6
2 7. Inferensi 2 sampel: overview, inferensi 2 proporsi, inferensi 2 mean: sampel independen, inferensi pasangan yang bersesuaian, perbandingan
variasi dalam 2 sampel (Ch 08)
8. Korelasi dan regresi: overview, korelasi, regresi, variasi dan prediksi interval, multipel regresi, modelling (Ch 09)
9. Percobaan multinomial dan contingency tables: overview, multinomial experiments: goodness of fit, contingency tables: independece and homogenity (Ch 10)
10. Analysis of variance: overview, one way anova, two way anova (Ch 11)
Deskripsi Mata Kuliah : Mata kuliah ini akan memberikan bekal kepada mahasiswa untuk berfikir secara statistik terkait dengan variabel acak, distribusi variabel, estimasi dan ukuran sampling, uji hipotesis, korelasi dan regresi, dan ANOVA.
Daftar Referensi : 1. Triola, M.F., Elementary Statistics, My SatLab Series, ed, 9th.
Tahap Kemampuan akhir Materi Pokok Reff.
Metode Pembelajaran
Waktu Pengalaman Belajar
Penilaian*
Luring Daring Indikator/kode CPL
Teknik penilaian dan bobot
1 2 3 4 5 6 7 8 9 10
1
Sub-CPMK1:
Mampu memahami pengertian istilah statistika, tipe-tipe data, cara berfikir kritis dalam rancangan percobaan
- Pengertian statistika dan istilah-istilahnya - Tipe-tipe data
statistika - Berfikir kritis
mengenai data dan statistika dalam rancangan percobaan
Ch 4.1 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA
Kuliah tatap muka [TM:
1x(2x50”)]
Tugas
[PT+BM:(1+1) x(2x60”)]
- Mempelajari pengertian statistika dan istilah- istilahnya
- Mengkaji tipe-tipe data statistika
- Mengkaji secara kritis mengenai data dan statistika
- Mampu menjelaskan pengertian statistika dan istilah-istilahnya
- Mampu memahami tipe- tipe data statistika - Mampu menjelaskan
secara kritis mengenai data dan statistika
UTS 5%
3 Tahap Kemampuan akhir Materi Pokok Reff.
Metode Pembelajaran
Waktu Pengalaman Belajar
Penilaian*
Luring Daring Indikator/kode CPL
Teknik penilaian dan bobot
1 2 3 4 5 6 7 8 9 10
2 Sub-CMPK 2:
Mampu memahami karakteristik penting dari data, meliputi variabel acak, distribusi probabilitas dan memahami cara menentukan mean dan standar deviasinya
- Distribusi probabilitas - Variabel acak - Penentuan mean - Penentuan Standar
deviasi
Ch 4.2 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 1:
Menghitung mean dan standar deviasi untuk data (distribusi probabilitas)
Kuliah tatap muka [TM:
1x(2x50”)]
Tugas
[PT+BM:(1+1) x(2x60”)]
- Mempelajari
karakteristik penting dari data
- Mengkaji distribusi probabilitas
- Mengkaji variabel acak - Mempelajari penentuan
mean dan standar deviasi
- Mampu menjelaskan karakteristik penting dari data
- Mampu menjelaskan distribusi probabilitas - Mampu menjelaskan
variabel acak
- Mampu menjelaskan penentuan mean dan standar deviasi
Tugas dan UTS
5%
3
Sub-CMPK 3:
Mampu memahami distribusi binomial, mean, varians, standar deviasi, dan distribusi Poisson
- Distribusi binomial, mean, varians, standar deviasi -Distribusi Poisson
Ch 4.3 dan 4.4
Ch 4.5
Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 2:
Menghitung mean dan standar deviasi untuk data (distribusi Poisson)
Kuliah tatap muka [TM:
1x(2x50”)]
Tugas
[PT+BM:(1+1) x(2x60”)]
- Mengkaji distribusi binomial, mean, varians, standar deviasi
-Mengkaji distribusi Poisson
- Mampu menjelaskan distribusi binomial, mean, varians, standar deviasi -Mampu menjelaskan
distribusi Poisson
Tugas dan UTS 10%
4
Sub-CMPK 4:
Mampu memahami distribusi normal, aplikasi distribusi normal, distribusi dan estimator sampling, teori central limit
- Distribusi normal, aplikasi distribusi normal
-Distribusi dan estimator sampling - Teori central limit
Ch 5 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 3:
Menentukan distribusi normal suatu data dengan
Kuliah tatap muka [TM:
