• Tidak ada hasil yang ditemukan

(1)ASPECT BASED OPINION MINING OF HOTEL REVIEWS Page 60 of 68 USING APRIORI ALGORITHM FOR FREQUENT ASPECT FINDING Mochammad Athariq Kanz Hutama REFERENCES Agrawal, R., Imielinski, T

N/A
N/A
Protected

Academic year: 2023

Membagikan "(1)ASPECT BASED OPINION MINING OF HOTEL REVIEWS Page 60 of 68 USING APRIORI ALGORITHM FOR FREQUENT ASPECT FINDING Mochammad Athariq Kanz Hutama REFERENCES Agrawal, R., Imielinski, T"

Copied!
3
0
0

Teks penuh

(1)

ASPECT BASED OPINION MINING OF HOTEL REVIEWS Page 60 of 68

USING APRIORI ALGORITHM FOR FREQUENT ASPECT FINDING

Mochammad Athariq Kanz Hutama REFERENCES

Agrawal, R., Imielinski, T. and Swami, A. (1993) ‘Mining association rules between sets of items in large databases’, Proceedings of the 1993 ACM SIGMOD international conference on Management of data, 22(May), pp. 207–216. doi:

10.1145/170036.170072.

Baccianella, S., Esuli, A. and Sebastiani, F. (2008) ‘SENTIWORDNET 3.0 : An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining’, 0, pp.

2200–2204.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999) ‘Modern information retrieval’, New York, 9, p. 513. doi: 10.1080/14735789709366603.

Chaturvedi, D. (2014) ‘Customers Sentiment on Banks’, International Journal of

Computer, 98(13), pp. 8–13. Available at:

http://search.proquest.com/openview/cccf8e2037694fa41d0f5eaa027856f6/1?pq- origsite=gscholar.

Cover T M and Hart P.E (1967) ‘Nearest Neighbor Pattern Classification’.

Cowie, J. and Lehnert, W. (1996) ‘Information extraction’, Communications of the ACM, 39(1), pp. 80–91. doi: 10.1561/1500000003.

Ejieh, C. (2016) ‘ASPECT-BASED OPINION MINING OF PRODUCT REVIEWS IN MICROBLOGS USING MOST RELEVANT FREQUENT CLUSTERS OF TERMS’.

Ganesan, K. and Zhai, C. (2012) ‘Opinion-based entity ranking’, Information Retrieval, 15(2), pp. 116–150. doi: 10.1007/s10791-011-9174-8.

Google (2017) Google Trends Sentiment Analysis. Available at:

https://trends.google.com/trends/explore?date=2007-05-08 2017-06-08&q=sentiment analysis (Accessed: 8 June 2017).

Hai, Z. (2014) ‘ASPECT-BASED OPINION MINING OF CUSTOMER REVIEWS School of Computer Engineering’.

Hotho, A., Nürnberger, A. and Paaß, G. (2005) ‘A Brief Survey of Text Mining’, LDV Forum - GLDV Journal for Computational Linguistics and Language Technology, 20, pp. 19–62. doi: 10.1111/j.1365-2621.1978.tb09773.x.

Hu, M. and Liu, B. (2004a) ‘Mining and summarizing customer reviews’, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining KDD 04, 4, p. 168. doi: 10.1145/1014052.1014073.

(2)

ASPECT BASED OPINION MINING OF HOTEL REVIEWS Page 61 of 68

USING APRIORI ALGORITHM FOR FREQUENT ASPECT FINDING

Mochammad Athariq Kanz Hutama Hu, M. and Liu, B. (2004b) ‘Mining Opinion Features in Customer Reviews’, 19th national conference on Artifical intelligence, pp. 755–760. doi:

10.1145/1014052.1014073.

Liu, B. (2011) Web Data Mining, Exploring Hyperlinks, Contents, and Usage Data.

doi: 10.1145/2020408.2020428.

Liu, B. (2012) Sentiment Analysis and Opinion Mining. doi:

10.2200/S00416ED1V01Y201204HLT016.

Manning, C. D., Bauer, J., Finkel, J. and Bethard, S. J. (2014) ‘The Stanford CoreNLP Natural Language Processing Toolkit’.

Manning, C. D. and Schiitze, H. (1999) Foundations of Statistical NLP.

Moghaddam, S. (2010) ‘Opinion Digger : An Unsupervised Opinion Miner from Unstructured Product Reviews’, pp. 1825–1828.

Moghaddam, S. A. (2013) ASPECT-BASED OPINION MINING IN ONLINE REVIEWS.

More, P. (2016) ‘A Study of Different Approaches to Aspect-based Opinion Mining’, 145(6), pp. 11–15.

Nichol, M. B., Knight, T. K., Dow, T., Wygant, G., Borok, G., Hauch, O. and O’Connor, R. (2008) ‘Fast Algorithms for Mining Association Rules’, The Annals of pharmacotherapy, 42(1), pp. 62–70. doi: 10.1.1.40.7506.

Pang, B., Lee, L. and Vaithyanathan, S. (2002) ‘Thumbs up?: sentiment classification using machine learning techniques’, Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 79–86. doi: 10.3115/1118693.1118704.

Qiu, G., Liu, B., Bu, J. and Chen, C. (2011) ‘Opinion Word Expansion and Target Extraction through Double Propagation’, Computational linguistics, 37(January 2010), pp. 9–27. doi: 10.1162/coli_a_00034.

Riloff, E., Wiebe, J. and Phillips, W. (2005) ‘Exploiting subjectivity classification to improve information extraction’, Proceedings of the 20th national conference on Artificial intelligence, 20(3), pp. 1106–1111. Available at:

http://www.aaai.org/Papers/AAAI/2005/AAAI05-175.pdf.

Samha, A. (2016) ASPECT-BASED OPINION MINING FROM CUSTOMER REVIEWS.

Santorini, B. (1990) ‘Part-of-Speech Tagging Guidelines for the Penn Treebank Project ( 3rd Revision ) Part-of-Speech Tagging Guidelines for the Penn Treebank Project ( 3rd’, (July).

(3)

ASPECT BASED OPINION MINING OF HOTEL REVIEWS Page 62 of 68

USING APRIORI ALGORITHM FOR FREQUENT ASPECT FINDING

Mochammad Athariq Kanz Hutama Sharma, R., Nigam, S. and Jain, R. (2014) ‘Mining of Product Reviews at Aspect Level’, International Journal in Foundations of Computer Science & Technology, 4(3), pp. 87–95. doi: 10.5121/ijfcst.2014.4308.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y. and Potts, C. (2013) ‘Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank’.

Vivekanandan, K. and Araviandan, J. S. (2014) ‘Aspect-based Opinion Mining: A Survey’, International Journal of Computer Applications, 106(3), pp. 21–26.

Wang, H., Lu, Y. and Zhai, C. (2010) ‘Latent Aspect Rating Analysis on Review Text Data : A Rating Regression Approach’.

Weishu, H. (2010) Mining Product Features from Online Reviews.

Zhuang, L. (2006) ‘Movie Review Mining and Summarization’.

Referensi

Dokumen terkait