d e f

Nf = 2 Nd = 7

a b c d e f

kN/m2

24gw

kN/m2

21gw

kN/m2

18gw

kN/m2

15gw

kN/m2

12gw

kN/m2

9gw

42 m

(8)

2. (a) Calculate the seepage under the hydraulic structure (dam) (b) Draw uplift pressure distribution at the bottom of the dam

det /

,

k k

k

x z

m 10

5

2 

5

5 m

4 m 10 m

5 m

(9)

9. REMBESAN PADA

BENDUNGAN

(10)

Seepage through an Earth Dam

Methods to calculate the rate of flow (debit rembesan) 1. Dupuit ’ s solution

2. Schaffernak ’ s solution 3. Casagrande ’ s solution

Drawing the seepage line 1. Isotropic

2. Anisotropic

3. Inflow, outflow and transfer condition

(11)

Impervious layer

H1

H2 x

z

A

B dx

dz

d

1. Dupuit ’ s solution

dx i dz

kiA q

   

1

0 2

H

H d

dz kz dx

q 

22

2

2 H

1

H d

q  k 

(12)

Impervious layer

H

x

A z

B dx

dz

d

2. Schaffernak ’ s solution

sin 1

BD

tan a A

dx i dz

kiA

q  

d

cos a H

sin a

dx a

dz

z sin tan

 tan sin

ka q 

D C

a

 tan sin

dx ka kz dz

q  

 

 

 

 

 

22 22

sin cos

cos

H d

a d

(13)

Impervious layer

H

x

A z

B dx

dz

d

3. Casagrande ’ s solution

sin 1

BF

sin a A

ds i dz

kiA

q    

s

a H

sin a

dx a

dz

z sin

2

sin

2

 ka q

F C

a

sin

2

 ka

dx kz dz q

       

 d

2

H

2

d

2

H

2

ctg

2

a

ds A

’ D

E

0,3(AD)

(14)

Graphical solution (Taylor, 1948) HCH 1-3353-p239

Impervious layer

H

x

A z

B

d

F C

 A

’ D

0,3(AD)

sin mH a

d/H

(degree)

(15)

Impervious layer

Example: Calculate the rate of flow through an earth dam by using the methods: (a) Dupuit ; (b) Shaffernak and (c) Casagrande

(16)

Drawing the seepage line

Impervious layer

+ x

z

E 1

n

x=d

F V

 B

D1

z=H

0,3(AD)

D C

1 m

B1

B2

R

S A

H

p p

 

 d H d 

p 

2

2

1 2

p p x z

4

4

2

2

A

(17)

Impervious layer

+ x

z

E 1

n

x=d

F V

 B

D1

z=H

0,3(AD)

D C

1 m

B1

B2

R

S A

H

p p

a c a

a RF

RS 

 

30

A

(18)

HCH MT1-3354-p.265

 a a  c

a    

 a sin Z

s

parabolic parabolic

parabolic

Earth dam drainage

Earth dam

drainage

drainage

(19)

30

 HCH MT1-3354-p.245

(1)

(2)

(3)

(4)

(5)

(6)

(20)

Example

sec / mm 4 ,

 0

z

x k k

Draw flow net

AB = equipotential line AC = flow line

BD  using Casagrande’s solution

(1)

(4)

 

d H d

p 2 2 1 2

p p x z

4 4 2

2

(2)

(3)

) 16 , 3 ( 4

) 16 , 3 (

4 2

2

z x

Nf = 3 Nd = 16

(5)

width dam

per

/day m

46267

3

d f

N kH N q

Drainage

(21)

Seepage through anisotropic earth dam k x

x k

x z

t



 

 

 k

x

k

z

'

k  

d f

N H N ' k q 

Inflow, outflow, and transfer condition

HCH MT1-3357-p.253

(22)

Filter

 

  D

1585 sf

 4 ~ 5

D

 

  D

1515 sf

 4 ~ 5

D

    D

5050 sf

 25

D

To prevent from piping

Hydraulic conductivity of the filter

is high enough for drainage

(23)

Example

sec /

m 10

5 ,

4 

8

x

 k

sec /

m 10

6 ,

1 

8

z

 k

x , k x

x k

x z

t

  0 6

 

 

  2 , 7 10 m/sec

'  k

x

 k

z

 

8

k

(24)

DAFTAR PUSTAKA

• Fathani, T.F., Slide kuliah Mekanika Tanah

• Hardiyatmo. 2006. Mekanika Tanah 1. Gadjah

Mada University Press, Yogyakarta

(25)

SEKIAN DAN TERIMAKASIH

Semangat, berjuang dan berdoa demi meraih cita citamu

Tim KBK Geoteknik Prodi Teknik Sipil UNS

Referensi

Dokumen terkait

Hasil penelitian menunjukkan bahwa tersusunnya media pembelajaran berbasis video tutorial pada mata kuliah mekanika tanah dengan tingkat kelayakan berdasarkan penilaian

Umum : Mahasiswa dapat memahami dan menganalisis masalah-masalah mekanika tanah yang berhubungan dengan bangunan teknik sipil.. Khusus: Mahasiswa dapat menjelaskan

• The test equipment consists of a metal box in which the soil specimen is placed • The box is split horizontally into two halves • Vertical force normal stress is applied through a

FLOWNETS CONFINED - Flow lines: a water particle will travel from upstream to downstream side in permeable soil medium - Equipotential lines: potential head at all points is equal..