• Tidak ada hasil yang ditemukan

(2010) ‘Multiple color and pH stability of floral anthocyanin extract: Clitoria ternatea’, in 2010 International Conference on Science and Social Research (CSSR 2010)

N/A
N/A
Protected

Academic year: 2023

Membagikan "(2010) ‘Multiple color and pH stability of floral anthocyanin extract: Clitoria ternatea’, in 2010 International Conference on Science and Social Research (CSSR 2010)"

Copied!
7
0
0

Teks penuh

(1)

Clarence Sukmana REFERENCES

Abdullah, R., Lee, P. M. and Lee, K. H. (2010) ‘Multiple color and pH stability of floral anthocyanin extract: Clitoria ternatea’, in 2010 International Conference on Science and Social Research (CSSR 2010). IEEE, pp. 254–258.

Ashworth, M. R. F. and Stahl, E. (2013) Thin-layer Chromatography: A Laboratory Handbook. Springer Science & Business Media.

Barnes, J. S. et al. (2009) ‘General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry’, Journal of Chromatography A. doi:

10.1016/j.chroma.2009.04.032.

Brouillard, R. (1982) Chemical structure of anthocyanins. Academic Press: New York.

Buchert, J. et al. (2005) ‘Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices’, Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.2284.

Burton-Freeman, B., Sandhu, A. and Edirisinghe, I. (2016) ‘Anthocyanins’, in Nutraceuticals. Elsevier, pp. 489–500.

Cao, S.-Q. et al. (2010) ‘Isolation and purification of anthocyanins from blood oranges by column chromatography’, Agricultural Sciences in China. Elsevier, 9(2), pp. 207–215.

Cisse, M. et al. (2012) ‘Impact of the extraction procedure on the kinetics of anthocyanin and colour degradation of roselle extracts during storage’, Journal of the Science of Food and Agriculture. Wiley Online Library, 92(6), pp. 1214–1221.

Deineka, V. I., Makarevich, S. L. and Deineka, L. A. (2018) ‘Hydrophilic Interaction Chromatography on Silica: Group Analysis of Grape Anthocyanins’, Journal of analytical chemistry. Springer, 73(2), pp. 190–194.

Deng, J. et al. (2013́́) ‘Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars’, Food chemistry. Elsevier, 139(1–4), pp. 307–312.

Dossett, M., Lee, J. and Finn, C. E. (2011) ‘Characterization of a novel anthocyanin profile in wild black raspberry mutants: An opportunity for studying the genetic control of pigment and color’, Journal of Functional Foods, 3(3), pp. 207–214. doi:

10.1016/j.jff.2011.04.003.

Filip, M. et al. (2012) ‘Identification of anthocyanins and anthocyanidins from berry fruits by chromatographic and spectroscopic techniques to establish the juice authenticity

(2)

Clarence Sukmana from market’, JPC-Journal of Planar Chromatography-Modern TLC. Akadémiai Kiadó, 25(6), pp. 534–541.

Fleschhut, J. et al. (2006) ‘Stability and biotransformation of various dietary anthocyanins in vitro’, European journal of nutrition. Springer, 45(1), pp. 7–18.

Fuleki, T. (1969) ‘The anthocyanins of strawberry, rhubarb, radish and onion’, Journal of Food Science. Wiley Online Library, 34(4), pp. 365–369.

Garber, E. D., Redding, W. F. and Chorney, W. (1962) ‘Separation of anthocyanins by cellulose column chromatography’, Nature. Springer, 193(4817), pp. 801–802.

Garcia-Viguera, C., Zafrilla, P. and Tomás-Barberán, F. A. (1998) ‘The use of acetone as an extraction solvent for anthocyanins from strawberry fruit’, Phytochemical Analysis, 9(6), pp. 274–277. doi: 10.1002/(SICI)1099-1565(199811/12)9:6<274::AID- PCA416>3.0.CO;2-G.

Gould, K., Davies, K. M. and Winefield, C. (2008) Anthocyanins: biosynthesis, functions, and applications. Springer Science & Business Media.

Grajeda-Iglesias, C. et al. (2016) ‘Isolation and characterization of anthocyanins from Hibiscus sabdariffa flowers’, Journal of natural products. ACS Publications, 79(7), pp.

1709–1718.

Grigoras, C. G. et al. (2012) ‘Sweet cherries anthocyanins: An environmental friendly extraction and purification method’, Separation and Purification Technology, 100, pp.

