• Tidak ada hasil yang ditemukan

Notebook Selection

N/A
N/A
Protected

Academic year: 2023

Membagikan "Notebook Selection"

Copied!
2
0
0

Teks penuh

(1)

(*Purpose:This code was written in order to estimate

226Ra and 222Rn acitivites before equilibrium is established*)

(*Author:This code was written by Charles A Wilson IV using Wolfram Mathematica 10.4*) (*Copyright 2017. Last Modified:4/24/2018*)

(*Notes:The Bateman equation was used for this code, utilizing the solution published by Skrable et al.1974*)

(*Notes:This approach was inpsired by a simmilar approach published by Li et al.2015*) (*Notes:This code is part of a submission

to Operational Radiation Safety by Wilson et al.2018*) (*Notes:For questions contact Charles Wilson [email protected]*) (*Notes:This code may be modified and redistributed

provided that the original authors and source are credited*) (*Inputs*)

(*Time in days after sealing sample*) t1=.208333

t3=1.041667

(*Sample Run Time in days*) t2=10/24

t4=10/24

(*activity according to HpGe Gennie 2k provided in Bq*) ActPb1 = 583.6388*.037

ActBi1 = 565.5061*.037 ActPb2 =1584.641*.037 ActBi2 = 1631.606*.037 (*Decay Constants day^-1*) λ1 = 0.693/ (1602*365.25) λ2 = 0.693/ (3.823)

λ3 = 0.693/ (26.8/60/24) λ4 = 0.693/ (19.7/60/24) (*End Inputs*)

(*Total disentigrations over th sample time*) DisentPb1 =ActPb1*t2*24*60*60

DisentBi1 =ActBi1*t2*24*60*60 DisentPb2 =ActPb2*t2*24*60*60 DisentBi2 = ActBi2*t2*24*60*60 (*Equations for 214Pb and 214Bi*) Pb1=IntegrateA0* λ3 λ1

λ2- λ1 λ2

λ3- λ1 Exp[-λ1*t] + λ1

λ1- λ2 λ2

λ3- λ2 Exp[-λ2*t] + λ1 λ1- λ3

λ2

λ2- λ3 *Exp[-λ3*t] + B0* λ3 λ2

λ3- λ2 *Exp[-λ2*t] + λ2

λ2- λ3 *Exp[-λ3*t] ,{t, t1, t1+t2}

Bi1=IntegrateA0* λ4 λ1 λ2- λ1

λ2 λ3- λ1

λ3

λ4- λ1*Exp[-λ1*t] +

+ +

(2)

λ1 λ1- λ2

λ2 λ3- λ2

λ3

λ4- λ2 *Exp[-λ2*t] + λ1 λ1- λ3

λ2 λ2- λ3

λ3

λ4- λ3 *Exp[-λ3*t] + λ1

λ1- λ4 λ2 λ2- λ4

λ3

λ3- λ4 *Exp[-λ4*t] + B0* λ4 λ2

λ3- λ2 λ3

λ4- λ2 *Exp[-λ2*t] + λ2 λ2- λ3

λ3

λ4- λ3 *Exp[-λ3*t] + λ2

λ2- λ4 λ3

λ3- λ4 *Exp[-λ4*t] ,{t, t1, t1+t2}

Pb2=IntegrateA0* λ3 λ1 λ2- λ1

λ2

λ3- λ1 Exp[-λ1*t] + λ1 λ1- λ2

λ2

λ3- λ2 Exp[-λ2*t] + λ1

λ1- λ3 λ2

λ2- λ3 *Exp[-λ3*t] + B0* λ3 λ2

λ3- λ2 *Exp[-λ2*t] + λ2

λ2- λ3 *Exp[-λ3*t] ,{t, t3, t3+t4}

Bi2=IntegrateA0* λ4 λ1 λ2- λ1

λ2 λ3- λ1

λ3

λ4- λ1*Exp[-λ1*t] + λ1

λ1- λ2 λ2 λ3- λ2

λ3

λ4- λ2 *Exp[-λ2*t] + λ1 λ1- λ3

λ2 λ2- λ3

λ3

λ4- λ3 *Exp[-λ3*t] + λ1

λ1- λ4 λ2 λ2- λ4

λ3

λ3- λ4 *Exp[-λ4*t] + B0* λ4 λ2

λ3- λ2 λ3

λ4- λ2 *Exp[-λ2*t] + λ2 λ2- λ3

λ3

λ4- λ3 *Exp[-λ3*t] + λ2

λ2- λ4 λ3

λ3- λ4 *Exp[-λ4*t] ,{t, t3, t3+t4}

(*Simplification in terms of original N of 222Rn and 226Ra*) Pb1o=CoefficientList[Pb1,{B0, A0}]

Bi1o=CoefficientList[Bi1,{B0, A0}]

Pb2o=CoefficientList[Pb2,{B0, A0}]

Bi2o=CoefficientList[Bi2,{B0, A0}]

(*Matrix Math*)

F= {{Pb1o[[1, 2]], Pb1o[[2, 1]]},{Bi1o[[1, 2]], Bi1o[[2, 1]]}, {Pb2o[[1, 2]], Pb2o[[2, 1]]},{Bi2o[[1, 2]], Bi2o[[2, 1]]}}

Nn= {{DisentPb1},{DisentBi1},{DisentPb2},{DisentBi2}};

W= {{DisentPb1, 0, 0, 0},{0, DisentBi1, 0, 0},{0, 0, DisentPb2, 0},{0, 0, 0, DisentBi2}};

R=Inverse[Transpose[F].Inverse[W].F].Transpose[F].Inverse[W].Nn;

(*Initial N of 222Rn and 226 Ra in Bq*) R[[1, 1]]

R[[2, 1]]

(*Initial activity of 222Rn and 226 Ra in Bq*) R[[1, 1]] *0.693/ (1602*365.25*24*3600) R[[2, 1]] * 0.693/ (3.823*24*3600) 2

Referensi

Dokumen terkait