1x(2x50”)]
Tugas
[PT+BM:(1+1) x(2x60”)]
- Mempelajari distribusi normal, aplikasi distribusi normal -Mengkaji distribusi dan
estimator sampling - Mengkaji teori central
limit
- Mampu menjelaskan distribusi normal, aplikasi distribusi normal
-Mampu menjelaskan distribusi dan estimator sampling
- Mampu menjelaskan teori central limit
Tugas dan UTS 10%
4 histogram
atau normal quantile plot 5 - 6 Sub-CPMK 5:
Mampu memahami estimasi dan ukuran sample, meliputi overview, estimasi proporsi populasi, estimasi mean populasi σ diketahui dan σ tidak diketahui, dan estimasi varians populasi
-Estimasi proporsi populasi
- Estimasi mean populasi σ diketahui, σ tidak diketahui
- Estimasi varians populasi
Ch 06 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 4:
Menghitung mean populasi
Kuliah tatap muka [TM:
2x(2x50”)]
Tugas
[PT+BM:(2+2) x(2x60”)]
-Mempelajari estimasi proporsi populasi - Mempelajari estimasi
mean populasi σ diketahui, σ tidak diketahui
- Mempelajari estimasi varians populasi
-Mampu menjelaskan estimasi proporsi populasi - Mampu menjelaskan
estimasi mean populasi σ diketahui, σ tidak
diketahui
- Mampu menjelaskan estimasi varians populasi
Tugas dan UTS 10%
7 Sub-CPMK 6:
Mampu memahami uji hipotesis, meliputi overview, dasar uji hipotesis, uji klaim proporsi, uji klaim terkait mean: σ diketahui dan σ tidak diketahui, uji klaim standar deviasi dan varians
- Dasar uji hipotesis - Uji klaim proporsi -Uji klaim terkait
mean: σ diketahui dan σ tidak diketahui - Uji klaim standar
deviasi dan varians
Ch 07 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 5:
Menguji suatu klaim standar deviasi
Kuliah tatap muka [TM:
1x(2x50”)]
Tugas
[PT+BM1+1) x(2x60”)]
- Mengkaji dasar uji hipotesis
-Mengkaji uji klaim proporsi
-Mengkaji uji klaim terkait mean: σ diketahui dan σ tidak diketahui
- Mengkaji uji klaim standar deviasi dan varians
- Mampu menjelaskan dasar uji hipotesis -Mampu menjelaskan uji
klaim proporsi
-Mampu menjelaskan uji klaim terkait mean: σ diketahui dan σ tidak diketahui
- Mampu menjelaskan uji klaim standar deviasi dan varians
Tugas dan UTS 10%
8 Ujian Tengah Semester (UTS)
5 Tahap Kemampuan akhir Materi Pokok Reff.
Metode Pembelajaran
Waktu Pengalaman Belajar
Penilaian*
Luring Daring Indikator/kode CPL
Teknik penilaian dan bobot
1 2 3 4 5 6 7 8 9 10
9 Sub-CPMK 7:
Mampu memahami inferensi 2 sampel, meliputi overview, inferensi 2 proporsi, inferensi 2 mean:
sampel independen, inferensi pasangan yang bersesuaian, dan perbandingan variasi dalam 2 sampel
-Inferensi 2 sampel -Inferensi 2 proporsi - Inferensi 2 mean:
sampel independen - Inferensi pasangan
yang bersesuaian -Perbandingan
variasi dalam 2 sampel
Ch 08 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA
Kuliah tatap muka [TM:
1x(2x50”)]
Tugas
[PT+BM:(1+1) x(2x60”)]
-Mengkaji inferensi 2 sampel
- Mengkaji inferensi 2 proporsi
- Mengkaji inferensi 2 mean: sampel independen -Mengkaji inferensi
pasangan yang bersesuaian
- Mengkaji perbandingan variasi dalam 2 sampel
-Mampu menjelaskan inferensi 2 sampel - Mampu menjelaskan
inferensi 2 proporsi - Mampu menjelaskan
inferensi 2 mean: sampel independen
-Mampu menjelaskan inferensi pasangan yang bersesuaian
- Mampu menjelaskan perbandingan variasi dalam 2 sampel
UAS 10%
10 - 11 Sub-CPMK 8:
Mampu memahami korelasi dan regresi, meliputi overview, korelasi, regresi, variasi dan prediksi interval, multipel regresi, modelling
- Korelasi dan regresi -Korelasi
-Regresi
-Variasi dan prediksi interval
- Multipel regresi - Modelling
Ch 09 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 6:
Menentukan model matematika yang paling sesuai untuk suatu data
Kuliah tatap muka [TM:
2x(2x50”)]
Tugas
[PT+BM:(2+2) x(2x60”)]
- Mempelajari korelasi dan regresi