51–58. doi: 10.1016/j.seppur.2012.08.032.

Ha, T. J. et al. (2010) ‘Anthocyanins in cowpea [Vigna unguiculata (L.) Walp. ssp.

unguiculata]’, Food Science and Biotechnology. Springer, 19(3), pp. 821–826.

Hrazdina, G. (1970) ‘Column Chromatographic Isolation of the Anthocyanidin-3,5- Diglucosides from Grapes’, Journal of Agricultural and Food Chemistry, 18(2), pp. 243–

245. doi: 10.1021/jf60168a009.

Jackman, R. L. et al. (1987) ‘Anthocyanins as food colorants—a review’, Journal of food biochemistry. Wiley Online Library, 11(3), pp. 201–247.

Kammerer, D., Carle, R. and Schieber, A. (2004) ‘Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties’, European Food Research and Technology. Springer, 219(5), pp. 479–

486.

Kazuma, K. et al. (2004) ‘Identification of Delphinidin 3́́‐O‐(6 ″‐O‐Malonyl)‐β‐

glucoside‐3́́′‐O‐β‐glucoside, a Postulated Intermediate in the Biosynthesis of Ternatin C5

(3)

Clarence Sukmana in the Blue Petals of Clitoria ternatea (Butterfly Pea)’, Chemistry & biodiversity. Wiley Online Library, 1(11), pp. 1762–1770.

Kazuma, K., Noda, N. and Suzuki, M. (2003́́) ‘Flavonoid composition related to petal color in different lines of Clitoria ternatea’, Phytochemistry. Elsevier, 64(6), pp. 1133–

1139.

Khoo, H. E. et al. (2017) ‘Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits’, Food and Nutrition Research. doi: 10.1080/16546628.2017.1361779.

Kondo, T., Ueda, M. and Goto, T. (1990) ‘Structure of ternatin B1, a pentaacylated anthocyanin substituted on the B-ring asymmetrically with two long chains’, Tetrahedron. Elsevier, 46(13–14), pp. 4749–4756.

Lee, J. H. (2010) ‘Identification and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties’, Food Science and Biotechnology. Springer, 19(2), pp. 391–397.

Lee, M. J. et al. (2013́́) ‘Characterization and quantitation of anthocyanins in purple- fleshed sweet potatoes cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF- MS/MS’, Journal of agricultural and food chemistry. ACS Publications, 61(12), pp.

3148–3158.

Liu, X. et al. (2004) ‘Quantification and purification of mulberry anthocyanins with macroporous resins’, BioMed Research International. Hindawi, 2004(5), pp. 326–331.

Lu, Y. et al. (2011) ‘Preparative separation of anthocyanins from purple sweet potatoes by high-speed counter-current chromatography’, Fenxi Huaxue/ Chinese Journal of Analytical Chemistry, 39(6), pp. 851–856. doi: 10.1016/S1872-2040(10)60444-6.

Maite T. Escribano-Bailon and Celestino Santos-Buelga (2012) ‘Anthocyanin Copigmentation - Evaluation, Mechanisms and Implications for the Colour of Red Wines’, Current Organic Chemistry, 16(6), pp. 715–723. doi:

10.2174/138527212799957977.

Marpaung, A. et al. (2018) ‘The Wide Variation of Color Stability of Butterfly Pea (Clitoria ternatea L.) Flower Extract at pH 6-8’, in Proceeding of International Conference Food Innovation: ASEAN Economic Community (AEC) Challenges, pp. 283–

291.

Marpaung, A. M. (2012) ‘Optimasi Proses Ekstraksi Antosianin Pada Bunga Teleng (Clitoria ternatea L.) Dengan Metode Permukaan Tanggap’. Tesis]. Bogor (ID): Institut

(4)

Clarence Sukmana Pertanian Bogor.

Marpaung, A. M. (2017) STABILITY OF INTRAMOLECULAR COPIGMENTATION AND ITS ROLE ON COLOUR DEGRADATION OF ANTHOCYANINS FROM BUTTERFLY PEA (Clitoria ternatea L.) FLOWER EXTRACT.

Montilla, E. C. et al. (2011) ‘Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze’, Journal of Agricultural and Food Chemistry. ACS Publications, 59(7), pp.

3385–3390.

Moreno, D. A. et al. (2010) ‘Acylated anthocyanins in broccoli sprouts’, Food Chemistry.

