• Tidak ada hasil yang ditemukan

Notes on Convolutional Neural Networks

N/A
N/A
Protected

Academic year: 2023

Membagikan "Notes on Convolutional Neural Networks"

Copied!
2
0
0

Teks penuh

(1)

CONVOLUTIONAL NEURAL NETWORK (CNN) IMPLEMENTATION ON Page 116 of 123 BIONIC HAND IN COMPARISON WITH RECURRENT NEURAL NETWORK (RNN)

Luke Indracahya Setyawan REFERENCES

Antony, T. (2016). Training a neural network in real-time to control a self-driving car.

Available at: https://medium.com/@tantony/training-a-neural-network-in-real- time-to-control-a-self-driving-car-9ee5654978b7

Bouvrie, J. (2006). Notes on Convolutional Neural Networks. Cambridge:

Massachusetts Institute of Technology.

Burakhimmetoglu. (2017). Time series classification with Tensorflow, Available at:

https://burakhimmetoglu.com/2017/08/22/time-series-classification-with- tensorflow/

Cotˆe-Allard, U. et al. (2018). Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning.

Feraldo (2018). Analysis and implementation of hand gesture classification from surface electromyography (SEMG) signal using myo armband for bionic hand.

Tangerang: Swiss German University.

Graetz, F. (2019). How to visualize convolutional features in 40 lines of code, Available at: https://towardsdatascience.com/how-to-visualize-convolutional-features-in- 40-lines-of-code-70b7d87b0030

Hochreiter, S. and Schmidhuber, J. (1997). ‘Long Short-Term Memory’, Neural Computation, 9(8), pp. 1735-1780.

Huotari, J. (2017). Spell Out Convolution 1D (in CNN’s), Available at:

http://www.jussihuotari.com/2017/12/20/spell-out-convolution-1d-in-cnns/

Kingma, D. and Ba, J. (2015). ADAM: A Method for Stochastic Optimization.

(2)

CONVOLUTIONAL NEURAL NETWORK (CNN) IMPLEMENTATION ON Page 117 of 123 BIONIC HAND IN COMPARISON WITH RECURRENT NEURAL NETWORK (RNN)

Luke Indracahya Setyawan Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet Classification with

Deep Convolutional Neural Networks. Canada: University of Toronto.

Laezza, R. (2018). Deep Neural Networks for Myoelectric Pattern Recognition: An Implementation for Multifunctional Control. Sweden: Chalmers University of Technology.

Mikolov, T. (2012). Statistical Language Models Based on Neural Networks. Czech:

Brno University of Technology.

Olsson, A. (2018). sEMG Classification with Convolutional Neural Networks: A Multi- Label Approach for Prosthetic Hand Control.

Referensi

Dokumen terkait

Berdasarkan hasil penelitian yang didapat tentang klasifikasi penyakit daun jagung menggunakan metode Convolutional Neural Network (CNN) yang telah dilakukan, dengan

Klasifikasi merupakan tahapan pelatihan model menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur GoggLeNet yang bertujuan untuk melakukan pelatihan

Pada penelitian ini, dibangun sebuah model dengan dengan memanfaatkan algoritma Convolutional Neural Network (CNN) dan 1000 dataset untuk melakukan pelatihan terhadap

The results are compared for various abusive behaviors in social media, with Convolutional Neural Netwrok CNN and Recurrent Neural Network RNN methods and proved that the proposed BiRNN

48 4.1.1 Developmentof Convolutional Neural Network Model ...50 4.2 Result Analysis andPrototypeof PostalAddress Handwritten ...53 Recognitionusing CNN Classifier...53 4.2.1

Introduction Classification of lovebird species Agapornis using the Convolutional Neural Network CNN algorithm is a method that aims to recognize and differentiate lovebird species

Pendekatan convolutional neural network CNN digunakan sebagai metodologi untuk penelitian kategorisasi berbagai jenis batik yang diproduksi di Jawa Barat menggunakan metode

KESIMPULAN Berdasarkan penelitian yang telah dilakukan, yaitu klasifikasi suara menggunakan pretrained Convolutional Neural Network CNN dapat disimpulakan bahwa penggunaan pretrained