-Mengkaji mengenai variasi dan prediksi interval
- Mempelajari multipel regresi
- Mempelajari modelling
- Mampu menjelaskan korelasi dan regresi -Mampu menjelaskan
mengenai variasi dan prediksi interval - Mampu menjelaskan
multipel regresi - Mampu menjelaskan
modelling
Tugas dan UAS 12,5%
12 - 13 Sub-CPMK 9:
Mampu memahami percobaan multinomial dan tabel kontingensi, meliputi overview, percobaan multinomial:
-Percobaan multinomial dan tabel kontingens - Percobaan
multinomial:
goodness of fit
Ch 10 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 7: Uji
goodness of fit dalam
Kuliah tatap muka [TM:
2x(2x50”)]
-Mengkaji percobaan multinomial dan tabel kontingens
- Mengkaji percobaan multinomial: goodness of fit
-Mampu menjelaskan percobaan multinomial dan tabel kontingens - Mampu menjelaskan
percobaan multinomial:
goodness of fit
Tugas dan UAS 12,5%
6 goodness of fit, tabel
kontingensi:
independensi dan homogenitas
-Tabel kontingensi:
independensi dan homogenitas
percobaan multinomial
Tugas
[PT+BM:(2+2) x(2x60”)]
-Mengkaji tabel kontingensi:
independensi dan homogenitas
-Mampu menjelaskan tabel kontingensi:
independensi dan homogenitas 14 - 15 Sub-CPMK 10:
Mampu memahami analisis variasi, meliputi overview, one way anova, two way anova, serta aplikasinya pada peristiwa teknik kimia
- Analisis variasi - One way anova - Two way anova
Ch 11 Kuliah, diskusi, dan latihan di kelas
- Materi kuliah di OCW dan SPADA - Tugas 8:
Analisis data dengan one way anova dan two way anova
Kuliah tatap muka [TM:
2x(2x50”)]
Tugas
[PT+BM:(2+2) x(2x60”)]
- Mengkaji analisis variasi - Mengkaji One way anova - Mengkaji Two way anova -Menerapkan analisis
variasi pada peristiwa teknik kimia
- Mampu menjelaskan analisis variasi
- Mampu menjelaskan dan menerapkan One way anova pada peristiwa teknik kimia
-Mampu menjelaskan dan menerapkan Two way anova pada peristiwa teknik kimia
Tugas dan UAS 15%
16 Ujian Akhir Semester (UAS)
Catatan :
TM=Tatap Muka, PT=Penugasan terstruktur, BM=Belajar mandiri.
Penilaian :
Nilai Tugas dan Soal mempunyai kisaran nilai 0 – 100 sesuai Peraturan Rektor UNS 582/UN27/HK /2016
7
Penilaian Nilai Tugas Nilai Ujian Nilai sub-CPMK Nilai UTS dan UAS Nilai MK
CPL-2
Sub-CPMK1 Soal UTS no 1 (Soal UTS no 1)
Nilai UTS =[(Nilai sub-CPMK1 x 5%) + (Nilai sub-CPMK2 x 5%) + (Nilai sub- CPMK3 x 10%) + (Nilai sub-CPMK4 x
10%) + (Nilai sub-CPMK5 x 10%) +
(Nilai sub-CPMK6 x 10%)] x 2 Nilai MK = (Nilai UTS + Nilai UAS) / 2
Sub-CPMK2 Tugas 1 (Tugas 1)
Sub-CPMK3 Tugas 2 Soal UTS no 2 (Tugas 2 x 20%) + (Soal UTS no 2 x 80%) Sub-CPMK4 Tugas 3 Soal UTS no 3 (Tugas 3 x 20%) + (Soal UTS no 3 x 80%)
Sub-CPMK5 Tugas 4 (Tugas 4)
Sub-CPMK6 Tugas 5 Soal UTS no 4 (Tugas 5 x 20%) + (Soal UTS no 4 x 80%)
Sub-CPMK7 Soal UAS no 1 (Soal UAS no 1)
Nilai UTS =[(Nilai sub-CPMK7 x 10%) + (Nilai sub-CPMK8 x 12,5%) + (Nilai
sub-CPMK9 x 12,5%) + (Nilai sub- CPMK10 x 15%)] x 2 Sub-CPMK8 Tugas 6 Soal UAS no 2 (Tugas 6 x 20%) + (Soal UAS no 2 x 80%)
Sub-CPMK9 Tugas 7 Soal UAS no 3 (Tugas 7 x 20%) + (Soal UAS no 3 x 80%) Sub-CPMK10 Tugas 8 Soal UAS no 4 (Tugas 8 x 20%) + (Soal UAS no 4 x 80%) Nilai CPL-2 = Nilai MK
Penilaian CPL 2
CPL 2. Mampu merancang dan melakukan eksperimen kerekayasaan bidang teknik kimia, serta menganalisis dan menginterpretasikan data, serta mendokumentasikan hasilnya
Kriteria CPMK Kurang Cukup Baik Sangat baik
Mampu memahami pengertian istilah statistika, tipe-tipe data, cara berfikir kritis dalam rancangan percobaan
Mahasiswa tidak mampu memahami pengertian istilah statistika, tipe-tipe data, cara berfikir kritis dalam rancangan percobaan
Mahasiswa mampu
memahami pengertian istilah statistika, tipe-tipe data, cara berfikir kritis dalam rancangan percobaan, tetapi ada