Elsevier, 123(2), pp. 358–363.

Mukherjee, P. K. et al. (2008) ‘The Ayurvedic medicine Clitoria ternatea—from traditional use to scientific assessment’, Journal of ethnopharmacology. Elsevier, 120(3), pp. 291–301.

Nair, V. et al. (2015) ‘Protective role of ternatin anthocyanins and quercetin glycosides from butterfly pea (Clitoria ternatea Leguminosae) blue flower petals against lipopolysaccharide (LPS)-induced inflammation in macrophage cells’, Journal of agricultural and food chemistry. ACS Publications, 63(28), pp. 6355–6365.

Nicolaus, Y., Marpaung, A. M. and Wicaksono, D. H. B. (2019) Anthocyanin And Fabric Utilization As A Sensor For Fish Deterioration.

Oguis, G. K. et al. (2019) ‘Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine’, Frontiers in Plant Science. doi:

10.3389/fpls.2019.00645.

Park, N. Il et al. (2011) ‘Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus)’, Journal of agricultural and food chemistry. ACS Publications, 59(11), pp. 6034–6039.

Patras, A. et al. (2010) ‘Effect of thermal processing on anthocyanin stability in foods;

mechanisms and kinetics of degradation’, Trends in Food Science and Technology, 21(1), pp. 3–11. doi: 10.1016/j.tifs.2009.07.004.

Rein, M. (2005) ‘Copigmentation reactions and color stability of berry anthocyanins’.

Helsingin yliopisto.

Sadilova, E., Carle, R. and Stintzing, F. C. (2007) ‘Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity’, Molecular Nutrition and Food Research, 51(12), pp. 1461–1471. doi: 10.1002/mnfr.200700179.

(5)

Clarence Sukmana Schwarz, M., Jerz, G. and Winterhalter, P. (2003́́) ‘Isolation and structure of Pinotin A, a new anthocyanin derivative from Pinotage wine’, Vitis, 42(2), pp. 105–106.

Shen, Y. et al. (2016) ‘Butterfly pea (Clitoria ternatea) seed and petal extracts decreased HE p‐2 carcinoma cell viability’, International Journal of Food Science & Technology.

Wiley Online Library, 51(8), pp. 1860–1868.

Silva, S. et al. (2017) ‘Anthocyanin extraction from plant tissues: A review’, Critical Reviews in Food Science and Nutrition, 57(14), pp. 3072–3083. doi:

10.1080/10408398.2015.1087963.

Srivastava, J. and Vankar, P. S. (2010) ‘Canna indica flower: New source of anthocyanins’, Plant Physiology and Biochemistry, 48(12), pp. 1015–1019. doi:

10.1016/j.plaphy.2010.08.011.

Talpate, K. A. et al. (2013́́) ‘Antihyperglycemic and antioxidant activity of Clitorea ternatea Linn. on streptozotocin-induced diabetic rats’, Ayu. Medknow Publications &

Media Pvt Ltd, 34(4), pp. 433–439. doi: 10.4103/0974-8520.127730.

Terahara, N. et al. (1989) ‘Structure of ternatin D1, an acylated anthocyanin from Clitoria ternatea flowers’, Tetrahedron letters. Elsevier, 30(39), pp. 5305–5308.

Terahara, Norihiko et al. (1990a) ‘Acylated anthocyanins of Clitoria ternatea flowers and their acyl moieties’, Phytochemistry, 29(3), pp. 949–953. doi: 10.1016/0031- 9422(90)80053-J.

Terahara, Norihiko et al. (1990b) ‘Structure of ternatin A1, the largest ternatin in the major blue anthocyanins from Clitoria ternatea flowers’, Tetrahedron letters. Elsevier, 31(20), pp. 2921–2924.

Terahara, N et al. (1990) ‘Structure of ternatin A2, one of Clitoria ternatea flower anthocyanins having the unsymmetrical side chains’, Heterocycles (Sendai), 31(10), pp.

1773–1776.

Terahara, N. et al. (1996) ‘Five new anthocyanins, ternatins A3́́, B4, B3́́, B2, and D2, from Clitoria ternatea flowers’, Journal of Natural Products. ACS Publications, 59(2), pp. 139–144.

Terahara, N. et al. (1998) ‘Eight New Anthocyanins, Ternatins C1− C5 and D3́́ and Preternatins A3́́ and C4 from Young Clitoria t ernatea Flowers’, Journal of natural products. ACS Publications, 61(11), pp. 1361–1367.

