• Tidak ada hasil yang ditemukan

PDF DAFTAR PUSTAKA - eprints2.undip.ac.id

N/A
N/A
Protected

Academic year: 2023

Membagikan "PDF DAFTAR PUSTAKA - eprints2.undip.ac.id"

Copied!
4
0
0

Teks penuh

(1)

66 DAFTAR PUSTAKA

Aeni, K., 2018, Penerapan Metode Forward Chaining Pada Sistem Pakar untuk Diagnosa Hama dan Penyakit Padi. INTENSIF, 2, 79.

Aggarwal, C. C., 2015, Data Classification: Algorithms and Applications, IBM T.

J. Watson Research Center, Yorktown Heights.

Al Ashry, M. H. S., 2017, Importance of Data Flow Diagrams and Entity Relationships Diagrams to Data Structures Systems Design in C++ “A Practical Example.” Journal of Management and Strategy, 8(4), 51.

Alpaydin, E., 2014, Introduction to Machine Learning, The MIT Press, Massachusetts.

Anugrah, W., Suryono, S., & Endro Suseno, J., 2018, Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System. E3S Web of Conferences, 31, 11019.

Arizusanti, P. K., & Purwoko, B., 2015, Survey Tentang Konflik Interpersonal Yang Dialami Oleh Siswa Sekolah Menengah Atas (Sma) Negeri Di Surabaya Selatan. Unesa Jurnal Mahasiwa Bimbingan Dan Konseling, 1–12.

Arjanto, P., 2015, Identifikasi Masalah Menggunakan Teknik Problem Check-List Pada Mahasiswa Program Studi Bimbingan Dan Konseling Universitas Pattimura. Jurnal Konseling Indonesia, 1(1 Oktober), 1–17.

Awaysheh, A., Wilcke, J., Elvinger, F., Rees, L., Fan, W., & Zimmerman, K. L., 2016, Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

Journal of Veterinary Diagnostic Investigation, 28(6), 679–687.

Awaysheh, A., Wilcke, J., Elvinger, F., Rees, L., Fan, W., & Zimmerman, K. L., 2019, Review of Medical Decision Support and Machine-Learning Methods.

Veterinary Pathology, 56(4), 512–525.

Bassel, G. W., Glaab, E., Marquez, J., Holdsworth, M. J., & Bacardit, J., 2011, Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets. The Plant Cell, 23(9), 3101–3116.

Bird, S., Klein, E., & Loper, E., 2009, Natural Language Processing with Python.

O’Reilly Media, Inc, Sebastopol.

Brownlee, J., 2016, Summary for Policymakers. In Intergovernmental Panel on Climate Change (Ed.), Climate Change 2013 - The Physical Science Basis (V1.1, Vol. 53, pp. 1–30).

(2)

67 Bulotsky-Shearer, R. J., Fernandez, V., Dominguez, X., & Rouse, H. L., 2011, Behavior problems in learning activities and social interactions in head start classrooms and early reading, mathematics, and approaches to learning.

School Psychology Review, 40(1), 39–56.

Chen, H., Zhao, H., Shen, J., Zhou, R., & Zhou, Q., 2015, Supervised Machine Learning Model for High Dimensional Gene Data in Colon Cancer Detection.

Proceedings IEEE International Congress on Big Data, June 2015, 134–141.

Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M., Tibollo, V., … Bellazzi, R., 2018, Machine Learning Methods to Predict Diabetes Complications.

Journal of Diabetes Science and Technology, 12(2), 295–302.

Dennis, A., Wixom, B. H., & Roth, R. M., 2012, Systems Analysis and Design John Wiley & Sons, Inc, Danver.

El-Shenawy, O. E., & Shehata, A.-M., 2014, Applying Problem Behavior Theory in a Developing Arabic Country. SAGE Open, 4(1), 215824401452181.

Gao, J., Chen, C., Zhen, D., & Zhu, Q., 2012, An efficient version of inverse boosting for classification. Transactions of the Institute of Measurement and Control, 35(2), 188–199.

Hang, W., & Banks, T., 2019, Machine learning applied to pack classification.

International Journal of Market Research, 61(6), 601–620.

Ibrahim, R., & Yen, S. Y., 2010, Formalization of the Data Flow Diagram Rules for Consistency Check. International Journal of Software Engineering &

Applications, 1(4), 95–111.

Ibrahim, R., & Yen, S. Y., 2011, A Formal Model for Data Flow Diagram Rules.

ARPN Journal of Systems and Software, 1(2).

Ifdil, I., & Ilyas, A., 2017, Pengolahan Alat Ungkap Masalah (AUM) dengan Menggunakan Komputer Bagi Konselor. Jurnal Aplikasi IPTEK Indonesia, 1(1), 17–24.

Johnson, K., & Hannon, M. D., 2014, Measuring the Relationship Between Parent, Teacher, and Student Problem Behavior Reports and Academic Achievement:

Implications for School Counselors. Professional School Counseling, (18), 38- 48.