kesalahan – kesalahan yang tidak signifikan
Mahasiswa mampu memahami pengertian istilah statistika, tipe-tipe data, cara berfikir kritis dalam rancangan percobaan dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami pengertian istilah statistika, tipe-tipe data, cara berfikir kritis dalam rancangan percobaan dengan tepat
Mampu memahami karakteristik penting dari data, meliputi variabel acak, distribusi probabilitas dan
Mahasiswa tidak mampu memahami karakteristik penting dari data, meliputi variabel acak, distribusi probabilitas dan
Mahasiswa mampu memahami karakteristik penting dari data, meliputi variabel acak, distribusi
Mahasiswa mampu memahami karakteristik penting dari data, meliputi variabel acak, distribusi probabilitas dan memahami
Mahasiswa mampu memahami karakteristik penting dari data, meliputi variabel acak, distribusi
8 Mampu memahami distribusi
binomial, mean, varians, standar deviasi, dan distribusi Poisson
Mahasiswa tidak mampu memahami distribusi binomial, mean, varians, standar deviasi, dan distribusi Poisson
Mahasiswa mampu memahami distribusi binomial, mean, varians, standar deviasi, dan distribusi Poisson, tetapi ada kesalahan – kesalahan yang tidak signifikan
Mahasiswa mampu memahami distribusi binomial, mean, varians, standar deviasi, dan distribusi Poisson dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami distribusi binomial, mean, varians, standar deviasi, dan distribusi Poisson dengan tepat
Mampu memahami distribusi normal, aplikasi distribusi normal, distribusi dan estimator sampling, teori central limit
Mahasiswa tidak mampu memahami distribusi normal, aplikasi distribusi normal, distribusi dan estimator sampling, teori central limit
Mahasiswa mampu
memahami distribusi normal, aplikasi distribusi normal, distribusi dan estimator sampling, teori central limit, tetapi ada kesalahan –
kesalahan yang tidak signifikan
Mahasiswa mampu memahami distribusi normal, aplikasi distribusi normal, distribusi dan estimator sampling, teori central limit dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami distribusi normal, aplikasi distribusi normal, distribusi dan estimator sampling, teori central limit dengan tepat Mampu memahami estimasi dan
ukuran sample, meliputi overview, estimasi proporsi populasi,
estimasi mean populasi σ diketahui dan σ tidak diketahui, dan estimasi varians populasi
Mahasiswa tidak mampu memahami estimasi dan ukuran sample, meliputi overview, estimasi proporsi populasi,
estimasi mean populasi σ diketahui dan σ tidak diketahui, dan estimasi varians populasi
Mahasiswa mampu memahami estimasi dan ukuran sample, meliputi overview, estimasi proporsi populasi, estimasi mean populasi σ diketahui dan σ tidak diketahui, dan estimasi varians populasi, tetapi ada kesalahan – kesalahan yang tidak signifikan
Mahasiswa mampu memahami estimasi dan ukuran sample, meliputi overview, estimasi proporsi populasi, estimasi mean populasi σ diketahui dan σ tidak diketahui, dan estimasi varians populasi dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami estimasi dan ukuran sample, meliputi overview, estimasi proporsi populasi, estimasi mean populasi σ diketahui dan σ tidak diketahui, dan estimasi varians populasi dengan tepat
Mampu memahami uji hipotesis, meliputi overview, dasar uji hipotesis, uji klaim proporsi, uji klaim terkait mean: σ diketahui dan
Mahasiswa tidak mampu
memahami uji hipotesis, meliputi overview, dasar uji hipotesis, uji klaim proporsi, uji klaim terkait mean: σ diketahui dan σ tidak
Mahasiswa mampu memahami uji hipotesis, meliputi overview, dasar uji hipotesis, uji klaim proporsi, uji klaim terkait mean: σ
Mahasiswa mampu memahami uji hipotesis, meliputi overview, dasar uji hipotesis, uji klaim proporsi, uji klaim terkait mean:
