BAB IX KESIMPULAN
Berdasarkan teori dan perhitungan pada bab-bab sebelumnya maka dapat diambil kesimpulan sebagai berikut:
1. Dengan meningkatnya kebutuhan methanol setiap tahunnya, maka direncanakan pabrik ini dibuat dengan kapasitas 350.000 ton per tahun yang diharapkan dapat memenuhi kebutuhan dalam negeri.
2. Dengan mempertimbangkan aspek pengadaan bahan baku, sarana transportasi dan distribusi produk serta kondisi geografis, maka direncanakan pabrik ini akan didirikan didaerah Kampar, Riau.
3. Berdasarkan analisa teknik dan ekonorni didapat:
Total Biaya Investasi, TCl = US $ 14,316,721.287 Total Biaya Produksi, TPC = US $ 93),23133,681.670 Harga Jual methanol per Tahun = US $ 112,200,000.00
Pay Out Time = 3,2 tahun
Service Life = 10 tahun
Laju Pengembalian, ROR = 68,9%
Break Even Point, BEP = 36,88%
Berdasarkan hasil analisa diatas maka dapat disimpulkan bahwa pabrik pembuatan, methanol ini layak untuk didirikan.
DAFTAR PUSTAKA
Brown. G.G., 1978, “Unit Operation", Modern Charles Turtle Co., Tokyo.
Coulson, J M., and Richardson, J.F., 1983 "Cheinical Engineering Thermodynamics”, First Edition , Pergamon Press, Oxford.
Daubert, Thomas E., 1985, “Chemical Engineering Thermodynamics”, Third Edition, Mc-Graw Hill Company, New York.
Dogra, S.K., 1990, “Kimia Fisika dan Soal-soal”, Universitas Indonesia.
Felder,R.M., and Rousseau, R.W., 1986, “Elementary Principal of Chemical Process”, Second Edition, John Wiley and Sons Inc, New York.
Fogler, Scott H., 1992, “element of Cheinical Reaction Engineering”, Second Edition, Prentice - Hall of India.. New Delhi.
Gilbert. F Froument & Kennet B. Bischoff, 1990, “Cheinical Reactor analysis and Design”, Second Edition, John Wiley and Sons, Canada.
Grant, L. Eugene, 1980, “Dasar-dasar Ekonomi Teknik” Jilid 1, PT Bima Aksara, Jakarta.
Holland, Charles D., Antohny, Rayford G., 1989, “Fundamentals of Chemicals Reaction Engineering”, Second Edition, Prentice Hall.
Kern, D. Q., 1973, “Process Heat Transfer”, Internasional Student Edition, Mc -Graw Hill Kogakusha Company Ltd., Tokyo.
Lange, N.A., 1950, “Hand Book qf Chemistry”, Ninth Edition, Mc - Graw Hill Intemasional Book Company, Tokyo.
Mc - Cabe, W.L., Smith, J.T., 1987, ”Unit Operation of Chemical Engineering”, Third Edition, Mc - Graw Hill Company, New York.
Mc - Ketta., J.J., 1983, “Encyclopedia of Chemical Engineering and Design” Marcell D Inc.
Nelson, W.L., “Petroleum Refinery Engineering”, Fourth Edition, Mc - Graw Hill Book Company, New York.
Oktav Levenspiel, “Chemical Reaction Engineering”, Second Edition, John Wiley and Sons, New York.
Perrys,R.H., and Chilton,C.H., 1984, “Chemical Engineering Handbook", Sixth Edition, Mc - Graw Hill Book Company, New York,
Peter, M.S., and Timmerhause, K.D., 1961, “Plant Design and Economic for
Chemical Engineering”, Third Edition, Mc,- Graw Hill Kogakusha Company Ltd, Tokyo
Smith, JM., and Van Ness, HC., 1987, “Chemical Engineering Kinetics”, Fourth Edition, Mc – Graw Hill Book Company, New York.
Smith, JM., 1975, “Chemical Engeneering Kinetics”,Second Edition, Mc – Graw Hill Book Company, New York.
Syarifuddin Ismail, 1996, “Alat Industri Kimia”, Universitas Sriwijaya.
Syarifuddin Ismail, 1996, “Kinetika Kimia”, Universitas Sriwijaya.
Treyball, RE., 1987, “Mass Transfer Operation”, Third Edition, Mc – Graw Hill Company, New York.
Twigg, Martin, V., 1989, “Catalyst Handbook”, Second Edition, Wolf Publishing Ltd, England, 1989.
Wallas, SM., 1988, “Chemical Process Equipment Selection and Design”, Second Edition, John Wiley and Sons, New York.