Kovarik, V. J., 2009, Cognitive Research: Knowledge Representation and Learning. In Cognitive Radio Technology, Melbourne.

Lungaroni, M., Murari, A., Peluso, E., Vega, J., Farias, G., & Gelfusa, M., 2018, On the potential of ruled-based machine learning for disruption prediction on JET. Fusion Engineering and Design, 130(October 2017), 62–68.

(3)

68 Mehdia, A., Ayazuddin, M., & Baig, M. Y. A., 2014, A Machine Learning for Rule-

Based System. IJRITCC, 2(9), 2724–2726.

Mohammad, R. M., B, F. T., & Mccluskey, L., 2016, An Improved Self-Structuring Neural Network. Springer International Publishing Switzerland, 10526, 35–

47.

Mourdi, Y., Sadgal, M., El Kabtane, H., & Berrada Fathi, W., 2019, A machine learning-based methodology to predict learners’ dropout, success or failure in MOOCs. International Journal of Web Information Systems, 15(5), 489–509.

Patel, U. A., & Niky K. Jain., 2013, New Idea In Waterfall Model For Real Time Software Development. International Journal of Engineering Research &

Technology (IJERT), 2(4), 114–119.

Prasadl, B., Krishna Prasad, P. E. S. N., & Sagar, Y., 2011, An Approach to Develop Expert Systems in Medical Diagnosis Using Machine Learning Algorithms (Asthma) and A Performance Study. International Journal on Soft Computing, 2(1), 26–33.

Qabajeh, I., Thabtah, F., & Chiclana, F., 2015, A dynamic rule-induction method for classification in data mining. Journal of Management Analytics, 2(3), 233–

253.

Roger S. Pressman., 2010, Softeware Engineering A Practitioner’s Approach Seventh Edition (7th ed.). New York: McGraw-Hill.

Sapp, C. E., 2017, Preparing and Architecting for Machine Learning. Gartner Technical Professional Advice, (January), 1–38.

Seffens, W., Evans, C., Taylor, H. A., Quarells, R. C., Arnett, D. K., Gibbons, G.

H., … Wilson, J. G., 2015, Machine Learning Data Imputation and Classification in a Multicohort Hypertension Clinical Study. Bioinformatics and Biology Insights, 9s3, 43–54.

Solichin, A., 2011, Sistem Pakar Berbasis Mobile Untuk Mendeteksi Penyakit Pada Ginjal. Digital Information & System Conference (DISC) 2011, 4, 249–254.

Sudharsan, B., Peeples, M., & Shomali, M., 2015, Hypoglycemia Prediction Using Machine Learning Models for Patients With Type 2 Diabetes. Journal of Diabetes Science and Technology, 9(1), 86–90.

Thabtah, F., & Peebles, D., 2019, A new machine learning model based on induction of rules for autism detection. Health Informatics Journal, I23, Utami, J., & Wicaksono, L., 2015, Studi Kasus Tentang Peserta Didik Yang Sering

Membolos Di Smp Negeri 7 Sungai Raya. Jurnal Pendidikan Dan Pembelajaran Khatulistiwa, Vol 6, No, 1–8.

(4)

69 Wang, P. W., & Lin, C. J., 2016, Support vector machines. Data Classification:

Algorithms and Applications, (4), 187–204.

Wanzek, J., Roberts, G., & Al Otaiba, S., 2014, Academic responding during instruction and reading outcomes for kindergarten students at-risk for reading difficulties. Reading and Writing, 27(1), 55–78.

Wendari, W. N., Badrujaman, A., & Sismiati S., A., 2016, Profil Permasalahan Siswa Sekolah Menengah Pertama (Smp) Negeri Di Kota Bogor. Insight:

Jurnal Bimbingan Konseling, 5(1), 134.

Wieringa, R. J., 2003, Data Flow Diagrams. In Design Methods for Reactive Systems, Elsevier Science, San Fransico.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J., 2011, Data Mining: Practical Machine Learning Tools and Techniques. In Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.).

Xu, S., 2018, Bayesian Naïve Bayes classifiers to text classification. Journal of Information Science, 44(1), 48–59.

Yuliansyah, M., & Herman, M., 2018, Teknik Sosiometri Dalam Asesmen Pelayanan Konseling Pada Kepala Sekolah Dan Guru Sdn Kuin Selatan 1 Banjarmasin. Jurnal Bimbingan Dan Konseling Ar-Rahman, 4(1), 25.

Zhang, H., Liu, W., Xiong, H., & Dong, X., 2018, Analyzing data flow diagrams by combination of formal methods and visualization techniques. Journal of Visual Languages & Computing, 48, 41–51.

Referensi

Dokumen terkait

Example: Intercepting Incoming SMS // SMSReceiver: listens to broadcasted SMS_RECEIVED signals package cis493.intentfilters; import android.content.BroadcastReceiver; import