σ diketahui dan σ tidak
Mahasiswa mampu memahami uji hipotesis, meliputi overview, dasar uji hipotesis, uji klaim proporsi, uji klaim terkait mean: σ
9 σ tidak diketahui, uji klaim standar
deviasi dan varians
diketahui, uji klaim standar deviasi dan varians
diketahui dan σ tidak diketahui, uji klaim standar deviasi dan varians, tetapi ada kesalahan – kesalahan yang tidak signifikan
diketahui, uji klaim standar deviasi dan varians dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
diketahui dan σ tidak diketahui, uji klaim standar deviasi dan varians dengan tepat
Mampu memahami inferensi 2 sampel, meliputi overview, inferensi 2 proporsi, inferensi 2 mean: sampel independen, inferensi pasangan yang bersesuaian, dan perbandingan variasi dalam 2 sampel
Mahasiswa tidak mampu memahami inferensi 2 sampel, meliputi overview, inferensi 2 proporsi, inferensi 2 mean: sampel independen, inferensi pasangan yang bersesuaian, dan
perbandingan variasi dalam 2 sampel
Mahasiswa mampu
memahami inferensi 2 sampel, meliputi overview, inferensi 2 proporsi, inferensi 2 mean:
sampel independen, inferensi pasangan yang bersesuaian, dan perbandingan variasi dalam 2 sampel, tetapi ada kesalahan – kesalahan yang tidak signifikan
Mahasiswa mampu memahami inferensi 2 sampel, meliputi overview, inferensi 2 proporsi, inferensi 2 mean: sampel independen, inferensi pasangan yang bersesuaian, dan
perbandingan variasi dalam 2 sampel dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami inferensi 2 sampel, meliputi overview, inferensi 2 proporsi, inferensi 2 mean: sampel independen, inferensi pasangan yang bersesuaian, dan perbandingan variasi dalam 2 sampel dengan tepat
Mampu memahami korelasi dan regresi, meliputi overview, korelasi, regresi, variasi dan prediksi
interval, multipel regresi, modelling
Mahasiswa tidak mampu memahami korelasi dan regresi, meliputi overview, korelasi, regresi, variasi dan prediksi interval,
multipel regresi, modelling
Mahasiswa mampu memahami korelasi dan regresi, meliputi overview, korelasi, regresi, variasi dan prediksi interval, multipel regresi, modelling, tetapi ada kesalahan – kesalahan yang tidak signifikan
Mahasiswa mampu memahami korelasi dan regresi, meliputi overview, korelasi, regresi, variasi dan prediksi interval, multipel regresi, modelling dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami korelasi dan regresi, meliputi overview, korelasi, regresi, variasi dan prediksi interval, multipel regresi, modelling dengan tepat
Mampu memahami percobaan multinomial dan tabel kontingensi, meliputi overview, percobaan multinomial: goodness of fit, tabel kontingensi: independensi dan homogenitas
Mahasiswa tidak mampu
memahami percobaan multinomial dan tabel kontingensi, meliputi overview, percobaan multinomial:
goodness of fit, tabel kontingensi:
independensi dan homogenitas
Mahasiswa mampu memahami percobaan multinomial dan tabel kontingensi, meliputi overview, percobaan
multinomial: goodness of fit, tabel kontingensi:
independensi dan homogenitas, tetapi ada kesalahan – kesalahan yang tidak signifikan
Mahasiswa mampu memahami percobaan multinomial dan tabel kontingensi, meliputi overview, percobaan
multinomial: goodness of fit, tabel kontingensi: independensi dan homogenitas dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
Mahasiswa mampu memahami percobaan multinomial dan tabel kontingensi, meliputi overview, percobaan
multinomial: goodness of fit, tabel kontingensi:
independensi dan
homogenitas dengan tepat
10 teknik kimia, tetapi ada
kesalahan – kesalahan yang tidak signifikan
dengan tepat, namun dengan kesalahan yang minimal/dapat diabaikan
teknik kimia dengan tepat