US Patent No. 6.100.303., “Process for Producing Methanol”.
DAFTAR NOTASI
1. Compressor
k : Ratio cp/cv, tak berdimensi Ns : Jumlah stage yang dibutuhkan
P : Tekanan, atrn
Pw : Power yang dibutuhkan, HP
gv, gl : Volumetrik flowrate gas, liquid, kg/jam cfm : Cubik ft per menit
Rc : Ratio compressor, tak berdimensi Rv, rl : Densitas gas, liquid, kg/m 3
2. Heat Exchanger, Cooler, Parsial kondensor at, as : Area aliran tube, shell m2
a” : Permukaan external per linier foot, ft2/1 in ft ap, as : Area aliran annulus, Inner pipe, ft2
A: Permukaan perpindahan panas, ft2 B: Baffle Spacing, in
C’ : Clearance antar tube, ft D: Diameter dalam tube, ft
De : Diameter equivalent untuk pp dan pressure drop, ft Ds : Diameter dalam shell, ft
T : Faktor perbedaan suhu f : Faktor friksi, ft2/in2
Gs : Kecepatan massa fluida annulas, lb/jam ft2 GP : Kecepatan massa tube, lb/jam ft2
g’ : Kecepatan gravitasi, ft/dr2 g : Kecepatan gravitasi,ft/dr
H : Enthalphy, BTU
h : Koefisien perpindahan panas, Btu/jam ft2oF
hio : Harga hj untuk diameter bagian luar tube Btu/jam ft2oF hi, ho : Koefisien pp fluida dalam dan luar tube, Btu/jam ft2oF jH : Faktor perpindahan panas
k : Konduktivitas thermal, Btu/jam ft2 (oF/ft2)
L : Panjang tube, ft
T = LMTD : Logarithmic Mean Temperature Difference, oF
n : Jumlah tube pass
N : Jumlah baffle pada shell side
NT : Jumlah tube
PT : Pitch tube, in
P : Pressure drop, psi
Q : Beban panas HE, Btu/jam
Ret, Res, : Bilangan reynold tube dan shell, dimenentionless Rd : Dirt Factor, (hr)(ft2)(oF)/Btu
T,t : Temperatur operasi, oF Tc, tc : Temperatur colorific, oF Tav , tav : Temperatur rata-rata, oF
UD : Design Over all Coeficient, Btu/(hr)(ft )(oF)
V : Velocity, fps
W, w : Laju alir massa, lb/jam
: Viskositas fluida, lb/ft hr
3. Pompa
A : Area alir pipa, in2 ID : Indise diameter pipa, in
Di,opt : Diameter optimum pipa, in
gc : Kecepatan gravitasi, ft/S2 f : Faktor friksi, ft2/in
Hf,suc : Total friksi pada suction, ft Hf,dis : Total friksi pada dischage, ft
kc, ke : Contaction, Expantion loss contraction, ft
L : Panjang pipa, m
Le : Panjang equivalent pipa, ft PPV : Tekanan uap, psi
Qf : Laju alir volumetric, ft3/s Re : Reynold number, dimensionless Vf : Volume fluida, lb/jam
V : Kecepatan alir, ft/s
4. Reaktor
A : Area perpindahan panas, CA,CB : Konsentrasi, kmol/m3
C’ : Clearance, m
dp : Diameter katalis, cm
D : Diameter reactor, m
FA,FB : Laju alir mol, kmol/jam.
Hg : Tinggi reactor, m HS : Tinggi heat reactor, m
HT : Tinggi tube, m
k : Konstanta kecepatan reaksi
NT : Jumlah tube
PT : Pitch tube, m
Q : Laju alir umpan masuk, m3/jam -rA : Laju reaksi, kmol/kgrkatalis.jam t : Tebal dinding reactor, mm
VR : Volume reactor, m3 VT : Volume tube total, m3 Wkat : Berat katalis, kg
XA : Konversi, %
: Porositas katalis
5. Tanki
C : Tebal korosi yang diizinkan, m D : Diameter dalam tanki, m
E : Effisiensi penyambungan, dimentionless
h : Tinggi heat, m
H : Tinggi silinder, m
Ht : Tinggi total tanki, m
P : Tekanan operasi, atm
S : Working stress yang diizinkan, atm T : Temperatur operasi, oC
T : Tebal dinding tanki, m Ve : Volume ellipsoidal heat, m3 Vk : Volume kerucut, m3
Vs : Volume silinder, m3 Vt : Volume tanki, m3 w : Laju alir massa, kg/jam