Terahara, N. and Matsui, T. (2008) ‘Structures and functionalities of acylated anthocyanins’, ACS Symposium Series. ACS Publications, 993, pp. 90–101.

(6)

Clarence Sukmana Trouillas, P. et al. (2016) ‘Stabilizing and modulating color by copigmentation: Insights from theory and experiment’, Chemical reviews. ACS Publications, 116(9), pp. 4937–

4982.

Vatai, T. et al. (2008) ‘Extraction and formulation of anthocyanin-concentrates from grape residues’, Journal of Supercritical Fluids, 45(1), pp. 32–36. doi:

10.1016/j.supflu.2007.12.008.

Vatai, T., Škerget, M. and Knez, Ž. (2009) ‘Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide’, Journal of Food Engineering, 90(2), pp. 246–254. doi:

10.1016/j.jfoodeng.2008.06.028.

Veberic, R. et al. (2015) ‘Anthocyanin composition of different wild and cultivated berry species’, LWT-Food Science and Technology. Elsevier, 60(1), pp. 509–517.

Vrhovsek, U. et al. (2012) ‘Identification and quantification of flavonol glycosides in cultivated blueberry cultivars’, Journal of Food Composition and Analysis, 25(1). doi:

10.1016/j.jfca.2011.04.015.

Welch, C. R., Wu, Q. and Simon, J. E. (2008) ‘Recent Advances in Anthocyanin Analysis and Characterization’, Current analytical chemistry, 4(2), pp. 75–101. doi:

10.2174/157341108784587795.

Wiczkowski, W., Szawara-Nowak, D. and Topolska, J. (2013́́) ‘Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity’, Food Research International, 51(1), pp. 303–309. doi: 10.1016/j.foodres.2012.12.015.

Wijaya, A. E. (2018) Stability Improvement of Anthocyanins from Butterfly Pea (Clitoria ternatea L.) Flower Extract with Addition of Surfactant.

Wongs-Aree, C., Giusti, M. M. and Schwartz, S. J. (2006) ‘Anthocyanins derived only from delphinidin in the blue petals of Clitoria ternatea’, in IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality 712, pp. 437–442.

Wrolstad, R. E. and Struthers, B. J. (1971) ‘Polyvinylpyrrolidone column chromatography of strawberry, rhubarb, and raspberry anthocyanins’, Journal of Chromatography A. Elsevier, 55(2), pp. 405–408.

Yang, Y. et al. (2015) ‘Purification of anthocyanins from extracts of red raspberry using macroporous resin’, International journal of food properties. Taylor & Francis, 18(5), pp.

1046–1058.

(7)

Clarence Sukmana Yang, Z. and Zhai, W. (2010) ‘Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.)’, Innovative food science

& emerging technologies. Elsevier, 11(1), pp. 169–176.

Yoshida, K., Mori, M. and Kondo, T. (2009) ‘Blue flower color development by anthocyanins: from chemical structure to cell physiology’, Natural product reports.

Royal Society of Chemistry, 26(7), pp. 884–915.

Zarena, A. S. and Sankar, K. U. (2012) ‘Isolation and identification of pelargonidin 3- glucoside in mangosteen pericarp’, Food chemistry. Elsevier, 130(3), pp. 665–670.

Zhang, J. et al. (2012) ‘Rapid Separation and Identification of Anthocyanins from Flowers of Viola yedoensis and V. prionantha by High‐performance Liquid Chromatography–Photodiode Array Detection–Electrospray Ionisation Mass Spectrometry’, Phytochemical Analysis. Wiley Online Library, 23(1), pp. 16–22.

Zhao, C.-L. et al. (2017) ‘Stability-increasing effects of anthocyanin glycosyl acylation’, Food chemistry. Elsevier, 214, pp. 119–128.

Zhao, C. L. et al. (2014) ‘Structure–activity relationships of anthocyanidin glycosylation’, Molecular diversity. Springer, 18(3), pp. 687–700.

Referensi

Dokumen terkait

This research is a quantitative research using SPSS version 25 to test hypotheses and data processing.The results of the analysis found that work discipline had a positive and

FOCUS ISSUE ARTICLE Strategies for ultrahigh outputs generation in triboelectric energy harvesting technologies: from fundamentals to devices Jeong Min Baik and Jin Pyo Lee School of