• Tidak ada hasil yang ditemukan

PDF Analisis Data: Measures of Association - Universitas Indonesia

N/A
N/A
Protected

Academic year: 2023

Membagikan "PDF Analisis Data: Measures of Association - Universitas Indonesia"

Copied!
9
0
0

Teks penuh

(1)

Analisis Data:

Measures of Association

Arrianto Mukti Wibowo Sesi 10

1

(2)

Bedanya apa dgn test of significance?

 Hayo…?

(3)

Contoh

 Apakah ada hubungan antara jumlah budget untuk pemasaran dengan nilai penjualan?

 Apakah ada hubungan antara besar gaji

setelah 5 tahun lulus, dengan IPK saat lulus?

 Apakah ada hubungan kebiasaan

menggunakan sendal dengan jenis kelamin?

 Apakah ada hubungan antara uang saku

bulanan mahasiswa dengan harga rata-rata makan siang mereka?

3

(4)

Commonly Used Measures of Association

 Interval & Ratio

 Ordinal

 Nominal

(5)

Nominal

Measures of Association

5

Coefficient Comments and Uses

Phi Chi-square 2x2 tables

Cramer’s V Chi-square based, adjusted when one table

dimension > 2 Contigency coefficient C Chi-square based

Lambda PRE-based

Goodman & Kruskal’s tau PRE-based

Uncertainty coefficient Useful for multidimensional tables

Kappa Agreement measures

(6)

Ordinal

Measures of Association

Coefficient Comments and Uses

Gamma Based on concordant-discordant pairs: (P-

Q); proportional reduction in error (PRE) interpretation

Kendall’s tau b P-Q based for tied rankds

Kendall’s tau c P-Q based, adjusted for table dimensions

Somer’s d P-Q based, asymetrical extensions of

gamma

Spearman’s rho Product moment correlationfor ranked (ordinal) data

(7)

Interval & Ratio

Measures of Association

7

Coefficient Comments and Uses

Pearson (product moment) correlation coefficient

For continous linearly related variables

Correlational ratio (η / eta) For non-linear data or relating a main effect to a continous dependent variable

Biserial One continous and one dichotomous

variable with an underlying nominal distribution

Partial correlation Three variables, relating two with third effect taken out

Multiple correlation Three variables, relating one variable with two others

Bivariate linear regression Predicting one variable from another’s scores

(8)

Agenda

 Bivariate Correlational Analysis

◦ Pearson Product Moment Coefficient r

◦ Common variance

◦ Interpretation of correlations

 Simple Linear Regression

◦ Basic model

◦ Perbedaan regresi dan korelasi

◦ Application

◦ Goodness of fit

 Non-parametric

◦ Chi-square based

◦ Proportional Reduction in Error

 Measures of ordinal data

(9)

Correlational vs Regression

 Sama:

◦ Interval & rasio

◦ Continous, linearly related

 Bedanya:

◦ Symetric vs. asymetric (X independet, Y dependent)

9

Referensi

Dokumen terkait

Castroand Eugénio Oliveira Chapter 3 Outsourcing Strategies of Full-Service Airlines: An Application of Two Theoretical Perspectives 99 Alison Rieple Chapter 4 The Pricing